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Simple Summary: The proteasome inhibitor bortezomib is currently commonly used for the treatment
of multiple myeloma (MM). MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial
role in messenger RNA silencing and post-transcriptional regulation of gene expression. In MM,
the expression of several miRNAs is markedly dysregulated suggesting their role in MM pathogenesis
and drug resistance. The aim of our study was to assess miRNA expression patterns in the serum of
MM patients treated with bortezomib. We have identified 21 serum miRNAs differentially expressed
in patients refractory to bortezomib-based chemotherapy. A miRNAs-based prediction model was
developed to assess the probability of refractoriness to bortezomib. Our findings, indicating the
differential expression of miRNAs between bortezomib-refractory and bortezomib-sensitive patients,
suggest that these circulating miRNAs may play an important role in personalized treatment of
MM patients.

Abstract: Bortezomib is the first-in-class proteasome inhibitor, commonly used in the treatment of
multiple myeloma (MM). The mechanisms underlying acquired bortezomib resistance in MM are
poorly understood. Several cell-free miRNAs have been found to be aberrantly regulated in MM
patients. The aim of this pilot study was to identify a blood-based miRNA signature that predicts
bortezomib-based therapy efficacy in MM patients. Thirty MM patients treated with bortezomib-based
regimens were studied, including 19 with refractory disease and 11 who were bortezomib sensitive.
Serum miRNA expression patterns were identified with miRCURY LNA miRNA miRNome PCR
Panels I+II (Exiqon/Qiagen). Univariate analysis found a total of 21 miRNAs to be differentially
expressed in patients with MM according to bortezomib sensitivity. Multivariate logistic regression
was created and allowed us to discriminate refractory from sensitive patients with a very high AUC
of 0.95 (95%CI: 0.84–1.00); sensitivity, specificity and accuracy were estimated as 0.95, 0.91, and 0.93.
The model used expression of 3 miRNAs: miR-215-5p, miR-181a-5p and miR-376c-3p. This study
is the first to demonstrate that serum expression of several miRNAs differs between patients who
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are bortezomib refractory and those who are sensitive which may prove useful in studies aimed at
overcoming drug resistance in MM treatment.

Keywords: bortezomib; efficacy; multiple myeloma; resistance; sensitivity; refractory; microRNA;
miR-215-5p; miR-181a-5p; miR-376c-3p

1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation
of plasma cells in the bone marrow (BM) microenvironment [1,2]. It is the second most prevalent
hematological malignancy, accounting for 1.3% of all malignancies and 15% of hematological neoplasms,
with an annual incidence of 4.5–6 cases per 100,000 people [3].

Multiple myeloma often results in bone lesions, hypercalcemia, infections, anemia and production of
monoclonal immunoglobulin. The interaction of MM cells with host factors, and the BM microenvironment
plays a key role in the molecular evolution of the disease and the generation of treatment-resistant cells;
it also influences disease progression with the development of relapsed or refractory disease [4,5].
The treatment of MM has changed in recent years, with the introduction of new drugs, most notably,
proteasome inhibitors such as bortezomib, carfilzomib and ixazomib, immunomodulatory drugs
(lenalidomide, pomalidomide), a histone deacetylase inhibitors (panobinostat) and monoclonal antibodies
(elotuzumab and daratumumab) [6,7]. Bortezomib inhibits the proteasomal degradation of several
regulatory ubiquitinated proteins and exerts substantial anti-myeloma activity in previously untreated
and relapsed/refractory MM patients. The drug can be used as a single agent but is more frequently
administered in combination with other anti-myeloma drugs [8]. However, the therapeutic resistance
of these agents, which emerges soon after the onset of therapy in some cases, limits the efficacy of the
treatment in most patients, even if they initially responded to therapy [9].

MicroRNAs (miRNAs) are small, non-coding RNAs only 19 to 25 bases in length that are secreted
into the circulation and influence the regulation of gene expression in physiological or pathological
conditions [10–12]. Many studies have shown that miRNAs influence on several biological processes
associated with cancers, such as cancer proliferation, apoptosis, migration and invasion [13]. MiRNAs
can regulate the expression of tumor suppressor genes or oncogenes and play a functional role in cancer
progression. The profile of cell-free miRNAs or circulating miRNAs could be used as a signature of
disease status, including MM. Some studies indicate lowered expression of several miRNAs, including
miR-125b, miR-133a, miR-1, miR-124a, miR-15, and miR-16 in cell samples from patients with MM
than in normal individuals [14,15]. In contrast, higher expression of miR-21 has been observed in MM
plasma cells compared to plasma cells from individuals without MM [16]. Gupta al. found miR-203 to
demonstrate high sensitivity (83%) and specificity (83%) in the diagnosis of MM [17].

