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Abstract

The initial presentation of multifactor dimensionality reduction (MDR) featured cross-validation to mitigate over-fitting,
computationally efficient searches of the epistatic model space, and variable construction with constructive induction to
alleviate the curse of dimensionality. However, the method was unable to differentiate association signals arising from true
interactions from those due to independent main effects at individual loci. This issue leads to problems in inference and
interpretability for the results from MDR and the family-based compliment the MDR-pedigree disequilibrium test (PDT). A
suggestion from previous work was to fit regression models post hoc to specifically evaluate the null hypothesis of no
interaction for MDR or MDR-PDT models. We demonstrate with simulation that fitting a regression model on the same data
as that analyzed by MDR or MDR-PDT is not a valid test of interaction. This is likely to be true for any other procedure that
searches for models, and then performs an uncorrected test for interaction. We also show with simulation that when strong
main effects are present and the null hypothesis of no interaction is true, that MDR and MDR-PDT reject at far greater than
the nominal rate. We also provide a valid regression-based permutation test procedure that specifically tests the null
hypothesis of no interaction, and does not reject the null when only main effects are present. The regression-based
permutation test implemented here conducts a valid test of interaction after a search for multilocus models, and can be
applied to any method that conducts a search to find a multilocus model representing an interaction.
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Introduction

Methods to detect epistasis, or gene-gene interactions, in large

search spaces have been under development from several sources

since Risch et al. suggested interaction analysis as an important

avenue for the discovery of genetic exposures related to complex

disease [1]. Multifactor dimensionality reduction (MDR) has been

a popular approach to search for gene-gene interactions [2–7].

MDR and it’s family-based compliment, the MDR pedigree

disequilibrium test (MDR-PDT) [8] are nonparametric methods

that do not require the specification of a genetic model profiling

risk or the estimation of any population parameters. MDR has

good power to detect purely epistatic effects in simulated data

under a variety of circumstances [7,9–11]. One reason for the

efficiency of MDR is the use of constructive induction [12] to

develop the trait model. As a result, MDR and MDR-PDT both

mitigate the curse of dimensionality [13], are sensitive to variation

in penetrance across genotypes, and are not subject to model-

building constraints, such as those imposed in methods that

condition on marginal effects to restrict search spaces [3]. Another

reason for this efficiency is the permutation test procedure that

MDR uses to estimate the significance of a result; which exactly

accounts for locus non-independence among loci due to linkage

disequilibrium and test statistic correlation among multilocus

interaction models which share loci, such as the models

(SNP16SNP2) and (SNP16SNP3). This occurs because correla-

tions in the data are naturally represented as correlated test

statistics in the estimate of the distribution of the null hypothesis,

providing the correct critical value for the test statistic even in the

presence of complex data correlations.

However, the MDR and MDR-PDT approaches share some

deficiencies. In order to maximize the flexibility with which models

are assessed, no formal test of interaction is performed. This means

that while MDR is sensitive to detect multi-locus association

signals; these associations can be due to true interactions

associating with the trait or multiple main effects without

interaction. Both situations will lead to rejection of the null

hypothesis of no association between genotypes and disease from

the permutation test. Since association of multi-locus genotypes

with the trait is the formal alternative hypothesis of the MDR and

MDR-PDT hypothesis tests, this is not technically a type I error;

however, if one is primarily interested in detecting true
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interactions and not simply finding combinations of associated

loci, a rejection of the null ought to reliably represent support for

the alternative hypothesis of interaction. With the original

structure of the hypothesis test, this issue remained ambiguous

after hypothesis testing, and obtaining an unbiased evaluation of

MDR or MDR-PDT model properties with regard to synergy

required an independent sample.

