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Abstract

procedure.

Background: Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed intrinsic
regional activity alterations in obsessive-compulsive disorder (OCD), but those results were based on group
analyses, which limits their applicability to clinical diagnosis and treatment at the level of the individual.

Methods: We examined fractional amplitude low-frequency fluctuation (fALFF) and applied support vector machine
(SVM) to discriminate OCD patients from healthy controls on the basis of rs-fMRI data. Values of fALFF, calculated from 68
drug-naive OCD patients and 68 demographically matched healthy controls, served as input features for the classification

Results: The classifier achieved 72% accuracy (p < 0.001). This discrimination was based on regions that included the left
superior temporal gyrus, the right middle temporal gyrus, the left supramarginal gyrus and the superior parietal lobule.

Conclusions: These results indicate that OCD-related abnormalities in temporal and parietal lobe activation have
predictive power for group membership; furthermore, the findings suggest that machine learning techniques can be
used to aid in the identification of individuals with OCD in clinical diagnosis.

Keywords: Obsessive-compulsive disorder, Drug-naive, Resting-state fMRI, Fractional amplitude of low-frequency
fluctuation, Multivariate classification, Support vector machine

Background

Obsessive-compulsive disorder (OCD) is a chronic psychi-
atric disorder characterized by the presence of recurrent
and persistent thoughts, urges or images, and repetitive
behaviors, with a lifetime prevalence of 2-3% and a 12-
month prevalence of up to 1% [1-4]. This disease is one
of the top 10 causes worldwide of years lived with disabil-
ity, indicating its considerable severity and the burden it
imposes [5].
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Resting-state functional magnetic resonance imaging (rs-
fMRI) provides an effective and noninvasive approach to
assess neural activation and connectivity between regions.
The amplitude of low-frequency fluctuation (ALFF) of the
blood oxygenation level-dependent (BOLD) signal is con-
sidered a physiologically meaningful measure that detects
spontaneous regional brain activity with high sensitivity and
specificity in rs-fMRI [6]; altered activation has been con-
sistently identified in several brain regions in OCD, includ-
ing increased ALFF in the orbitofrontal cortex (OFC) and
anterior cingulate cortex (ACC), along with decreased
ALFF in the parietal cortex and cerebellum [7, 8].

However, these abnormal patterns of neural activation
were identified by conventional univariate analysis in which
ALFF was used to compare brain activity between a group
of OCD patients and a healthy control group to identify
regions with significant differences. While this type of
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statistical comparison can help localize regional differences
that occur as a function of OCD, it cannot generally differ-
entiate between OCD patients and healthy controls indi-
vidually, because not all such group differences are
guaranteed to be predictive, and there might be significant
overlap between the two distributions of the pertinent
metric. Moreover, traditional univariate approaches to func-
tional magnetic resonance imaging (fMRI) analysis may
overlook multivariate patterns in data [9, 10]. Recently,
these univariate analyses have been complemented by the
use of the multivariate pattern analyses (MVPA), in particu-
lar machine learning-based approaches, it not only learn
discriminative rules from an exemplar dataset and automat-
ically determine the group membership of novel data points
but also extract spatial and/or temporal patterns from neu-
roimaging data [9, 11]. Attempts have been made to apply
machine learning approaches to rs-fMRI data on various
psychiatric disorders, including major depressive disorder
[12], schizophrenia [13], mild cognitive impairment, and
Alzheimer’s disease [14]. The most commonly used pattern
recognition method in neuroimaging literature is support
vector machine(SVM)- an algorithm uses a well-defined
dataset to create decision function or “hyperplane” which
can best distinguish between categories, and then the pro-
duced decision function or hyperplane will be used to pre-
dict which predefined group a new observation belongs to.
Evidence of comparison studies among multivariate pattern
recognition methods showed that SVM helps weigh down
the effect of noisy features that are highly correlated with
each other when there are a large number of features [9].

OCD is currently diagnosed on the basis of a subjective
clinical interview and scale evaluation, which always leads
to diagnostic inconsistency among psychiatrists, cultures,
and districts [15]. Thus, researchers attempting to com-
bine neuroimaging data with SVM techniques in recent
years have found that this approach has the potential to
differentiate OCD patients from healthy subjects. Classifi-
cation algorithms have been applied to diffusion tensor
imaging (DTI) [16], structural magnetic resonance im-
aging [17, 18] and task fMRI [19] with the goal of distin-
guishing OCD patients from healthy controls and
achieved relatively satisfactory findings. Furthermore, a
comparison study showed SVM achieve higher accuracy
than Gaussian process classifier (GPC) using white matter
features [17]. However, those previous studies included
patients who were taking medication at the time of acquir-
ing neuroimaging data; medication would affect the intrin-
sic patterns of neural activity and might compromise the
accuracy of the classifier.