In patients with MM, miRNAs seem to be involved in drug resistance [15,18–21]. For example,
miR-21, miR-221/222, miR-125a and miR-125b, and miR-451 are upregulated in MM cells resistant to
antimyeloma drugs [21–24]. MiRNAs play an important role in regulating drug resistance by directly
targeting oncogenes and tumor suppressor genes in neoplastic diseases [23]. However, very little
data exists about the types of circulating miRNA in MM patients who are sensitive, or refractory,
to bortezomib. Identifying the miRNAs which mediate resistance of MM cells to targeted therapy
may improve proper treatment selection, overall response (OR) and survival. The present study
analyzes serum miRNA expression patterns in the serum of MM patients subsequently treated with
bortezomib-based regimens.

2. Results

In Table 1 we present the demographic, clinical and laboratory characteristics of the 30 MM patients
enrolled for the study. A total number of 18 men and 12 women were studied and the mean age of
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study population was 64.0 ± 9.9 years (range 39–81). The predominant paraprotein detected was IgG
type (60.0%) followed by light chain myeloma (23.3%). Most of the patients received a bortezomib,
cyclophosphamide and dexamethasone (VCD) regimen; however, two patients received VMP (bortezomib,
melphalan and prednisone), and one received VTD (bortezomib, thalidomide, dexamethasone). Nineteen
patients were refractory and 11 sensitive to bortezomib-based therapies. Overall, no statistically significant
differences were observed between the refractory and sensitive group regarding the studied clinical
variables (Table 1).

Table 1. The characteristics of the MM patients treated with Bortezomib-based therapy.

Variable Total Refractory Sensitive p-Value

Number of patients 30 19 11 -

Gender
M
F

18 (60.0)
12 (40.0)

12 (63.2)
7 (36.8)

6 (54.5)
5 (45.5) 0.73

Age at diagnosis
Mean ± SD (range)

64.0 ± 9.9
(39–81)

65.2 ± 10.6
(39–81)

62.2 ± 8.6
(46–76) 0.44

Bortezomib-based regimen
VCD
VMP
VTD

27 (90.0)
2 (6.7)
1 (3.3)

16 (84.2)
2 (10.5)
1 (5.3)

11 (100.0)
0
0

0.36

Paraprotein
IgG kappa

IgG lambda
LCD lambda

IgA kappa
LCD kappa
IgA lambda

11 (36.7)
7 (23.3)
6 (20.0)
4 (13.3)
1 (3.3)
1 (3.3)

7 (36.8)
4 (21.1)
3 (15.8)
4 (21.1)

0
1 (5.3)

4 (36.4)
3 (27.3)
3 (27.3)

0
1 (9.1)

0

0.36

Bone involvement at diagnosis 14 (46.7) 9 (47.4) 5 (45.5) 1.00

Calcium > 2.75 mmol/L at diagnosis 1 (3.3) 1 (5.3) 0 1.00

Calcium > 2.52 mmol/L at diagnosis 4 (13.3) 2 (10.5) 2 (18.2) 0.94

HB < 10 g/dL at diagnosis 12 (40.0) 7 (36.8) 5 (45.5) 0.87

Creatinine > 2 mg/dL at diagnosis 5 (16.7) 2 (10.5) 3 (27.3) 0.59

Previous treatment 6 6 0 0.06

ISS
I- 9 (30.0)
II- 6 (20.0)

III- 15 (50.0)

I- 6 (31.6)
II- 4 (21.1)
III- 9 (47.4)

I- 3 (27.3)
II- 2 (18.2)
III- 6 (54.5)

0.96

CRP > 5 mg/L 7 (23.3) 4 (21.1) 3 (27.3) 0.72

Beta−2 microglobulin (>3 mg/L) 20 (66.7) 12 (63.2) 8 (72.7) 0.61

LDH > 240 U/L 4 (13.3) 3 (15.8) 1 (9.1) 0.81

Cytogenetics N = 13 N = 8 N = 5
amp(1q)

IGH rearrangements
del(17p)
del(13q)
t(4;14)

t(11;14)
del(1p)
t(14;16)
t(14;20)

8 (61.5)
6 (46.2)
4 (30.8)
4 (30.8)
3 (23.1)
1 (7.7)
1 (7.7)

0
0

5 (62.5)
5 (62.5)
2 (25.0)
1 (12.5)
3 (37.5)
1 (12.5)

0
0
0

3 (60.0)
1 (20.0)
2 (40.0)
3 (60.0)

0
0

1 (20.0)
0
0

1.00
0.24
1.00
0.14
0.23
1.00
0.42

Abbreviations: LCD—light chain disease; VCD— bortezomib, cyclophosphamide and dexamethasone;
VMP—bortezomib, melphalan and prednisone; VTD—bortezomib, thalidomide, dexamethasone; ISS—International
Staging System.

MiRNAs were filtered for those present in 100% of both groups, leaving 155 miRNAs for further
analysis. PCA was performed to increase the general understanding of the whole miRNA signature
(Figure 1a). Twenty-one miRNAs were found to demonstrate significant differences in expression between
the refractory and the sensitive group (Table 2, Figure 1b). Overexpression of miR-215-5p, miR-143-3p,
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miR-19b-3p, miR-16-2-3p, miR-122-5p, miR-148a-3p, miR-22-5p, miR-30e-5p and miR-29b-3p was seen in
the bortezomib-refractory patients compared to the bortezomib-sensitive patients (Table 2).
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Figure 1. Comparision of miRNA expression between MM patients sensitive and refractory to
bortezomib-based treatment. 3D plot of principal comptonent analysis (PCA) score performed on all
155 miRNAs (a). Volcano plot of filtered miRNAs. miRNAs included in the logistic regression model
are indicated by their labels (b). Heatmap of significantly differently expressed miRNAs between study
subgroups (c).