In contrast, parametric statistics such as logistic regression [14]

have limited utility when searching for interactive effects in a large

search space, whether searching through genetic loci [15] or

environmental exposures [16]. These methods do not natively

adjust for many comparisons or accommodate scenarios with high

dimensionality. As the number of predictor variables increases, the

number of comparisons necessary to explore the entire epistatic

search space expands rapidly, decreasing the power to reject the

null after an inefficient correction for multiple tests. However,

these methods do provide some important advantages over the

nonparametric alternatives, such as estimation of population

parameters, adjustment for covariates, and ease of use and

interpretability. A further advantage of the regression framework is

the specificity of the hypothesis tests, particularly for testing

interaction. While MDR and MDR-PDT test one composite null

hypothesis, H0A: no association (main effects) and H0I: no

interaction, regression is able to evaluate the null hypothesis in

two parts, allowing a test for H0I versus H1I. This property of

regression-based hypothesis testing is necessary for an algorithm to

find reliable evidence for epistasis in genetic studies.

It has been proposed to apply stepwise logistic regression and

include only factors that exhibit a significant main effect in the final

model [17]; however, interactive effects among SNPs with

statistically undetectable or weak main effects are not likely to be

detected, and higher order interaction models have many degrees of

freedom and sparse observations. For the purpose of detecting two-

locus models, an exhaustive regression-based approach with a

conventional correction for multiple tests is more powerful than

multi-stage regression conditioning on significant main effects [18].

However, computation times for exhaustive searches with iterative

methods for fitting regression models can be very long. Methods

that are optimized for computational speed that also correct for

multiple tests appropriately given linkage disequilibrium and non-

independent multilocus models under consideration are needed to

effectively search the genome for gene-gene interactions. Advances

in this regard are ongoing, with the implementation of extreme

value distributions to increase the speed of permutation testing by

50-fold [19]. Other computational optimizations currently in

development are the use of parallel computing [20] and hardware

acceleration using graphics processing units [21] to increase

computation speed. MDR and MDR-PDT handle several of these

important issues, such as dimensionality, multiple comparisons, and

over-fitting using cross-validation [22,23]; and regression effectively

handles some other issues, such as specificity of hypothesis tests,

interpretability, and effect size estimation.

It is intuitive that evaluation of a large number of models for

nonrandom association of multi-locus genotypes with a trait when

looking for interactions could cause bias. Here we examine the

extent of this bias with simulation and propose an alternative

means of testing the null hypothesis of no interaction using a

regression framework.

Results

Type I Error of Regression after MDR or MDR-PDT
The Type I error rate of the LRT for the regression interaction

term corresponding to MDR-PDT two-locus models when

compared to the chi-squared, one degree of freedom distribution

was 0.39 at an alpha rate of 0.05. For logistic regression tests of

interaction in case-control data on the best model from MDR

analysis the type I error rate was 0.46 at an alpha rate of 0.05.

The Type I error rate for the experimental scenario where

random pairs of loci were chosen, genotypes given a binary coding

using constructive induction, followed by calculating a LRT

statistic for the interaction term was 0.048 in pedigree data and

0.047 in case-control data at an alpha rate of 0.05.

Type I Error of the LRT
For MDR-PDT the regression-based permutation test was

conducted in 1000 500-DSP datasets with no penetrance function

and 1000 permutations. The type I error rate of the test was 0.011

at an alpha rate of 0.01, 0.056 at an alpha rate of 0.05, and 0.097

at alpha 0.1.

For MDR the regression-based permutation test was conducted

in 1000 datasets with 500 cases and controls with no penetrance

function and 1000 datasets. The type I error rate of the test was

0.009 at an alpha rate of 0.01, 0.049 at an alpha rate of 0.05, and

0.082 at an alpha rate of 0.1.

MDR and MDR-PDT in the Presence of Independent Main
Effects

Both MDR and MDR-PDT reject the null hypothesis for

groups of non-interacting associated loci at higher than the

nominal rate (Table 1). This behavior is more acute as sample and

effect sizes increase. The rate at which the LRT in the absence of

effect modification finds the main effect model and rejects the null

was zero, demonstrating that the specificity for interactions,

defined as 1-(false positive rate), is superior to that of the

conventional permutation test.

