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Building a better antibody through the Fc: advances and challenges in harnessing 
antibody Fc effector functions for antiviral protection
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ABSTRACT
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector 
functions through the Fc domain. While neutralization has long been appreciated for its role in antibody- 
mediated protection, a growing body of work indicates that the antibody Fc domain also significantly 
contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, 
neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can 
lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal 
antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advan-
tage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can 
control viral infection. Here, we review the recent advances in our understanding of antibody-mediated 
innate immune effector functions in protection from viral infection and review the current approaches 
and challenges to effectively leverage innate immune cells via antibodies.
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Introduction

Antibodies are the effector molecules of the humoral immune 
system that circulate throughout the body, providing both 
short-term and long-term immunity against pathogens. The 
antibody molecule at its most general can be divided into the 
antigen binding fragment domain (Fab) and the antibody 
constant domain (Fc). The Fab domain confers the specificity 
of the antibody and the Fc domain interacts with Fc-receptor 
bearing innate and adaptive immune cells and effector 
molecules.

There are many roles that antibodies play in antiviral pro-
tection: blocking initial viral infection into host cells via neu-
tralization, limiting dissemination of infection throughout host 
tissues, killing/clearing infected cells, initiation of inflamma-
tion, enhancing antigen presentation, enhancing development 
of T cell responses, and dampening of inflammation. Thus, 
while the induction of antibodies specific for a given pathogen 
is often used as a measure of immunity, the mechanisms 
through which antibodies can provide protection may differ 
significantly across pathogens. Simply the induction of an anti-
body response may be insufficient to protect if those antibodies 
do not have the specific features needed to provide protection 
against that pathogen; thus, the ability to provide protection is 
related to the quantity and quality of pathogen-specific 
antibodies.

As antibodies can limit viral infection through multiple 
mechanisms and cells, antibody-based therapies are increas-
ingly becoming an attractive approach to treat viral infection, 
especially for viruses with high rates of mortality or cause 
severe disease. Most of the current approaches to identify and 
develop new antibodies focus on neutralization as the sole 

mediator of protection, yet the role of Fc domain is becoming 
increasingly appreciated as a critical feature of antiviral immu-
nity, and thus, there is a growing interest in identifying 
approaches to harness and leverage the Fc domain. In this 
review, we will discuss the role of antibody-mediated induction 
of innate immune effector functions in protection from viral 
infection and review the current approaches that are under 
investigation to effectively leverage innate immune cells via 
antibodies.

Antibody isotypes and Fc-receptors

Humans have several different antibody isotypes, each serving 
unique roles in humoral immunity. Immunoglobulin G (IgG) 
is the most abundant antibody isotype in serum and is further 
classified into IgG subclasses (IgG1, IgG2, IgG3, and IgG4). 
The IgG subclasses differ in abundance with IgG1 representing 
approximately 60% of circulating IgG, IgG2 represent 32%, and 
IgG3 and IgG4 accounting for the rest. Immunoglobulin 
A (IgA) is the second most abundant antibody isotype in 
serum, although when accounting for levels within tissues 
and in mucosal secretions and saliva, IgA is the most abundant 
antibody in the body. IgA can be further classified into IgA1 
and IgA2 subclasses, which differ mainly in hinge length, and 
can be produced either as monomeric in the serum or dimeric 
(two monomers connected by a secretory J-chain) in the 
mucosa. Immunoglobulin M (IgM) is the largest of the anti-
body isotypes, present as pentamers or hexamers, and is the 
first antibody to be generated in a humoral immune response. 
IgE and IgD are two additional isotypes with roles in allergic 
reactions and B cell maturation, respectively.
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Antibodies can activate innate immune cells via engagement 
of type I and type II Fc receptors (FcRs). Human type I FcRs 
include FcγRs, and FcαR, and type II FcRs include CD23/ 
FcεRII and DC-SIGN1. The type I FcRs that engage IgG are 
the activating receptors FcγR1/CD64, FcγR2A/CD32A, 
FcγR3A/CD16A, FcγR3B/CD16B and the inhibitory receptor 
FcγR2B/CD32B; the FcR that binds IgA is FcαR/CD89; and IgE 
binds to FcεR/CD23. All innate immune cells express FcRs 
(monocytes, macrophage, neutrophils, dendritic cells, eosino-
phils, basophils, NK cells) in varying combinations and levels.2 