Table 2. List of miRNAs with significantly different expression between groups in univariate analysis.

miRNA
Average

Expression ± SD
- Refractory Group

Average
Expression ± SD

- Sensitive Group
Fold Change log2FC p-Value FDR

hsa-miR-744-5p −5.03 ± 0.80 −3.73 ± 0.87 0.41 −1.30 0.0006 0.0823
hsa-miR-215-5p −1.82 ± 1.29 −3.58 ± 1.20 3.38 1.75 0.0011 0.0823
hsa-miR-151a-3p −1.72 ± 0.63 −0.94 ± 0.61 0.58 −0.77 0.0031 0.1163
hsa-miR-376a-3p −3.28 ± 2.02 −1.44 ± 1.08 0.28 −1.83 0.0031 0.1163
hsa-miR-143-3p −0.65 ± 0.86 −1.66 ± 0.85 2.02 1.01 0.0051 0.1163
hsa-miR-19b-3p 3.91 ± 0.76 3.16 ± 0.59 1.69 0.75 0.0056 0.1163
hsa-miR-16-2-3p −1.43 ± 0.95 −2.65 ± 1.08 2.33 1.22 0.0057 0.1163
hsa-miR-191-5p 0.40 ± 0.66 1.09 ± 0.56 0.62 −0.68 0.0061 0.1163
hsa-miR-181a-5p −1.97 ± 0.75 −1.15 ± 0.75 0.57 −0.82 0.0088 0.1492
hsa-miR-376c-3p −3.12 ± 1.26 −1.81 ± 1.21 0.40 −1.31 0.0104 0.1579
hsa-miR-122-5p 1.35 ± 1.80 0.12 ± 0.72 2.35 1.23 0.0137 0.1893
hsa-miR-766-3p −3.53 ± 1.09 −2.76 ± 0.62 0.59 −0.77 0.0199 0.2497
hsa-miR-30c-5p −0.89 ± 0.65 −0.40 ± 0.44 0.71 −0.49 0.0214 0.2497
hsa-miR-148a-3p 1.70 ± 1.60 0.57 ± 0.99 2.20 1.13 0.0235 0.2555
hsa-miR-22-5p −3.27 ± 0.99 −4.46 ± 1.41 2.28 1.19 0.0255 0.2584

hsa-miR-130a-3p −0.19 ± 0.63 0.36 ± 0.62 0.68 −0.55 0.0298 0.2830
hsa-miR-409-3p −5.59 ± 2.21 −4.18 ± 1.31 0.38 −1.41 0.0361 0.3230
hsa-miR-30e-5p 0.78 ± 0.67 0.21 ± 0.70 1.49 0.57 0.0396 0.3230
hsa-miR-1224-3p −6.62 ± 2.04 −4.67 ± 2.51 0.26 −1.95 0.0418 0.3230
hsa-miR-328-3p −3.26 ± 0.45 −2.61 ± 0.89 0.64 −0.65 0.0425 0.3230
hsa-miR-29b-3p −2.83 ± 0.78 −3.46 ± 0.80 1.55 0.63 0.0483 0.3494

In contrast, reduced expression of miR-744-5p, miR-151a-3p, miR-376a-3p, miR-191-5p,
miR-181a-5p, miR-766-3p, miR-30c-5p, miR-130a-3p, miR-409-3p, miR-1224-3p and miR-328-3p was
observed among the bortezomib-refractory patients compared to the bortezomib-sensitive patients
(Table 2 and Figure 1c). To select a panel of miRNAs discriminating between refractory and sensitive
group, a multivariate logistic regression model was generated. Univariate logistic regression analysis
found 10 miRNAs to be significantly associated with refractoriness (Table 3).
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Table 3. Univariate logistic regression analysis for predicting refractoriness to bortezomib-based
treatment in MM patients.

miRNA Coefficient OR
95% CI p-Value

Lower Upper

hsa-miR-215-5p 1.13 3.08 1.28 7.41 0.0120
hsa-miR-744-5p −2.81 0.06 0.01 0.57 0.0146
hsa-miR-143-3p 1.42 4.14 1.31 13.09 0.0157
hsa-miR-151a-3p −2.56 0.08 0.01 0.64 0.0172
hsa-miR-16-2-3p 1.30 3.68 1.26 10.76 0.0174
hsa-miR-376a-3p −0.84 0.43 0.21 0.87 0.0194
hsa-miR-19b-3p 1.57 4.78 1.27 17.98 0.0205
hsa-miR-376c-3p −0.83 0.44 0.21 0.88 0.0210
hsa-miR-181a-5p −1.51 0.22 0.06 0.80 0.0219
hsa-miR-191-5p −2.61 0.07 0.01 0.79 0.0311
hsa-miR-122-5p 0.78 2.18 0.98 4.86 0.0557