Power of the LRT Permutation Test
These experiments investigate the power of permutation testing

of the MDR and MDR-PDT procedures using the regression-

based permutation tests (MDR LR and MDR-PDT LR). The

results from those experiments are presented in Figures 1–2. These

results show that the regression-based permutation is notable for

having power in multilocus models displaying no marginal main

effect. The power of MDR LR and MDR-PDT LR are for

unrelated vs. related samples, and in different numbers of markers.

This was done because MDR is more powerful per sample than

MDR-PDT and increasing the size of the search space provided

observations for MDR that were not near 100% power. Also of

note was the comparable power of the MDR-based procedures

with the exhaustive search using logistic regression in cases and

controls followed by a Bonferroni correction for multiple tests for

most 2-locus models, and the superior performance for all 3-locus

models.

Discussion

We have introduced an extension to both MDR and MDR-PDT: a

test of effect modification that has much higher specificity than the

previous method of hypothesis testing. When strong main effects are

present in a dataset, MDR or MDR-PDT might find a model, test,

and reject the null hypothesis for these loci. This was observed in an

analysis of late-onset Alzheimer’s disease, when all possible 2 and 3-

locus MDR and MDR-PDT models that included APOE were

significant according to the permutation test [24]. However, the

regression analysis of those models for interactions did not reveal any

models that survived a correction for multiple tests. This occurred due

to the strong main effect of APOE in the data, and the alternative

Formal Interaction Test in MDR

PLoS ONE | www.plosone.org 2 February 2010 | Volume 5 | Issue 2 | e9363



hypothesis of nonrandom association for MDR and MDR-PDT,

rather than interaction. Without the LRT permutation test, if the

null is rejected, these findings could lead to incorrect inferences with

regard to the null hypothesis of no interaction. Failure to replicate

results has led some to propose that rigorous validation criteria be

applied to MDR models and doubt their validity [25]. More than 100

published articles feature MDR applications or methodological

extensions. A listing of published analyses featuring MDR can be

found at: (http://compgen.blogspot.com/2006/05/mdr-applications.

html). Because this method is in widespread use in many studies,

improvements to the algorithm that increase the specificity of the

hypothesis test should improve the chances of replicable findings in a

large number of investigations.

It is more likely in real data that a result that rejects the more

specific null hypothesis of no interaction from the regression-based

test will replicate as an interaction in an independent sample than

Figure 1. Power of different approaches for 2-locus models. This figure shows the power of MDR LR, MDR-PDT LR, and exhaustive logistic
regression (LR) with a Bonferroni correction for 1225 2-locus models under six 2-locus purely epistatic genetic scenarios (Table 1) and three sample
sizes for LR, MDR LR, and MDR-PDT LR. LR and MDR LR simulations were with 50 SNPs and MDR-PDT LR simulations were with 20 SNPs.
doi:10.1371/journal.pone.0009363.g001

Table 1. Rejection of the null hypothesis in MDR-type algorithms when only main effects are present is more evident as sample
and effect sizes increase.

500 families 2000 families

Relative Risk MDR-PDT MDR-PDT LR MDR-PDT MDR-PDT LR

1.5 0 0 0 0

2 0 0 1 0

4 2 0 24 0

6 4 0 50 0

500 cases/controls 2000 cases/controls

Relative Risk MDR MDR-LR MDR MDR-LR

1.5 10 0 60 0

2 42 0 73 0

4 67 0 83 0

6 83 1 92 0

This behavior is not observed in the LR test, where one significant result was observed in 800 replicates, compared with 591 total significant results for MDR and MDR-
PDT over all parameters.
doi:10.1371/journal.pone.0009363.t001
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a result that rejects the general null of no association. Therefore,

we advocate tests that provide high specificity and interpretability,

even at the expense of some statistical power. This extension can

be used as a second step in an analysis to verify interaction,

conditional on observing a significant MDR or MDR-PDT result.