Moreover, the expression of FcRs is not limited to the classic 
set of innate immune cells – B cells, platelets,3 a subset of γδ 
T cells,4 and a small subset of resting and activated CD4+ 

T cells5,6 also express FcγRs – expanding the repertoire of 
cells that can respond to antibodies. Importantly, as different 
cell types express different levels and combinations of FcγRs/ 
FcαRs, the combination of FcR expression, the balance of 
activating and inhibitory FcγR binding, cell type, and location 
together confer an incredibly diverse set of innate responses 
that can collectively shape antiviral immunity and disease 
(Figure 1).

The functional diversity is further amplified by antibody 
features that tune the interaction with FcRs: antibody isotype 
and IgG subclass, antibody glycosylation, and the Fab-epitope. 
The four human IgG subclasses differ in affinity for FcγRs with 
IgG3> IgG1> IgG4> IgG2,7 thus the composition of a polyclo-
nal IgG response can set different thresholds for induction of 
innate immune effector functions. Antibody glycosylation 
plays a notable role in further modulating and tuning IgG 
affinity for Fcγ-receptors in both directions, where fucose- 
free (afucosylated) glycans enhance affinity for the activating 
FcγR3A and FcγR3B,8 and sialyation has been proposed as 

a mechanism to skew antibody affinity from type I FcRs toward 
type II FcRs.9 The role of the Fab in further shaping Fc-FcR 
interactions is only beginning to be appreciated, whereby affi-
nity of Fab-antigen interactions, distance from target cell mem-
brane, valency of antibody-antigen binding and immune 
complex size can all impact induction of effector function.10–13

Activation of immune cells through type I FcγRs occurs via 
direct interaction between the FcγR and the Cγ2 domain of the 
human IgG that have been demonstrated through a number of 
structural studies (reviewed elsewhere in14). Antibody- 
mediated cross-linking of the activating FcγR induces signaling 
through a cytoplasmic immunoreceptor tyrosine-based activa-
tion motif (ITAM) domain, ultimately leading to the induction 
of antibody-dependent effector functions, such as ADCC and 
ADCP, described in more detail below. Conversely, antibody- 
mediated cross-linking of the inhibitory FcγR2B acts to inhibit 
key activating molecules though through the cytoplasmic 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
domain, providing a balance to activating FcγRs in innate 
immune cells. FcγR2B is the only FcγR expressed on B cells 
and serves to limit the B cell receptor (BCR) signaling and 
B cell proliferation in the absence of BCR engagement, 
a process critical to the generation of high affinity antibodies, 
B cell selection, and tolerance.15,16

Engagement of the type II FcRs CD23 and DC-SIGN have, 
to date, been primarily associated with negative regulation of 
immune responses, as demonstrated by the anti-inflammatory 
properties of intravenous immunoglobulin (IVIG).17,18 An ele-
gant model of IVIG-mediated amelioration of inflammation 
indicated that sialylated IgG-induced signaling through DC- 
SIGN in dendritic cells induces a cascade of events that ulti-
mately leads to upregulation of the inhibitory type I FcγR2B on 

Figure 1. Protection from both ends of the antibody. Schematic representation of how both ends of the antibody can protect host cells from viral infection. On one end 
(above the dotted lines), antibodies can block virus entry into the cells by Fab-mediated neutralization. On the other end (below the dotted lines), the antibody Fc 
domain can recruit different Fc receptors (in light brown) and induce a variety of immune responses (in gray) by innate immune cells (names in blue) and complement.
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effector cells to limit inflammatory responses.17,19 Sialylated 
antibodies have also been proposed to activate CD23- 
mediated regulation of B cell responses through upregulation 
of FcγR2B.20 The mechanisms through which IgG activates 
type II FcRs is still unclear, as whether IgG interacts directly 
with CD23 and DC-SIGN has been the subject of debate,21–23 

yet these studies highlight the interplay between type I and type 
II FcRs in shaping the immune response.