A forward stepwise and backward stepwise selection approach were used to restrict the model
to the most predictive miRNAs. Forward stepwise selection yielded a final model with the lowest
AIC value. In the final multivariate logistic regression model, only miR-215-5p (odds ratio [OR] = 3.87;
95%CI 1.21–12.39; p = 0.02), miR-376c-3p (OR = 0.18; 95%CI 0.04–0.81; p = 0.03) and miR-181a-5p
(OR = 0.07; 95%CI 0.01–0.97; p = 0.05) were associated with refractoriness to bortezomib treatment
(Table 4). The combination of miR-215-5p, miR-376c-3p and miR-181a-5p could discriminate refractory
from sensitive patients with a very high area under the ROC curve (AUC) of 0.95 (95% CI: 0.84–1.00);
sensitivity, specificity and accuracy were estimated as 0.95, 0.91, and 0.93 (Figure 2a).

Table 4. Final multivariate regression model for predicting refractoriness to bortezomib-based treatment
in MM patients.

miRNA Coefficient OR 95% CI p Value

hsa-miR-215-5p 1.35 3.873 1.210–12.389 0.0225

hsa-miR-376c-3p −1.72 0.178 0.039–0.806 0.0251

hsa-miR-181a-5p −2.67 0.069 0.005–0.973 0.0477

The Hosmer-Lemeshow test for goodness of fit indicated good fit of the model (p = 0.10). Internal
validation of the selected panel model using bootstrap optimism corrected AUC suggests that the
panel offers high discriminatory power when applied to independent samples (optimism-corrected
AUC of 0.93, which was within the 95% CI for AUC on whole dataset).

We examined mi-RNAs expression between treatment-naive and previously treated patients-
the results are given in Table S1. Briefly, among 21 differentially expressed miRNAs in bortezomib
resistant-patients, only 2 miRNAs- hsa-miR-328-3p and hsa-miR-30e-5p were differentially expressed
between treatment-naive and previously treated patients. These miRNAs were not statistically
significant in univariate logistic regression models and were not included into building process of the
final model.
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Figure 2. The performance of a classification miRNA-based model in predicting refractoriness to
bortezomib-based treatment in MM patients. The area under the ROC curve for logistic regression
model was estimated as 0.9474 (95% CI: 0.8421-1.000) (a). Calibration plot of the mi-RNA-based
logistic regression model, including the apparent and bias-corrected measures by bootstrapping (b).
In the calibration plot, the predicted probability of the model is represented on the x-axis and the
observed proportion of refractoriness to bortezomib-based treatment is represented on the y axis.
The 45◦ line indicates perfect congruity between the predicted probability and the observed proportion
of bortezomib refractoriness. J48 decision tree with completely accurate (100%) model, separating
refractory to bortezomib and sensitive MM patients (c). ROC analysis for 10-fold cross-validation (d).

The calibration plot of predicted and actual probability showed good correlation in low and in
the intermediate probability area. The calibration plot, including the bias-corrected measures is given
in Figure 2b. However, it appeared to have poor correlation in high probability areas. Additionally,
a J48 (C4.5 classifier) decision tree was generated using miR-215-5p, miR-376c-3p and miR-181a-5p;
this tree accurately separated refractory and sensitive patients in a training set (Figure 2c). ROC analysis
for 10-fold cross-validation demonstrated preserved good discriminative ability of the model with
AUC 0.88 (95%CI: 0.76–1.00) (Figure 2d).

Moreover, the resultant differentially expressed miRNAs were analyzed through the use of Ingenuity
Pathway Analysis. MiRNA targets were found using IPA’s miRNA target filter for experimentally
validated (Table S2) and putative predicted targets (high confidence level- Table S3)—in silico analyses.
We have also generated gene networks based on miRNAs exhibiting significant changes in patients
refractory to bortezomib-based treatment (Figure 3).
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3. Discussion

Serum miRNAs, with their noticeable stability and unique expression pattern are robust novel
non-invasive biomarkers that can be used for cancer detection and identifying disease characteristics [25].
To our knowledge, this is the first study to demonstrate that the serum expression of several miRNAs
differs between patients refractory to bortezomib and those who are sensitive. The present study
identifies 21 serum miRNAs differentially expressed in patients with MM according to the bortezomib
sensitivity based on univariate analysis. The serum levels of nine miRNAs were lowered, and another
12 were elevated, in bortezomib-refractory patients compared to the bortezomib-sensitive patients.
Few studies have demonstrated the significance of miRNAs in MM patients, especially in the context
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of drug resistance. However, some of them have been previously reported as important in the biology
and clinical implications of MM [18,26–31].