To our knowledge, no study has yet utilized SVM classifi-
cation with fractional ALFF (fALFF) — an improved ap-
proach to detect spontaneous regional brain activity with
higher sensitivity and specificity than ALFF — for rs-fMRI in
drug-naive OCD patients to identify disease characteristics
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and discriminate drug-naive patients from healthy controls
[20]. Characterizing useful biomarkers and developing ef-
fective diagnostic models will benefit clinical diagnosis by
using distinguishing features to identify potential novel
treatment targets. Thus, the aims of our study were as fol-
lows: (1) to discriminate OCD patients from healthy con-
trols using fALFF through a machine learning approach
aided by SVM; and (2) to investigate the regions of the most
important discriminative features and contribute to classifi-
cation discrimination.

Methods

Participants

According to the previous OCD classification studies, sup-
posed expected specificity = 0.8, expected sensitivity = 0.8,
8=0.1, a=0.05 (two-side), the number of each group we
need in the study was 63. In our study, we enrolled 68
drug-naive OCD patients and 68 sex-, age-, and education-
matched healthy control participants were enrolled from
2012 to 2015 under protocols approved by the Ethics Com-
mittee of West China Hospital, Sichuan University. All par-
ticipants were of Chinese Han nationality and were right
handed. All provided written informed consent. OCD pa-
tients were recruited from the clinic of the Mental Health
Center at West China Hospital, Sichuan University. Poten-
tial participants were interviewed and scanned using the
Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID) and diagnosed by two experienced psychiatrists (X.
Yang and Y. Yang). Participants were excluded if they had
any of the following characteristics or conditions: (1) age
under 18 years or over 60 years; (2) any psychiatric comor-
bidity identified using the SCID; (3) any history of major
physical illness, cardiovascular disease, or neurological dis-
orders; (4) any history of continuous psychotherapy; and (5)
pregnancy. The Yale-Brown Obsessive Compulsive Scale
(Y-BOCS) was used to rate the severity of OCD symptoms.
Healthy control subjects were recruited using poster
advertisements and screened using the SCID (non-patient
edition) by the same psychiatrists; subjects with any psychi-
atric or neurological illness, a family history of psychiatric
illness, or any history of continuous psychotherapy were
excluded.

Data acquisition and preprocessing

Resting-state fMRI data were collected with a 3 T MRI sys-
tem (EXCITE, General Electric, Milwaukee, W1I) equipped
with an 8-channel phase array head coil. The resting-state
functional images were obtained via a gradient-echo echo-
planar imaging (EPI) sequence (TR = 2000 ms, echo time =
30 ms, flip angle = 90°, slice thickness/gap = 5/0 mm, field of
view = 240 x 240 mm, Matrix = 128 x 128, yielding an in-
plane voxel dimension of 1.875 x 1.875 mm, 30 axial slices,
200 volumes in each run, scan time = 8 min). During the
MR examination, participants were instructed to relax their
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minds and keep their eyes closed but not to fall asleep.
Foam padding and earplugs were used to reduce head mo-
tion and scanner noise.

Resting-state functional images were preprocessed
using the software Data Processing Assistant for rs-fMRI
(DPARSEF), version 2.3 (State Key Laboratory of Cogni-
tive Neuroscience and Learning, Beijing Normal Univer-
sity) [21] on the MATLAB platform. The first 10 images
were removed in consideration of magnetization satur-
ation effects and participants’ adaptation to the environ-
ment; the remaining 190 EPI images were subjected to
slice-timing correction, realigned to the first image in
the first series, and subsequently unwrapped to correct
for susceptibility-by-movement interactions. We ob-
tained the time course of head motion by estimating the
translation in each direction and the rotation on each
axis for each of the 190 consecutive volumes. Each par-
ticipant’s head movement measured less than 1.5 mm in
maximum displacement and less than 1.5° in angular
motion about each axis. After being realigned, all of the
data were normalized to the Montreal Neurological In-
stitute (MNI) template, resampled to 3 x3 x3mm in
Statistical Parametric Mapping version 8 (SPMS), and
smoothed with 8 mm full-width at half-maximum
Gaussian kernel and removed linear trend. Subsequently,
nuisance covariates, including head motion parameters,
global mean signal intensity, white matter, and cerebro-
spinal fluid signal intensity were regressed out. A whole-
brain mask was created by removing the non-brain tis-
sue in the anatomical images using the MRIcro software
(http://www.mricro.com) [6], voxels within the mask
were further analyzed.