Direct and indirect Fc-mediated innate immune 
effector functions limit viral infection and 
dissemination

Direct Fc-mediated innate immune effector functions

ADCC
One of the primary effector functions that can directly limit 
viral infection is antibody-dependent cellular cytotoxicity 
(ADCC), which refers to the killing of target cells by innate 
immune cells. In humans, NK cells and neutrophils are the 
primary mediators of ADCC and can rapidly kill opsonized 
infected cells, and several studies demonstrate that FcγR3A- 
expressing γδ T cells are also mediators of ADCC.4,24 NK cells 
in most individuals express a single Fc-receptor, FcγR3A, and 
thus FcγR3A is often considered as the “ADCC receptor.” 
Measuring ADCC requires target cells that are expressing the 
pathogen antigen of interest and effector cells, such as primary 
NK cells or a modified NK cell line, such as NK92 cells expres-
sing FcγR3A/CD16. Ideally, the target cell would be an infected 
cell or pathogen, yet the use of such target cells has traditionally 
been a challenge due to high containment requirements of 
many pathogens, variability between experiments, and are 
often low-throughput. As an alternative, many laboratories 
use reporter cell lines that express FcγR3A as an ADCC surro-
gate, although it should be noted that these assays do not 
measure cellular cytotoxicity, and thus may not accurately 
reflect in vivo ADCC activity. Similarly, even “true ADCC” 
assays that measure cellular cytotoxicity in vitro may not reca-
pitulate in vivo ADCC activity, as seen in the context of HIV, 
where specific epitopes on the HIV protein gp120 are exposed 
when using recombinant antigen but are hidden or not 
exposed in the context of replicating virus.25,26

In mice, ADCC is predominantly mediated by macrophage 
and neutrophils rather than NK cells via the murine-specific 
FcγRIV,27 highlighting conserved effector mechanisms but 
divergence in cell- and FcR-mediators between species. 
Following activation of immune cells via FcR ligation, the 
activated cell secretes cytotoxic molecules such as perforin 
and granzyme toward the target cell, leading to cell death. 
High-throughput assays using labeled target cells and primary 
human NK cells to measure ADCC have been described,28 and 
NK cell activation but not cellular cytotoxicity can also be 
measured in the absence of target cells using antigen-coated 
immunoassay plates.29,30

ADCP
Antibody-dependent cellular phagocytosis (ADCP) by phago-
cytic cells such as monocytes, macrophage, dendritic cells, and 
neutrophils contribute to clearance of pathogens and infected 

cells. Following engagement of FcRs on phagocytic cells, the 
opsonized pathogen/target cell is engulfed into a phagosomal 
compartment, which then matures, acidifies, and fuses with the 
lysosome to ultimately kill the pathogen/target cell. 
Phagocytosis of antigen-coated target cells or beads can be 
experimentally measured in a number of different cell 
types,31,32 and advances in multiplexing analysis allow for 
simultaneous measurement of phagocytosis of different 
immune complexes.33 Similar to the challenges with measuring 
ADCC, the phagocytosis of labeled target cells or recombinant 
antigen-coated beads rather than infected cells or pathogens 
may not accurately reflect in vivo activity due to different 
antigenic targets that may be exposed in vivo as well as 
a myriad of other cellular signals on infected cells that may 
augment or inhibit phagocytic activity.

Monocytes, macrophages, and dendritic cells express high 
levels of FcγR2A, and as functional blocking of FcγR2A 
reduces ADCP in monocytes,31,34 signaling via FcγR2A is 
often used in reporter cell lines as an ADCP surrogate, 
although it should be noted that these assays do not actually 
measure cellular phagocytosis. Moreover, different cell types 
may use different FcRs to induce phagocytosis. For example, 
neutrophil phagocytic activity is also mediated by FcαR and 
FcγRI upon activation.35 Regardless of which FcR induces 
phagocytosis, as phagocytic cells are often the first cells at 
a site of infection, ADCP can be a potent mechanism to rapidly 
and specifically target opsonized pathogens and infected cells.