In the present study, higher serum levels of miR-215-5p, miR-143-3p, miR-19b-3p, miR-16-2-3p,
miR-122-5p, miR-148a-3p, miR-22-5p, miR-30e-5p and miR-29b-3p were seen in bortezomib-refractory
patients compared to bortezomib-sensitive patients (Table 2). MiR-215-5p, miR-30e-5p and miR-29b-3p
have been found to play important roles in the biology of MM. In a previous study, miR-215-5p was
negatively correlated with runt-related transcription factor 1 (RUNX1) expression in MM clinical bone
marrow samples [32]. In addition, miR-215-5p overexpression increased cell proliferation and inhibited
MM cell apoptosis by targeting RUNX1 and suppressing the activation of the PI3K/AKT/mTOR
pathway. These findings indicate that overexpression of miR-215-5p inhibits the proliferation of MM
cells and promotes their apoptosis, while also inducing the cell cycle progression from G1/S phase of
MM cells; hence, miR-215-5p appears to be an anti-oncogene of MM. MiR-30e-5p was differentially
expressed in MM patients with and without extramedullary relapse [33].

In another study in which fluorescence in situ hybridization was used, miR-30e-5p was found to
be a biomarker for distinguishing MM with 1q21 gains from MM [33]. In vitro and in vivo studies
both suggest that miR-29b plays a tumor suppressor function. MiR-29b-3p is involved in bortezomib
resistance in MM patients. Pan et al. reported recently that LncRNA H19 induces bortezomib resistance
by targeting MCL-1 via miR-29b-3p [26]. It is suggested, that H19/miR-29b-3p/MCL-1 may be a novel
and promising therapeutic target for coping with drug resistance in MM treatment [34,35]. An earlier
study performed in MM showed that miR-143-3p expression is regulated by long non-coding RNA
Sox2 overlapping transcript (SOX2OT) [35].

To the best of our knowledge, six of the miRNAs overexpressed in bortezomib refractory patients
(miR -143-3p, miR-19b-3p, miR-16-2-3p, miR-122-5p, miR-148a-3p and miR-22-5p) have not been
investigated in MM patients yet. However, the results of several studies indicate the involvement
of these molecules in the biology of other neoplasms. MiR-143-3p was identified as the key specific
mediator of KIAA1429 expression in osteosarcoma cells [36]. In addition, it is also involved in
the regulation of cell proliferation in cervical cancer, esophageal cancer, breast cancer, lung cancer
and other neoplasms [37–40]. MiR19b-3p has also been implicated in the pathogenesis of several
cancers in humans [41,42]. Jiang et al. found miR-19b-3p to promote cell proliferation and induce
resistance to oxaliplatin-based chemotherapy in colon cancer in vitro, and promote tumorigenesis
in vivo [43]; these findings are similar to our present observations regarding higher expression of
this miRNA in bortezomib-refractory MM patients. MiR-19b-3p is highly expressed in colon cancer
tissues, and although its downregulation has been associated with decreased cell proliferation, it has
not been found to have any effect on tumor invasion [43]. Elsewhere, overexpression of miR-19b-3p
was observed to decrease the sensitivity of nasopharyngeal carcinoma cells to radiotherapy, whereas
down-regulation resulted in the opposite results [44]. In addition, in patients with colon cancer
miR-19b-3p is an independent prognostic factor associated with disease-free survival and overall
survival. These results suggest a role of miR-19b-3p as potential therapeutic target against chemotherapy
resistance, including MM.

MiR-16-2-3p demonstrates strong tumor suppressive and antimetastatic properties in osteosarcoma
and other neoplasms [45]. Several studies suggest that miR-122-5p may be a potential prognostic
factor and therapeutic target for patients with pancreatic ductal adenocarcinoma, hepatocellular
carcinoma and other neoplasms [46,47]. In addition miR-122-5p acts as a tumor suppressor in gastric
cancer progression and inhibits the proliferation, migration, and invasion of gastric cancer cells [48,49].
Biologically, miR-148a-3p influences cellular differentiation and the cellular development of several
tumors; it also promotes the differentiation of activated B cells to plasma cells and increases survival
of plasma cells by inhibiting the transcription factors BACH2 and MITF [50]. MiR-148a-3p was
upregulated in some cancers and downregulated in others [51]. In particular, increased miR-148a-3p
serum level is observed in prostate cancer, glioma and osteosarcoma [52]. Upregulation of miR-22-5p
was has also been recorded in cholangiocarcinoma cell lines [53]. In addition, miR-22 acts as a novel
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biomarker for non-small cell lung cancer and inhibits tumor growth and metastasis [54,55]. miR-22 has
also been found to be significantly associated with osteosarcoma grade, impaired osteosarcoma cell
proliferation and epithelial-mesenchymal transition progression [56].

The serum levels of miR-744-5p, miR-151a-3p, miR-376a-3p, miR-191-5p, miR-181a-5p, miR-766-3p,
miR-30c-5p, miR-130a-3p, miR-409-3p, miR-1224-3p and miR-328-3p, which were lower in the refractory
group than the sensitive patients (Table 2). MiR-181a-5p is a direct target of colon cancer associated
transcript-1 (CCAT1), and its repression could rescue the inhibition of CCAT1 knockdown on MM
progression [57]. MiR-181a-5p has previously been found to be a target of LncRNA MALAT1,
whose interference decreased the expression of miR-181a-5p and inhibited the proliferation and adhesion
of myeloma cells [58].