Voxel-wise fALFF analysis

Using the REST (http://www.restfmri.net/forum, version
1.8) software, we performed fALFF based on the proced-
ure developed by Zou [20] after preprocessing. The time
series were transformed into the frequency domain to
obtain the power spectrum. The square root was calcu-
lated at each frequency of the power spectrum, and the
mean square root across the low frequency range (0.01—
0.08HZ) was obtained; this mean was defined as ALFF
[6]. The fALFF was calculated as the ratio of the power
in the low frequency range to the power across the en-
tire frequency range (0—0.25HZ). Finally, the resulting
spatial fALFFs maps were then normalized with each
voxel divided by the whole-brain fALFFs mean, provid-
ing ‘mfALFF’ spatial maps.

SVM analysis

As a supervised machine learning algorithm, an SVM
performs pattern classification by finding a decision
function or boundary that enables classification [10].
The SVM classifier is provided with examples in the
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form <x,c>, where x presents a spatial pattern (e.g.,
fALFF map) and c is the class label; using these exam-
ples, it is trained to find the hyperplane that best sepa-
rates the input space. During the training phase, the
SVM finds the hyperplane that best separates the exam-
ples in the input space according to their group labels
(e.g., OCD vs HCS). After the hyperplane is determined
from the training data, it can be used to predict the
group membership of a new test example. In this study,
SVM was applied using the PROBID (Pattern Recogni-
tion of Brain Image Data) software package (https://
www.kcl.ac.uk/ioppn/depts/neuroimaging/research/ima-
ginganalysis/Software/PROBID.aspx)as some previous
studies [16, 17, 22, 23] to investigate classification accur-
acy of rs-fMRI images using voxel-wise fALFFs as fea-
tures. A linear kernel SVM was adopted to reduce the
risk of over-fitting the data, and the weight vector was
extracted as an image (i.e., the SVM discrimination map)
. The PROBID allows a linear kernel matrix to be pre-
computed and supplied to the classifier. This approach
increases computational efficiency significantly and per-
mits whole-brain classification without requiring explicit
dimensionality reduction [24]. The linear kernel only has
one parameter(C) that controls the trade-off between
having zero training errors and allowing misclassifica-
tions. This is fixed at C =1 for all cases (default value).

We used ‘leave-one-out’ cross-validation (LOOCYV) to
validate the performance of the proposed approach. A
single sample from each group was designated as a test
sample, while the remaining samples were used to train
the classifier, and then the subject pair excluded was
used to test the ability of the classifier to reliably distin-
guish between groups (e.g., OCD vs. HCS). This proced-
ure was repeated for each subject pair to estimate the
overall accuracy of the SVM [9, 25]. The statistical sig-
nificance of the overall classification accuracy was deter-
mined by permutation testing, which consisted of
repeating the classification process 1000 times with a
different random permutation of the training group la-
bels and counting the number of permutations having
higher sensitivity and specificity than the true labels.
Then the number was used to derive a P value [22, 26].
The receiver operating characteristic (ROC) curve was
plotted to show classifier performance; classification ac-
curacy describes the proportion of correct predictions at
a particular decision threshold.

Discrimination maps

Since the SVM classifiers are multivariate techniques and
discrimination is based on the brain-wide pattern instead of
patterns in individual regions, all voxels contributed to the
classification, and local inferences should not be made. We
selected the peak of the SVM weight vector for each classi-
fier, setting the threshold to 30% of the maximum weight
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vector value, an approach that is consistent with previous
studies [16, 26, 27]. This threshold nearly eliminates noise
components, enabling a better visualization of the most dis-
criminating regions [26].

Results

Demographics and clinical characteristics

There were no significant differences in gender, age, and
education years between OCD patients and healthy con-
trols. In the OCD group, the mean duration of OCD
symptoms and Y-BOCS score are shown in Table 1.