ADCD/CDC
Antibody-dependent complement activation and deposition 
(ADCD) or complement-dependent cytotoxicity (CDC) can 
enhance neutralization through lysis of infected cells and 
pathogens via formation of the membrane attack complex. 
ADCD can also augment phagocytosis through complement 
receptor CR3/CD11b/Mac-1 on phagocytic cells.36 Antibodies 
predominantly activate the complement cascade via C1q and 
the classical pathway, with IgM and IgG3 having the highest 
complement-activating activity, followed by IgG1 and IgG2. 
IgG4 does not activate the complement cascade. ADCD can be 
measured through deposition of the main central complement 
component, C3, onto opsonized targets,37 or through lysis of 
target cells in the presence of complement.38

Together, ADCC, ADCP, and ADCD have been the most 
commonly studied Fc-dependent mechanisms of viral control, 
yet a growing body of literature has uncovered the additional 
ways that antibodies can activate immune cells and induce 
effector mechanisms. For example, antibody-dependent cellu-
lar trogocytosis (ADCT) has emerged as a mechanism leading 
to infected target cell death whereby the Fc-receptor expressing 
effector cell, such as neutrophils and monocytes, “nibbles” on 
an antibody-opsonized target cell.39,40 The “nibbled” part of 
the target cell may then be expressed on the surface of the 
effector cell, distinguishing trogocytosis from phagocytosis,41 

and during this process of “nibbling” and transferring there is 
significant mechanical disruption to the target cell membrane 
that can induce necrotic and highly inflammatory cell death, 
recently termed as trogoptosis.40 Trogocytosis has been 
shown to be induced by HIV-specific antibodies39,41 and 
SARS-CoV-2 spike-specific antibodies,42 and plays a critical 
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role in antibody-mediated killing of cancer cells by 
neutrophils.40 The specific role of ADCT controlling viral 
infection is still unclear, yet these studies have expanded our 
understanding of the breadth of mechanisms through which 
antibodies can induce killing of target cells.

Analysis of the role of antibody-mediated activation of FcR- 
bearing γδ T cells or platelets in infection has been limited to 
date yet may contribute to anti-pathogen control and disease 
outcome. For example, the expansion of FcγR3A expressing γδ 
T cells has been observed in the context of human cytomega-
lovirus (HCMV) infection43 and in chronic malaria exposure,44 

and is associated with antibody-mediated restriction of viral 
replication in HCMV-infected cells. Bactericidal activity of 
antibody-activated platelets has been observed,45,46 yet the 
role of platelets in viral infection has been more commonly 
associated with pathology. Most recently, hyperactivation of 
platelets via FcγR2A was observed in severe COVID-19 
patients and was associated with cardiac dysfunction 
markers.47 Future studies will likely uncover novel mechan-
isms by which these cells contribute to control or disease.

Indirect Fc-mediated innate immune effector functions

In addition to directly helping to control infection through 
targeting the pathogen and/or the infected cell, antibodies 
can also mitigate infection indirectly by inducing cytokine 
and chemokine secretion from innate immune cells that serves 
to activate antiviral pathways in uninfected target cells. For 
example, production of interferon gamma from antibody- 
activated NK cells and CD16+ γδ T cells markedly reduced 
HCMV replication,43 and stimulates type II interferon- 
mediated gene expression in neighboring cells, potentially lim-
iting interferon-sensitive viruses. Activation of the comple-
ment cascade via antibodies induces not only lysis of infected 
cells but also the generation of the chemo-attractants and 
immunomodulators C3a and C5a resulting in influx of mono-
cytes, macrophage and NK cells.

Sialylated antibodies have been proposed to help develop 
better humoral immune responses through increased delivery 
of antigen to antigen-presenting cells and setting higher 
thresholds for B cell activation, leading to the production of 
higher affinity antibodies.20,48 In the context of B cells, the 
skewing of sialylated antibodies to bind to the type II FcR 
CD23 on B cells drives increased expression of the FcγR2B, 
increasing the threshold for B cell proliferation within the 
germinal center, leading to preferential expansion of high 
affinity antibodies.20 Increased delivery of viral antigen to 
follicular dendritic cells can be enhanced via sialylated anti-
body-mediated activation of complement,48 and the formation 
of immune complexes resulting from ADCC help generate 
long-term CD8+ T cell immunity via increased presentation 
by dendritic cells.49