Although no previous studies have confirmed that other miRNAs are down-regulated in
bortezomib refractory MM, they are known to be involved in the development of various cancers,
and some of them play an important role in cancer progression. Overexpression of miR-744-5p was
found to inhibit the proliferation, migration, and invasion of cancer cells in epithelial ovarian cancer,
non-small cell lung cancer and in nasopharyngeal carcinoma [59,60]. MiR-376a is silenced in several
types of cancer, suggesting its role as tumor suppressor for the development and progression of
cancer [61,62]. MiR-191-5p is believed to act as a tumor promoter: elevated miR-191-5p levels have
been correlated with the advanced stages, metastasis, and high pathological grade of hepatocellular
carcinoma [63]. Serum exosomal miR-766-3p is also thought to be a prognostic marker for esophageal
squamous cell carcinoma with its serum expression being associated with poor prognosis and a
significantly worse survival [64]. In addition, miR-766 acts as an oncogene in the development of
colorectal cancer and its overexpression promotes cell proliferation in this disease [65]. In addition,
higher expression of miR-766-3p was found in the plasma of patients with colorectal cancer compared
to healthy controls [66]. MiR-30c-5p is involved in many biological events, including cell apoptosis,
growth, and differentiation. In a recent study, decreased expression of miR-30c-5p was associated with
an unfavorable course of the renal cell carcinoma [67]. MiR-130a-3p, a member of the miR-130 family,
is an important regulator of tumor progression and metastasis [68]. While the members of the miR-130
family are upregulated in several cancers and promote cell proliferation, they have also been found to
be downregulated and inhibit cell proliferation in a number of studies [25,69–73].

Some of the miRNAs identified in our study as being differentially expressed in bortezomib
refractory and sensitive MM patients are known to be potentially important for prediction of response
to treatment in other cancers. MiR-151a-3p could predict the response to azacitidine treatment in
myelodysplastic syndromes when tested in combination with miR-423-5p, miR-126-3p miR-125a-5p,
and miR-199a-3p [74]. Using Cox regression and risk-score analysis, Ji et al. identified miR-328-3p
and three additional miRNA signature (miR-652-3p, miR-342-3p and miR-501-3p) that can be used for
the prediction of treatment outcome including tumor relapse and the OS of patients with colorectal
cancer [75]. In the present study, these miRNAs were found to be less useful for the prediction of
bortezomib refractoriness in MM patients; however, the final version of the multivariate logistic
regression model constructed to predict refractoriness to bortezomib-based treatment in MM patients
found only miR-215-5p, miR-376c-3p and miR-181a-5p to be associated with refractoriness to bortezomib
treatment (Table 4, Figure 2a). Our findings, indicating the differential expression of miRNAs between
bortezomib-refractory and bortezomib-sensitive patients, suggest that these circulating miRNAs may
play an important role in the correct treatment selection in MM patients.

Finally, combining miRNAs with anti-MM drugs may improve treatment efficacy and prevent
drug resistance among patients with MM [18,76–78]. Theoretically, it is possible that inhibition of
miRNAs overexpressed in bortezomib-refractory MM can improve drug sensitivity. The possible
synergistic effect between miRNA inhibition and anti-MM drugs has been investigated in preclinical
studies. Inhibition of miR-221/222 reduced the drug resistance of MM1R MM cells to dexamethasone
via upregulation of the pro-apoptotic PUMA in vitro and improved mouse survival in vivo [77].
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Elsewhere, miR-221/222 overcame melphalan resistance and triggered apoptosis of MM cells in vitro:
Gulla et al. demonstrated that inhibition of miR-221/222 via LNA-i-miR-221 triggers cell apoptosis in vitro
and restores drug sensitivity in melphalan-refractory MM cells [22]. In vivo treatment of SCID/NOD mice
bearing human melphalan-refractory MM xenografts with systemic locked nucleic acid (LNA) inhibitors
of miR-221 (LNA-i-miR-221) combined with melphalan increased the antitumor effects seen in tumors
retrieved from treated mice [22]. In another study, miR-29b replacement disrupted the autophagy pathway
and synergistically enhanced the antimyeloma effect of bortezomib in bortezomib-resistant MM cells,
increasing the antimyeloma effect of bortezomib [79]. In addition, MiR-21 inhibition combined with
the cytotoxic drugs dexamethasone, doxorubicin, or bortezomib inhibited myeloma cell survival more
effectively than either treatment alone [80]. These results suggest that influencing miRNA expression may
be an effective strategy for improving anti-myeloma therapy.