Classification performance
Figure 1a shows the results of the SVM classification of
OCD patients and healthy controls based on the fALFF
values derived from rs-fMRI data. Sensitivity (i.e., the
probability that a volunteer with a clinical diagnosis of
OCD was correctly assigned to the OCD category) was
68%, and specificity (i.e., the probability that a healthy
control was correctly classified as such) was 76%; overall
accuracy was 72% (standard error 0.051 and a 95% confi-
dence interval of 0.687-0.847, with the ROC curve
shown in Fig. 1b), and permutation tests indicated that
the accuracy of classification was statistically significant
at P <0.001. This overall classification accuracy of the al-
gorithm measures its ability to correctly classify an indi-
vidual as either an OCD patient or a healthy control.
Classification plot (Fig. 1a) and ROC curve (Fig. 1b) for
the comparison between drug-naive OCD patients and
healthy controls using fALFF maps from rs-fMRI data.

Discrimination map of OCD abnormalities

Across the brain, the regions that made the most sub-
stantial contribution to the discrimination between OCD
patients and healthy controls were determined on the
basis of fALFF values, which were identified by setting
the threshold to 230% of the maximum weight vector
scores. Spatial maps of the regions are described in
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Table 2 and shown in Fig. 2; these regions include the
left superior temporal gyrus, the right middle temporal
gyrus, the left supramarginal gyrus, and the superior par-
ietal lobule.

Brain regions contributing to discrimination between
the OCD and healthy control groups based on fALFF.
These regions were identified by setting the threshold to
>30% of the maximum weight vector scores. Positive
weights (warm colors) indicate that the parameter values
are higher in OCD patients than in healthy controls;
negative weights (cool colors) indicate the opposite. The
color bar represents the weight vector value (Wi) from
the SVM analysis.

Discussion

To the best of our knowledge, this study is the first to
employ a machine learning approach to rs-fMRI data for
clinical application in in drug-naive OCD patients. We
designed an SVM method to distinguish OCD patients
from healthy controls and used LOOCV to validate our
model. Our study demonstrated that patients with OCD
could be distinguished from healthy controls with rela-
tively high classification accuracy using fALFF values ex-
tracted from rs-fMRI data. This classification was driven
by a distributed pattern of regional abnormalities in the
temporal lobe, including the left superior temporal gyrus
and right middle temporal gyrus, and in the bilateral
parietal lobe, including the left supramarginal gyrus and
right superior parietal lobule.

A previous work achieved 84% accuracy according to
LOOCYV by developing a model from the DTI character-
istics of 28 OCD patients and 28 healthy controls [16].
A similar method was applied using the gray matter vol-
ume (GMV) characteristics of 33 OCD patients and 33
healthy controls, and the model achieved 75.76% accur-
acy [17]. By contrast, our results were based on a larger
dataset of rs-fMRI data from drug-naive OCD patients,
which makes the classification results more stable and

Table 1 Demographics and clinical characteristics of drug-naive OCD patients and health controls

OCD (range) Controls (range) Analysis P-value
Number 68 68
Gender
Male 45 45 0.000 1.000
Female 23 23
Age (years) 27.99+8.19 (18~43) 27.57 + 857 (18~40) 0.286 0.775
Education (years) 13.83+£2.72 (7~19) 13.25+3.32 (8~19) 1117 0.266

640+ 5.20 (0.5~16)
21.53£5.38 (10~29)
13.94£522 (0~16)
7594556 (0~17)

Duration of illness (years)
Y-BOCS total Score
Obsessions subscale

Compulsion subscale

OCD Obsessive-Compulsive Disorder, Y-BOCS Yale-Brown Obsessive Compulsive scale
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reliable. The main reasons for the slightly lower classifi-
cation accuracy despite the larger sample size may be
the different feature used for classification (i.e., resting-
state regional activity vs. structural GMV and DTI) and
the different medication status of subjects (i.e., drug-
naive patients vs. medicated patients). Although there is
increasing evidence that fALFF may be used to effi-
ciently identify OCD in the future, in practical clinical
diagnosis, more studies involve more features, and ma-
chine learning methods need to be compared to identify
the information that will most improve the diagnostic
accuracy of OCD.