As antibodies can limit viral infection through multiple 
mechanisms and cells, antibody-based therapies are increas-
ingly becoming an attractive approach to treat viral infection. 
However, given the vast mechanisms that antibodies can 
engage immune cells, comprehensive approaches to define 
drivers of antiviral immunity and modulation of disease are 
critical to effectively and safely use monoclonal antibodies for 

infectious diseases. Along those lines, profiling approaches 
such as systems serology that measure qualitative and quanti-
tative features of monoclonal and polyclonal antibodies have 
helped identify functional correlates of protection against 
a number of viral infections.50–53 These correlates may be 
tested to determine if they are mechanistic correlates through 
antibody engineering aimed at enhancing/ablating specific Fc 
effector functions. Thus together, these approaches may help 
define how specific antibody functions contribute to antiviral 
immunity.

Passive immunity: functional features of effective 
antiviral immunotherapeutics

High-throughput isolation and identification platforms 
have accelerated antibody discovery for infectious 
diseases

There has been an explosive interest in the development of 
antibody-based therapeutics to treat a range of infectious dis-
eases over the past 10 years, culminating in the recent FDA 
approval of monoclonal antibody cocktails for Ebola virus and 
emergency use authorization for SARS-CoV-2 infection.54,55 

Platforms to rapidly identify, clone, and characterize antibo-
dies from B cells isolated from convalescent patients of various 
diseases and immunization of genetically engineered mice that 
express human immunoglobulin genes have accelerated the 
generation of antibody-based therapeutics.56–58 Coupled with 
recombinant monoclonal antibody production, these new plat-
forms can rapidly identify hundreds of virus-specific antibo-
dies, sometimes even from a single convalescent donor,59 that 
can be screened for neutralization, cross-neutralization, or 
binding to a specific viral epitope.60

These platforms provide the ability to rapidly produce effec-
tive therapeutics for use in an outbreak and were put to the test 
in the SARS-CoV-2 pandemic. Fortunately, these efforts were 
successful and resulted in the availability of several monoclonal 
antibodies in clinical evaluation and use within a matter of 
months. The success of these platforms has prompted efforts to 
develop panels of monoclonal antibodies against other highly 
pathogenic viruses with emergent pandemic potential, such as 
vector-borne viruses including bunyaviruses and 
alphaviruses.61–65 Incidence of disease caused by vector-borne 
viruses threaten human health as the range of the host vector 
increases and spreads,66–68 and coupled with high morbidity 
and mortality, the development of such therapeutics will be 
critical for the treatment of patients and add to the antiviral 
toolkit that we have to combat viruses.

While the Fab domains clearly need to be selected based on 
virus-specificity and neutralization potency, a common strategy 
to rapidly identify the necessary Fc features to enhance anti-
body efficacy may further accelerate development of antibody 
therapeutics. Single B cell sequencing and serum proteomic 
analysis approaches that are used in the high-throughput anti-
body discovery platforms enables the identification of the 
native Fab variable domain and IgG subclass/antibody isotype 
pairing, providing some insight into the natural function of 
isolated antibodies.69 However, whether the same antibody 
features/effector mechanisms are required to control different 
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viruses is not clear, and more importantly, it will be critical to 
determine if enhancement of a specific function may contribute 
to immunopathology, disease or enhanced infection. The latter 
has already been demonstrated in the context of respiratory 
syncytial virus and dengue virus where activation of a subset of 
innate immune cells via specific FcRs contributes to more 
severe disease,70–72 thus highlighting the critical importance 
of balancing protective and pathologic responses.

Lessons from monoclonal antibody therapeutics against 
viruses

Whether effector function is required for antibody-mediated 
protection is still being defined for many viruses, and thus 
defining and selectively enhancing specific functions required 
for protection against a given pathogen remains the next frontier 
for monoclonal antibody therapeutics. However, there are still 
many lessons to be gleaned from the current body of literature 
regarding the functional antibody features that contribute to 
protection (Figure 2). One of the most comprehensive analyses 
of the role of antibody effector functions has come from the 
study of monoclonal antibodies against Ebola virus, due in part 
to the sheer number of antibodies that have been cloned and 
characterized against this highly pathogenic virus and the colla-
borative work of the filovirus scientific community.