We also investigated the effect on type I error introduced in

parametric statistics when tests are performed for MDR or MDR-

PDT models in the same data where the models were found. We

found that such procedures do not control the type I error rate

well. The reason for this is the many comparisons which were

performed to find the best model. When the threshold for

significance is not corrected for this search, then the type I error

rate becomes larger than expected under the assumptions of the

test. Our results show that all steps must be accounted for when

declaring significance in stepwise analytical procedures when a

screening step precedes a testing step. A Bonferroni correction for

the number of models evaluated could also be applied to a

regression after MDR or MDR-PDT, but this would be

conservative in the presence of LD.

We also presented a valid test of the null hypothesis of no

interaction, and showed it has reasonable performance in

scenarios where there are negligible main effects. Our test uses a

standard permutation procedure, where disease status labels are

exchanged within individuals in the population or sibship without

regard to the distribution of genotypes or other covariates. Thus,

the null hypothesis of no interaction is not explicitly simulated,

although this property does not cause invalid test statistics or lead

to large deficits in power. A recent method for searching epistatic

spaces with regression, Focused Interaction Testing Framework

(FITF) [26], explicitly requires that main effects be present in

multilocus models to be detected. The methods here do not have

this constraint, and so a broader class of models may be studied.

The power observed in Figure 1 decreased as the MAF

increased from 0.2 to 0.4 for all heritability levels; whereas in

Figure 2 the opposite trend is observed. This issue seems to be

based on the difference between 2 and 3-locus models and the

measure of effect size in use here. It is quite difficult to absolutely

quantify the strength of the association for purely epistatic

interaction models, since there is no baseline or risk allele at any

locus. The odds ratio we use here is an improvement over the

broad-sense heritability; however, it does seem imperfect for the

models in use. Other means of estimating the effect size of purely

epistatic models are in development.

Regression in general offers a flexible framework for testing

associations between variables. Part of the strength of the

regression modeling approach is the specificity with which

hypotheses may be tested. However, in the context of modeling

interactions from a large space of possible multilocus models, this

can also be a weakness. The many possible ways to model

interactions, encode genotypes, and correct for multiple compar-

isons make regression alone cumbersome in epistasis searches.

Here, we offer a nonparametric framework for detecting multi-

locus models, data-driven encoding of genotypes by constructive

induction, specifically modeling interactions, and adjusting null

distributions of interaction test statistics for the size of the search

conducted and the linkage disequilibrium among loci. We show

here that an exhaustive analysis using logistic regression with an

additive coding is an effective means of detecting purely epistatic

2-locus interaction models; however, this approach is relatively

ineffective for 3-locus models. This observation supports the use of

MDR-based methods, which were initially designed to search for

high-order interactions [6]. Additionally, for the models in this

study, conditioning on main effects to detect epistasis would fail,

and previous simulation studies have shown this is less powerful

Figure 2. Power of different approaches for 3-locus models. Power of MDR LR, MDR-PDT LR, and exhaustive logistic regression (LR) with a
Bonferroni correction for 20,825 2 and 3-locus models under six 3-locus purely epistatic genetic scenarios (Table 1) and three sample sizes for LR, MDR
LR, and MDR-PDT LR. LR and MDR LR simulations were with 50 SNPs and MDR-PDT LR simulations were with 20 SNPs.
doi:10.1371/journal.pone.0009363.g002
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than exhaustive searches, even when the interaction models

contain main effects [18].

Some future directions of this work will include extending this

test of effect modification to more sensitive methods for interaction

detection, such as generalized estimating equations (GEE) [27,28].

This may improve sensitivity in family data [29], and allow the

combination of family and case-control data, while preserving

specificity, where instead of fitting a logistic model for the best

MDR or MDR-PDT model, a GEE model is fit and permutation

tested. It is also straightforward to incorporate covariates in the

regression models to adjust for potential confounding by

population stratification. Additionally, an ordinal outcome frame-

work might be incorporated into the algorithm, allowing for multi-

level risk variables [30].