Our findings demonstrated that serum expression of several miRNAs differs between patients
who are refractory to bortezomib and those who are sensitive. However, it is important to examine
the roles of these miRNAs in the regulation of recently-identified genes associated with bortezomib
resistance, such as PSMB5, CDK5 and CYP1A1, in MM cells [81–83]. It has been reported previously
that miRNAs can modulate the expression of genes responsible for bortezomib refractoriness in MM
cells; for example, CDK5 expression may be related to miR-27a-5p activity [84]. However, to determine
the degree of this modulation, further studies are needed of the miRNAs identified as being associated
with bortezomib refractoriness.

4. Materials and Methods

4.1. Patients

A total of 30 MM patients who were admitted to the Department of Hematology, Copernicus
Memorial Hospital, Lodz, Poland were included in the study. The group of patients included 18 men
and 12 women with a mean age of 64 years (range, 39–81 years). Their demographic, clinical and
laboratory details are shown in Table 1. All of the patients received bortezomib treatment as the first line
treatment or in progression after previous therapy. No patients had received bortezomib-based therapy
prior to the study. The participants were classified according to their response to bortezomib-based
therapy as either bortezomib sensitive or bortezomib refractory [5].

Response to treatment and relapse/progression events were classified according to the International
Myeloma Working Group (IMWG) [85,86]. Sensitive patients had CR or PR after bortezomib-based
therapies longer than six months after treatment discontinuation [86–88].

The study was conducted according to good clinical and laboratory practice rules and the
principles of the Declaration of Helsinki. All procedures were approved by the local ethical committee
(The Ethical Committee of the Medical University of Lodz, No RNN/103/16/KE). Each patient signed
the informed consent for all examinations and procedures.

4.2. Serum Collection

Venous blood samples were collected from MM patients before treatment with bortezomib based
regimens. Peripheral blood was collected in serum separating tubes and processed within 2 h of
collection by centrifugation at 2400× g for 10 min. Serum samples were stored at −80 ◦C. for further use.

4.3. miRNA Isolation

Isolation of total RNA including miRNA was performed from serum using the miRNeasy
Serum/Plasma Advanced Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s
protocol. Samples of 2 µL of the final eluate was used as the sample input. To allow for normalization
of sample-to-sample variation in RNA isolation, prior to purification, each serum sample was spiked
with UniSp2 (2 fmol), UniSp4 (0.02 fmol), UniSp5 (0.00002 fmol), each at a different concentration
in 100-fold increments and UniSp6 (0.075 fmol) and cel-miR-39-3p (0.001 fmol) as a positive control
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for cDNA synthesis. RNA quality was determined with Agilent High Sensitivity RNA ScreenTape
using 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). Directly after isolation RNA was
subjected to the reverse transcription process.

4.4. Determination of MicroRNA Profile

MmiRNA profiling was performed by miRCURY LNA RT Kit (Qiagen) and used to prepare
the reverse transcription reaction according to the manufacturer’s recommendations. Real-time PCR
was performed on a LightCycler480 Real Time PCR System (Roche, Pleasanton, CA, USA) using and
miRCURY LNA miRNA miRNome PCR Panel I and II. This array enables accurate quantitation of
752 human microRNAs.

4.5. Reverse Transcriptase Reaction

Mature miRNAs were polyadenylated by poly(A) polymerase and reverse transcribed into cDNA
using oligo-dT primers. Polyadenylation and reverse transcription were performed in parallel in the
same tube. The oligo-dT primers have a 3′ degenerate anchor that allows amplification of mature
miRNA in the real-time PCR step. MiRCURY LNA Reverse Transcription Kit was purchased from
Qiagen and used to synthesize cDNA according to the guidelines provided by the manufacturer.
Two µL of isolate was added to the reaction tube to make up a final volume of 10 µL reaction mix.
The reaction took place at 42 ◦C for 60 min and were then inactivated at 95 ◦C for 5 min in thermal cycler.

4.6. Real Time PCR (qPCR)

The expression of 752 miRNAs were determined in all patients using miRCURY LNA miRNome
Human PCR Panel I and II (Qiagen). Real-time PCR was performed on LightCycler480 II (Roche)
instrument. Three µL of cDNA template (diluted 1:60) was used in each PCR reaction. The reaction
was performed at 95 ◦C for 2 min, followed by 45 amplification cycles at 95 ◦C for 10 s and 56 ◦C for
1 min. Fluorescence was measured after each cycle. Relative quantification of mRNA was determined
by a comparative Ct method.

4.7. Statistical Analysis

4.7.1. Data Preparation

miRNAs were filtered for miRNAs present in 100% of both groups, leaving 155 miRNAs to further
analysis. After miRNA selection, batch correction was performed using ComBat [89]. The stability of
miRNAs was measured by NormiRazor [90,91]. This is an integrative tool which implements existing
normalization algorithms (geNorm, NormFinder and BestKeeper) in a parallel manner. The data was
normalized by using used the mean expression value of three miRNAs in a given sample (miR-23b-3p,
miR-151a-5p and miR-152-3p), which proved to be the most stable normalization factor (according to
NormiRazor). The formula used to calculate the normalized Ct values was:

Normalized ∆Ct = mean Ct of miR-23b-3p, miR-151a-5p and miR-152-3p—Ct miRNA.
This approach results in higher values for higher miRNA expression enabling easy biomarker

interpretation. Normalized ∆Ct for all samples and with class assignments were provided as Table S4.