Previous univariate analyses have shown that abnor-
malities of classical orbitofronto-striatal circuits cannot

Table 2 Regions contributing to discrimination between the
drug-naive OCD and healthy control subjects on the basis of
fALFF values

Brain regions MNI coordinates Wi
X y z
OCD > HCS
L superior temporal gyrus —-49 —4 4 15.16
R middle temporal gyrus 53 -1 -16 1944
OCD < HCS
L supramarginal gyrus —49 =51 26 -1591
R superior parietal lobule 20 —58 74 -15.73

The regions were identified by setting the threshold to >30% of the maximum
weight vector, the value of which indicates the relative contribution to the
classification. OCD obsessive-compulsive disorder, fALFF fractional amplitude of
low-frequency fluctuation, HCS healthy control subjects, L left, R right, MN/
Montreal Neurological Institute, Wi weight vector value.

fully explain the cognitive defects found in OCD. Fur-
ther evidence in recent studies revealed the involvement
of extensive brain regions in the pathophysiology of
OCD; for example, the temporal gyrus has been shown
to be a critical neural substrate for OCD [28]. Previous
studies using traditional univariate methods have dem-
onstrated abnormalities in GMV in the medial temporal
cortex and the precuneus, along with increased frac-
tional anisotropy (FA) in the bilateral superior temporal
region, in drug-naive OCD [29, 30]. Additionally, in-
creased functional connectivity in the right superior tem-
poral cortex [31] and medial temporal gyrus [32] was
detected. In this study, fALFF alteration in the temporal
lobe was also consistently selected as a discriminative fea-
ture, which was consistent with previous multivariate pat-
tern analyses based on FA values and GMV [16, 17]. Some
neuropsychological studies have demonstrated significant
impairment of visuospatial function, which may be related
to the temporal cortex, in patients with OCD [33, 34].
Consistent with previous studies, our finding revealed
relatively high discriminative values for the bilateral tem-
poral regions, supporting the notion that the temporal
lobe is critically affected in OCD.

In addition, the parietal lobe, including the left supra-
marginal gyrus and the right superior parietal lobule,
showed decreased activity. The parietal lobe is important
in a variety of cognitive executive tasks involving atten-
tion, spatial perception [35, 36], planning [37], and re-
sponse inhibition [38]. Deficits in attentional shifting
[39], planning [40], and response inhibition [41] are evi-
dent in OCD; thus, it is conceivable that parietal lobe
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dysfunction could contribute to the cognitive deficits
evident in OCD. Both structural and functional neuro-
imaging studies provide evidence to illuminate the alter-
ation of the parietal lobe in OCD, including decreased
gray matter volume in the angular and supramarginal
gyri of the right parietal lobe [42], a change that is asso-
ciated with attentional impairments. An rs-fMRI study
also showed decreased activation in this region [7]. Add-
itionally, after treatment and symptom improvement,
activation related to the Stroop task increased [43]. Col-
lectively, our results are in agreement with previous
studies, providing further evidence for the involvement
of the parietal lobe in the pathophysiology of OCD.

In summary, this study represents an important step
toward the clinical diagnosis of OCD with the aid of ma-
chine learning techniques. This study does have some
limitations. First, single imaging modality data and a
classification approach were evaluated. Further studies
will need to address these issues by introducing classifi-
cation to multimodal neuroimaging data and assessing
different classification methods (i.e., Gaussian Process
classification, Minimum spanning tree etc.) to identify
the optimal approach to discrimination. Second, the high
dimensionality often induces the problem of collinearity.
Although the linear kernel matrix implicated in PROBID
could directly extract weight vector as an image and per-
mits whole-brain classification without requiring explicit
dimensionality reduction, the collinearity might still in-
evitable. Third, our research only compared OCD with

HCS, other psychiatric disorders such as major depres-
sion and anxiety are not considered. Moreover, OCD pa-
tients with different dimensional symptoms could be
compared to detect the pathophysiology of the symp-
toms. At last, the lack of follow-up limits the application
of this study in predicting the treatment response of
OCD. A suitable continuation of this study would be to
focus on the discrimination of treatment outcomes using
machine multivariate pattern recognition methods.

Conclusions

We investigated functional abnormalities in OCD pa-
tients using a multivariate classification and explored the
predictive value of fALFF in drug-naive OCD patients
using an SVM framework. The SVM achieved an accur-
acy of 72% in LOOCYV and provided good group separ-
ation. In our study, the fALFF values in the left superior
temporal gyrus, the right middle temporal gyrus, the left
supramarginal gyrus and the superior parietal lobule
were identified as discriminative features distinguishing
OCD patients from healthy controls. Our study not only
identified functional biomarkers of drug-naive OCD pa-
tients but also revealed their discriminative power in dis-
tinguishing patients from controls. This study highlights
the potential of machine learning approaches to aid in
the clinical diagnosis of OCD.
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