Lesson 1: enhancing effector function through the Fc can 
increase therapeutic antibody potency and efficacy
The development of monoclonal antibody therapeutics for 
Ebola virus stemmed in part from the need to have effective 
countermeasures for highly pathogenic viruses with high rates 
of mortality that could be used in the event of a known expo-
sure. The first generation of antibodies that were evaluated for 
post-exposure prophylaxis included the neutralizing antibody 
KZ52, isolated from an Ebola virus survivor,73 along with 
a handful of additional antibodies isolated from vaccinated 
mice that were subsequently chimerized to a human IgG1.74 

These antibodies targeted different regions of the Ebola virus 
glycoprotein, and importantly, cocktails of antibodies that con-
sisted of either neutralizing and non-neutralizing antibodies 
together or non-neutralizing antibodies alone were able to 
provide post-exposure protection in non-human primate 
models75,76 pointing to a role for Fc-effector function in anti-
body-mediated protection.

The rapid and widespread emergence of an Ebola virus 
outbreak in West Africa in 2013 highlighted the need for 
effective vaccines and therapeutics for treatment of human 
disease. One of the most attractive therapeutics to treat Ebola 
infection was monoclonal antibody therapy, due in part from 
the existing body of work showing post-exposure efficacy in 
animal models and the established clinical use of monoclonal 

Figure 2. Lessons from monoclonal antibody therapeutics against viruses. Lesson 1. Enhancing effector function through the Fc can increase therapeutic antibody potency 
and efficacy. Afucosylated antibodies (above dashed line), indicated by the lack of fucose on the Fc glycan (red triangle), demonstrate increased affinity for FcγR3A and 
FcγR3B, which in turn confers elevated levels of effector functions such as ADCC and ADCP compared to fucosylated antibodies (below dashed line). In animal models, 
afucosylated antibodies (blue line) can show increased protective efficacy compared with fucosylated antibodies (red line).Lesson 2. Synergy of Fab-neutralizing activity 
and Fc-mediated recruitment of innate effector functions underlie efficacy of many therapeutic antibodies. Left to right: antibodies are ordered by protection in animal 
models, where antibodies that have less neutralizing/no neutralizing activity and low levels of effector functions are less protective than antibodies with less 
neutralizing/no neutralizing activity but high levels of effector functions. In the context of neutralizing antibodies, increased protective efficacy may be achieved by 
recruiting more Fc functions and neutralizing antibodies can maximize the efficacy through polyfunctional Fc profiles.Lesson 3. Epitope-specificity can impact the ability of 
the Fc domain to interact with FcRs and other receptors on innate immune cells. In Ebola, antibodies that bind to the top tier of the glycoprotein and/or the secreted 
glycoprotein (sGP) induce multiple effector functions, such as high levels of ADCC and ADCP; whereas those targeting the base of the glycoprotein were limited to 
phagocytic functions. In influenza, induction of ADCC requires interaction with the FcγR through the antibody Fc and a sialic acid receptor on the effector cell that binds 
to the head domain of hemagglutinin (HA). Antibodies that bind to the stalk domain of HA can induce ADCC activity as the sialic acid receptor is able to bind to the head 
domain of HA, but the interaction with the sialic acid receptor is blocked when an antibody is bound to the head domain, thus preventing ADCC.

4332 B. M. GUNN AND S. BAI



antibodies for infectious diseases. Efforts by the scientific com-
munity to further the development of monoclonal antibody- 
based therapies led to the identification of new antibodies that 
displayed potent neutralizing activity and enhanced effector 
functionality,59,77–82 ultimately leading to the approval of an 
antibody cocktail, Inmazeb, by the FDA for use in humans in 
October 2020 following clinical efficacy trials carried out in 
west Africa and in the DRC.83,84 The sudden abundance of new 
monoclonal antibodies against Ebola offered an opportunity to 
systematically analyze and define the Fab and Fc features of 
protective antibodies against a lethal Ebola virus infection and 
to date, dozens of antibody panels have been 
evaluated,51,59,81,85–88 leading to general conclusions regarding 
broadly neutralizing epitopes and the role of effector function 
in protection. Broadly speaking, polyfunctional antibodies are 
more likely to be protective in animal models with the impor-
tance of effector function increasing as neutralization activity 
decreases.52 Specifically, the ability to induce multiple innate 
immune effector functions correlated with protective efficacy 
for monoclonal antibodies with moderate neutralizing activity, 
but not for antibodies with potent neutralizing activity,52 high-
lighting the synergistic and diverse ways that antibodies can 
provide protection.