This testing approach is very flexible, and could be adapted to

any method searching for epistasis using a permutation test. For

instance, one could fit linear regression models for restricted

partitioning method (RPM) [31] multilocus models for quantita-

tive traits in the permutation test. RPM is an approach designed to

detect purely epistatic models in data with quantitative traits. The

approach might also be applied to exotic computational methods

such as genetic programming neural networks [32], that use

computer learning and evolution principals to search for models.

Regardless of the means to search for interactions and the specific

test used to evaluate the null hypothesis of no effect modification

across genotypes, this framework incorporates the qualities of

methods designed to efficiently alleviate the curse of dimension-

ality and correct for multiple comparisons with the specificity of

interaction tests from regression.

Materials and Methods

MDR
The MDR procedure has been extensively described elsewhere

[2–7]. MDR, as shown in Figure S1, is a case-control method for

exhaustively searching for and testing multilocus models to detect

epistasis. MDR reduces the dimensions of multilocus genotypes to

a single binary exposure variable relevant to association by

comparing the ratio of cases to controls to a threshold and

evaluates models using cross-validation and predictive accuracy.

MDR uses K-fold cross-validation to provide some protection

against over-fitting results to the data. MDR is model-free and

employs a permutation test to determine the significance of a

result.

MDR-PDT
The MDR-PDT is a within-family measure of indirect or direct

association between genotype and disease. As described previously

[8], the PDT statistic [33] functions within the framework of the

MDR algorithm to evaluate multilocus association in pedigrees.

MDR-PDT, shown in Figure S2, uses K-fold cross-validation (CV)

to manage over-fitting in a way that is analogous to the approach

taken by MDR; however, pedigree information is accounted for to

achieve an even split of the data for CV [34]. This procedure

should mitigate over-fitting by finding models that fit the data well

in unobserved samples and avoiding models that fit the training set

well but only predict around the expectation of the null

[22,23,35,36]. A composite measure of average effect size from

the test sets and cross-validation consistency (CVC) is used to rank

the models from the search. A within-family permutation test is

applied to estimate the significance of the top ranked result, which

is adjusted for linkage disequilibrium and the size of the search

performed.

Simulations
The genomeSIMLA [37] software was developed by merging

the software packages genomeSIM [38] and SIMLA [39,40] to

simulate pedigree and case-control data with purely epistatic

penetrance and more realistic patterns of linkage disequilibrium

among the genetic loci. The methods presented here do not

assume pure epistasis among loci, meaning interaction models

with no marginal main effects, although these models are

simulated here to illustrate the capability of this algorithm to

detect purely epistatic interactions.

In this study, multiple type I error experiments were performed.

The type I error rate of conditional logistic regression with

correction for sharing among multiple affected siblings in regions

of linkage [41] on MDR-PDT models following an exhaustive

search was performed in discordant sibling pair (DSP) datasets

(N = 500 DSPs). The type I error rate was determined for logistic

regression after an exhaustive search by MDR in datasets with 500

cases and 500 controls. The type I error rates of the regression-

based permutation tests for MDR and MDR-PDT were estimated

in the same data by comparing the regression likelihood ratio test

(LRT) statistic to the critical value from the null distribution of

statistics from the permutation test. In each example 1000

replicates were used. Allele frequencies were chosen at random

for the simulated non-model SNPs with minor allele frequencies

between 0.05 and 0.5 and did not vary across replicates.

In order to provide a comparison of the previously suggested

analysis protocol of fitting a regression model of the best MDR or

MDR-PDT model to the proposed testing strategy, the best 2-

locus model was chosen from a case-control or family-based

dataset using MDR or MDR-PDT respectively. Alleles at the 20

loci in these simulations randomly associated and data were

simulated for prevalence 0.05 without penetrance parameters for

any genotype. Two additional loci were also chosen at random

from each dataset as a negative control, and to test the validity of

coding the individual SNP genotypes using constructive induction.