4.7.2. Analysis

Nominal variables were expressed as percentages and analyzed using the Chi-square test with
appropriate corrections if needed: the Yates correction for continuity or Fisher’s exact test. The normality of
the distribution of continuous variables was verified with the Shapiro-Wilk test. For continuous variables,
the difference between two groups was evaluated using a two-sided independent Student’s t test when the
data was normally distributed, and with the Mann-Whitney U test when the assumption of normality was
not met or if the variable was ordinal. Continuous variables were presented as mean ± standard deviation
(SD) or medians with 25% to 75% values according to the data distribution. For visual representation of
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multidimensional data, principal component analysis (PCA) and unsupervised hierarchical clustering
were performed.

For a more comprehensive analysis, a logistic regression model was generated that used the
refractoriness to a bortezomib-based regimen as outcome and miRNAs as predictors. The variables
were preselected for the development of the classification model using Student’s t-test. All miRNA
with FDR < 0.2 were chosen as candidate variables in this step. We estimated both a univariate model
for each of the selected miRNA and a multivariate model that included all selected predictors. Forward
stepwise and backward stepwise selection approaches were used to restrict the model to the most
predictive miRNAs. The model with the lowest AIC (The Akaike information criterion) value was
chosen as the final model. The predictive power of the final model was evaluated by receiver operating
characteristics (ROC) and area under the curve (AUC) analysis to determine the ability of the biomarker
panel to accurately predict refractoriness to the bortezomib-based treatment regimen. The goodness
of fit of the model was tested with the Hosmer-Lemeshow statistic, where high p values indicate a
good fit.

4.7.3. Internal Validation

Bootstrap samples were used to test for possible overfitting by determining optimism values on
calibration measures. The bootstrap analysis was performed on 1000 different samples of the same
sample size drawn with replacements from the original sample. Optimism, which is a measurement of
internal model validation that refers to the absolute magnitude of bias, equals the difference between
respective statistics of the bootstrap sample (bootstrap performance) and the bootstrap model in
the original sample (test performance) [92]. Bias-corrected (bc) AUC was calculated as the mean of
AUC metrics derived from 1000 bootstrap samples. Additionally, J48 (C4.5 classifier) decision tree
was generated and tested in 10 times repeated 10-fold cross-validation manner to reduce the bias
and variance of the estimations. Lastly, to find further biological insights, the resultant differentially
expressed miRNAs were analyzed through the use of IPA (Ingenuity Pathway Analysis, Qiagen Inc.).

All statistical analyses were conducted using Statistica Version 13.1 (TIBCO, Palo Alto, CA, USA) and
R programming language (version 4.0.2). Most of the analysis utilized our miRNAselector R package [93]
P values lower than 0.05 were considered statistically significant. Benjamini and Hochberg multiple
comparisons correction was used to adjust individual raw p values.

5. Conclusions

In conclusion, our data demonstrate differential serum miRNA expression between patients with
MM who are sensitive to bortezomib-based therapies and those who are not. To our knowledge, this is
the first study to demonstrate such differences between these two groups of patients. These results
indicate a promising therapeutic target for coping with drug resistance in MM treatment. In addition,
we describe the development of a multivariate regression model for predicting refractoriness to
bortezomib-based treatment in MM patients. Our findings provide evidence that combined expression
levels of miR-215-5p, miR-376c-3p and miR-181a-5p can be used to predict the response to bortezomib
treatment. Internal validation of the selected panel suggests that the discriminatory power of the panel
will be high when applied to independent samples. In addition, miRNAs are promising therapeutic
target for coping with drug resistance in MM treatment. However, the clinical and biological importance
of these findings need further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2569/s1,
Table S1: differentially expressed mi-RNAs between treatment-naive and previously treated patients- among
21 differentially expressed miRNAs in bortezomib resistant-patients, only 2 miRNAs- hsa-miR-328-3p and
hsa-miR-30e-5p were differentially expressed between treatment-naive and previously treated patients, Table S2:
Putative miRNA targets found using Ingenuity miRNA target filter for experimentally validated targets, Table S3:
Putative miRNA targets found using Ingenuity miRNA target filter for experimentally validated targets and putative
predicted targets (high confidence level), Table S4: Normalized ∆Ct for all samples and with class assignments.
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BM bone marrow
Bcl-2 B-Cell Leukemia/Lymphoma 2
FISH fluorescent in situ hybridization
MM Multiple myeloma
MiRNAs MicroRNAs
MeV Multi Experiment Viewer
Mcl-1 myeloid cell leukemia sequence 1
MGUS monoclonal gammopathy of unknown significance
qRT-PCR quantitative real-time polymerase chain reaction
CLL lymphocytic leukemia
CR complete response
VGPR very good partial response
OS overall survival
PCR polymerase chain reaction
PFS progression free survival
PR partial response
ROC receiver operating characteristics
RUNX1 runt-related transcription factor 1
AUC area under the curve
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