One of the current strategies to enhance effector function-
ality of monoclonal antibodies is through the production of 
afucosylated recombinant neutralizing antibodies in glyco- 
engineered cell lines. Afucosylated antibodies demonstrate 
increased affinity for FcγR3A,8 thus enhancing FcγR3A- 
driven effector functions such as ADCC. Production of afu-
cosylated versions of both neutralizing and non-neutralizing 
Ebola antibodies boosted protective efficacy and antibody 
potency coincident with enhanced ADCC activity or binding 
to murine FcRs.89,90 Beyond viruses, afucosylated cancer anti-
bodies also show increased efficacy against cancer targets,91,92 

highlighting the broader utility of leveraging the Fc domain 
for therapeutic antibodies. Similarly, several recombinant 
monoclonal antibodies that encode point mutations within 
the Fc domain that increase affinity for multiple FcγRs display 
increased protective efficacy against HIV and influenza, lead-
ing to increased survival of challenged animals and acceler-
ated viral clearance from infected tissues.93,94 However, it 
must be noted that increasing FcγR3A does not always trans-
late to increased protective efficacy in vivo and is monoclonal 
antibody, and disease/animal model specific. For example, 
afucosylation of the HIV broadly neutralizing monoclonal 
antibody b12 did not enhance pre-exposure protection 
against a mucosal challenge in a rhesus macaque model, 
despite in vitro enhancement of ADCC activity,95 yet post- 
exposure therapeutic efficacy against an intraperitoneal chal-
lenge was enhanced via increased ADCC/ADCP accompanied 
by lower viral loads for a highly potent broadly neutralizing 
HIV antibody, 3BNC117, in a humanized mouse model.94 

Importantly, given recent associations between afucosylated 
antibodies and disease severity in the context of Dengue virus 
and SARS-CoV-2,70,96–98 reducing interaction with FcγR3A 
may be critical to avoid monoclonal antibody-mediated 
immunopathology for some viral infections.

Lesson 2: synergy of Fab-neutralizing activity and 
Fc-mediated recruitment of innate effector functions 
underlie efficacy of many therapeutic antibodies
Monoclonal antibodies are often categorized into “neutraliz-
ing” and “non-neutralizing,” with the implication being that 
the mechanism of protection is either neutralization or induc-
tion of effector function. Yet, there is an increasing apprecia-
tion for the role of collaboration between Fab and Fc-activities 
in protection. Ablation of FcγR interactions in HIV-specific 
broadly neutralizing antibodies resulted in reduced efficacy in 
non-human primates,99 and the use of Fc-enhanced variants of 
broadly neutralizing antibodies displays enhanced viral clear-
ance in humanized mouse models.94,100 Importantly, it is 
becoming increasingly clear that the synergy of a neutralizing 
Fab and functional Fc domain likely underlies the protective 
efficacy of highly potent antibodies in the context of many 
different viruses, including Ebola virus,52,77,87 influenza,93,101 

SARS-CoV-2,102–106 and alphaviruses.107,108 Of note, a recent 
study that was designed to quantify the contribution of effector 
function to antiviral efficacy of HIV-specific neutralizing 
monoclonal antibodies found that effector function accounted 
for up to 39% of antiviral activity across several different 
animal models.109 Next generation antibodies for many 
viruses, including HIV and SARS-CoV-2, are increasingly 
being selected for potent neutralizing activity and some of 
these antibodies are able to provide complete prophylactic 
protection in the absence of Fc-effector functions.103,110 

However, it is important to note that the role of a functional 
Fc domain for neutralizing antibodies is likely most important 
in the context of post-exposure therapeutic settings, where 
infection has already been established, and thus clearing 
infected cells via Fc-dependent mechanisms in addition to 
preventing infection of new cells via neutralization is critical 
for protection. The latter situation was recently demonstrated 
in the context of SARS-CoV-2 monoclonal antibodies,111 and 
highlights that different antiviral mechanisms that antibodies 
need to harness when administered before or after infection.