The three genotypes at each model locus were classified as high or

low-risk using MDR or MDR-PDT for both the model loci and

the randomly drawn loci. This coding was then used in the

regression for each model, and a LRT statistic was calculated for

each interaction term and compared to a chi-squared, one degree

of freedom distribution for significance. For comparison to

conventional analytic techniques for interaction analyses, we also

fit logistic regression models with additive encodings for exposure

to the minor allele at each SNP, and Bonferroni corrections for the

significance threshold after an exhaustive search, as suggested by

Marchini et al [17]. For 3-locus interactions, a model including the

three marginal effect terms and the three 2-locus interaction terms

was fit, evaluating the 3-locus interaction term for significance

against a x2
1 distribution.

Power for the regression extension was measured using purely

epistatic models with marginal relative risks ,1.001, simulated

with a genetic algorithm modified from [42], in genomeSIMLA

for 2 and 3 loci, minor allele frequency (MAF) of 0.2 or 0.4, and

heritability of 0.03, 0.05 or 0.1. We considered a total of 12 genetic

models (Table 2), each of which were simulated as 100, 20-locus

datasets for MDR-PDT analysis with independent model loci in

100, 500, 1000 or 2000-DSP pedigrees, or in 100, 50-locus

datasets in 200, 500, 1000 or 2000 cases and controls for MDR

analysis. Each penetrance table is designed with an odds ratio for

exposure to the high-risk genotypes compared to the low-risk

genotypes.

For a set of multilocus genotypes for biallelic loci A and B from

a penetrance function F, where pAi (i = 0, 1, 2) is the frequency of

the genotypes at locus A, and pBj (j = 0, 1, 2) is the frequency of

Formal Interaction Test in MDR
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genotypes at locus B, and i and j count the minor allele at locus A

and B respectively. From a penetrance function F, fAiBj is the

penetrance of the multilocus genotype denoted by indices i and j.

Using this notation, the prevalence of the trait K assuming no loss

of cases and locus independence is given by Equation 1.

K~
X

i

X

j

pAipBjfAiBj ð1Þ

Also the conditional probabilities of observing a genotype X for

a case (Y = 1; Equation 2) or a control (Y = 0; Equation 3) jointly

conditional on F can be written.

Pr (X~AiBj DY~1,F )~pAipBjfAiBj=K ð2Þ

Pr (X~AiBj DY~0,F )~pAipBj(1{fAiBj)=1{K ð3Þ

For a genotype to be considered high-risk for attribute

construction using constructive induction by MDR or MDR-

PDT in retrospective sampling, the probability of observing the

genotype X conditional on Y = 1 must be equal to or larger than

the probability of X conditional on Y = 0 (Equation 4).

Pr (X~AiBj DY~1,F)§Pr(X~AiBj DY~0,F )~High-risk ð4Þ

Otherwise = Low-risk

Thereby, using the binary classification of multilocus genotypes

as high and low-risk, a 262 table relating the exposure to high-risk

genotypes to the trait can be constructed (Table 3).

A~
X

i

X

j

Pr (X~AiBj DY~1,F ,High{risk) ð5Þ

B~
X

i

X

j

Pr (X~AiBj DY~0,F ,High{risk) ð6Þ

C~
X

i

X

j

Pr (X~AiBj DY~1,F ,Low{risk) ð7Þ

D~
X

i

X

j

Pr (X~AiBj DY~0,F ,Low{risk) ð8Þ

An odds ratio can be calculated from this table to estimate the

effect size for the interaction penetrance model using the standard

formula (AD/BC). Since for purely epistatic penetrance models

there is no risk allele, and hence no obvious referent (low-risk)

genotype, this approach estimates the genotype frequency-

averaged odds of disease when exposed to high-risk genotypes

divided by the genotype frequency-averaged odds of no disease

when exposed to high-risk genotypes.

To evaluate the properties of MDR and MDR-PDT in the

presence of independent main effects, pairs of non-interacting loci

were simulated in 500 and 2000, 20-marker discordant sibling-pair

(DSP) pedigrees and in 500 and 2000 cases and controls. The effect

sizes of the model loci were simulated at relative risks 1.5, 2, 4, and

6. The model loci had a dominant model for the minor allele with

MAF of 0.2. These data were evaluated for the power of MDR or

MDR-PDT to reject the null hypothesis of the permutation test for

the 2-locus model featuring the two independent main effects with

and without the regression extension.

Regression Test of Interaction
To conduct a formal test of interaction among the variables in a

model resulting from an exhaustive search by MDR or MDR-PDT,

the multiple comparisons performed during the search must be

accounted for when determining the critical value of the test statistic

for significance. Otherwise, when comparing the test statistic to the

uncorrected critical value for significance the type I error is inflated.

In order to accomplish a valid test of interaction, a straightforward

extension to the MDR-PDT and MDR algorithms is implemented.

Where a best two-locus through N-locus model is found by MDR

or MDR-PDT, the genotypes at the model loci are determined to be

high or low-risk by individual assessment of each model locus by

MDR or MDR-PDT. Thereby, for each locus of the N-locus model

under consideration, a binary variable is created (Xi; i = 0, 1, 2, …,

N) using the principal of constructive induction and the machinery

of MDR or MDR-PDT (Equation 4) which summarizes the

marginal risk profile of the genotypes at each SNP. These genotype

summary variables are then regressed on the outcome of interest

with multiplicative interaction terms (Equation 9).

Ln(Odds½Y~1�)~b0zb1x1zb2x2zb12x1x2 ð9Þ

The regression models for higher-order (3 or more loci)

interactions are fit with lower-order interaction terms in the

Table 2. Models examined in the simulation study.

Loci MAF Heritability Odds Ratio

2 0.2 0.030 1.53

2 0.2 0.048 1.79

2 0.2 0.09 3.00

2 0.4 0.03 1.56

2 0.4 0.05 1.79

2 0.4 0.10 2.85

3 0.2 0.03 1.58

3 0.2 0.05 2.10

3 0.2 0.10 3.20

3 0.4 0.03 1.52

3 0.4 0.05 2.23

3 0.4 0.12 3.50

doi:10.1371/journal.pone.0009363.t002

Table 3. Example 262 table for the calculation of the purely
epistatic disease model odds ratio.

Case Control

High-Risk A B

Low-Risk C D

doi:10.1371/journal.pone.0009363.t003

Formal Interaction Test in MDR
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model (Equation 10).

Ln(Odds½Y~1�)~b0zb1x1zb2x2zb3x3zb12x1x2

zb13x1x3zb23x2x3zb123x1x2x3

ð10Þ

A regression model is also fit for the reduced model without the

highest order interaction term. The negative of twice the difference

of the maximized log-likelihoods for these regression models is

distributed as x2
1 under H0I. These regression models are fit with

logistic regression (for MDR) or conditional logistic regression

models using the method of Siegmund et al [41], implemented in

SAS (for MDR-PDT). This method of coding indicator variables

reduces the number of interaction terms, and provides a 1 degree of

freedom test statistic for any order interaction. Using these regression

models, likelihood ratio statistics are calculated for interaction terms

to assess effect modification for simultaneous exposure to high-risk

genotypes within individuals for each model locus.

To estimate the significance of the multi-locus model the data are

permuted as usual, and MDR or MDR-PDT chooses the best two

through N-locus model for each permutation. The regressions are fit

as in the unpermuted data and the resulting likelihood ratio statistics

from each permutation are retained and sorted from largest to

smallest. The statistic from the real data is then compared to this

distribution to provide an empirical p-value, which is corrected for

multiple comparisons (Supplementary Figures S1 and S2).

Supporting Information

Figure S1 The MDR LR algorithm for evaluating the null

hypothesis of no interaction in unrelated cases and controls. Step

1. The data are binned randomly into equal sized bins with the

proportion of cases and controls from the full data in each bin for

K-fold cross validation. K-1 folds are used in the training set, and

the final fold is used as the testing set. The process is repeated K

times, so that each bin is used once as a test set. Step 2. For each

multilocus genotype, the ratio of cases to controls in the training

set is compared to the ratio of cases to controls in the full data.

Each genotype with an equal or higher ratio of cases is labeled

high-risk, and low-risk otherwise. Step 3. A new binary variable

that summarizes risk exposure is constructed by collapsing all cases

and controls with high-risk genotypes into one level and all cases

and controls with low-risk genotypes into the other level. Step 4.

Each model of a given order is evaluated for balanced accuracy

(BA) in the training set [11]. BA is defined as the average of the

correctly classified cases with high-risk genotypes and correctly

classified controls with low-risk genotypes. Step 5. All models of

each order (2-locus, 3-locus, etc.) are ranked by BA, with higher

values at the top of the distribution. The best model with the

highest BA of each order from each training set is recorded. Step

6. The prediction error (PE) in the test set for the best models by

BA is calculated using the risk classification established in the

training set in Step 3. This value is calculated by dividing the count

of cases with low-risk genotypes and controls with high-risk

genotypes by the total count of samples in the test set. Step 7. Steps

1–6 are repeated K times so that each cross-validation interval is

used one time as a test set. Where the same best model is observed

in multiple training sets, a measure of cross-validation consistency

(CVC) is observed. A best multilocus model across orders is chosen

using the CVC, and then the lowest average PE from test sets as

the tiebreaker. Step 8. Full and reduced regression models are fit

to the full data using the binary risk classification for genotypes. A

single degree of freedom likelihood ratio test statistic is calculated

for the highest order interaction term from the regression model.

Step 9. A permutation test is conducted by randomly exchanging

the status of cases and controls and performing Steps 1–8 at least

1000 times. The observed test statistic from Step 8 is then

compared to the ordered distribution of likelihood ratio test

statistics to estimate the significance of the result.

Found at: doi:10.1371/journal.pone.0009363.s001 (0.66 MB TIF)

Figure S2 The MDR-PDT LR algorithm for evaluating the null

hypothesis of no interaction in pedigree data. Step 1. Data are split

into k approximately equal parts [25]. Step 2. All possible DSPs

and T/UT pairs are generated within each sibship (affected times

unaffected) and pooled within k21/k of the data. This is a training

set. Step 3. Each genotype is determined to be high or low risk by

comparing the genoPDT statistic [24] from the pooled DSPs and

T/UT pairs to a threshold t, such as t = 1, which indicates positive

or negative association with affected status. Step 4. Statistics for

high-risk genotypes are calculated using the MDR-PDT statistic

[8]. Step 5. The procedure repeats for every combination of loci

within the order (2-locus, 3-locus, etc.) range specified, calculating

an MDRPDT statistic for each, choosing the largest MDR-PDT

statistic from each order as the best model at that level. Step 6.

The MOR is calculated from the testing set for the best model of

each order using the high- low-risk levels established during

training. Step 7. Steps 1-6 are repeated in the other splits of the

data, so that each CV interval is used as a test set. Where the same

model is observed in multiple training sets, a measure of CVC is

observed. To select the best from among all models found in

training, CVC is considered first, and if necessary the average

MOR from test sets can serve as a tiebreaker. Step 8. Full and

reduced conditional logistic regression models with the adjustment

of Siegmund et al [32] are fit to the full data using the binary risk

classification for genotypes from MDR-PDT. A single degree of

freedom likelihood ratio test statistic is calculated for the highest

order interaction term from the regression model. Step 9. A

permutation test is conducted by randomly exchanging the status

of cases and controls within sibships and performing Steps 1–8 at

least 1000 times. The observed test statistic from Step 8 is then

compared to the ordered distribution of likelihood ratio test

statistics to estimate the significance of the result.

Found at: doi:10.1371/journal.pone.0009363.s002 (0.66 MB TIF)
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