In addition to the production of antibodies in glyco- 
engineered cells lines, recent advances in antibody engineering 
platforms have allowed for the pairing neutralizing Fab 
domains with highly functional Fc domains and provide an 
avenue to rapidly develop recombinant monoclonal antibodies 
with increased potency and directed effector functionality.112 

Thus, these production and engineering strategies, described in 
more detail below, allow for next-generation monoclonal anti-
bodies that take advantage of both ends of the antibody.

Lesson 3: epitope-specificity can impact the ability of the Fc 
domain to interact with FcRs and other receptors on innate 
immune cells
With respect to IgG, there are two well-known features of the 
Fc that modulate effector function: IgG subclass and glycosyla-
tion. A majority of monoclonal antibodies are produced as 
a human IgG1 and are increasingly being analyzed for glyco-
sylation or produced in cell lines to generate antibodies with 
homogenous glycosylation. Yet, differences in functional activ-
ity have still been noted between antibodies despite identical 

HUMAN VACCINES & IMMUNOTHERAPEUTICS 4333



subclass and glycosylation,52 and these differences may be 
attributed to the antigenic epitope targeted by the antibody 
Fab domain. The epitope-skewing of effector function has been 
observed in the context of Ebola virus,11,113 influenza,12,114 and 
HIV,115,116 adding another feature that can modulate the effec-
tor potential of antibodies.

In the context of Ebola virus, antibodies targeting different 
regions of the glycoprotein differ in the ability to recruit specific 
innate effector functions. For example, antibodies that bind to the 
top tier of the glycoprotein and/or the secreted glycoprotein (sGP) 
on average induce multiple effector functions, including high 
levels of ADCC and ADCP,11 whereas those targeting the base of 
the glycoprotein were more limited in functional activity, recruit-
ing phagocytic functions but not ADCC, despite identical IgG 
subclass and glycosylation.52 One possible reason for this differ-
ence may be that binding to epitopes that are closer to the viral/ 
cellular membrane constrain the Fc domain from engaging with 
FcγRs. In addition, another hypothesis is that the differences in 
FcR/cytoskeletal architecture and interactions between NK cells 
and monocytes/macrophages may further limit interactions 
between constrained Fc domains with FcγRs and may explain 
why potentially constrained Fcs can still induce ADCP but not 
ADCC.10 As different epitopes are linked with differential induc-
tion of effector functions, the inclusion of antibodies that target 
different regions of the Ebola glycoprotein appears to be critical to 
the success and efficacy of monoclonal antibody cocktails. Specifi 
cally, the inclusion of polyfunctional antibodies targeting the gly-
can cap/sGP in addition to neutralizing antibodies are important 
in both the two-antibody version of the ZMapp cocktail,117 and in 
the three antibody Inmazeb cocktail,80 indicating the complemen-
tary and synergistic combinations of antibodies.

Epitope-directed effector function has also been noted in the 
context of influenza, where antibodies that bind to the stalk 
domain of hemagglutinin (HA) are able to induce ADCC 
activity whereas neutralizing antibodies that bind to the head 
domain do not.12,118 The mechanism underlying this epitope 
specificity is that the induction of effector function against 
influenza requires not only engagement of the FcR but also 
interaction between a sialic acid-bearing receptor on the effec-
tor cell and the head domain of the HA, which may be 
occluded by neutralizing head-binding antibodies.114 

Interestingly, this two-contact requirement was restricted to 
low-affinity FcγRs, such as FcγR3A and FcγR2A, as HA head- 
binding antibodies can still induce activation via the high 
affinity FcγRI.119 Thus, the anti-HA head antibodies likely 
selectively recruit effector function from cells expressing 
FcγRI, which include activated phagocytic cells (neutrophils, 
dendritic cells, monocytes/macrophages), but not NK cells.

FcR polymorphisms and FcR and innate immune cell 
dynamics during infection may impact therapeutic 
antibody efficacy and mechanisms of protection

Polymorphisms in the low affinity FcγRs, FcγR2A and FcγR3A, 
have been shown to alter IgG affinity for the respective FcγR. 
For example, a histidine at amino acid position 131 (H131) in 
FcγR2A notably increases human IgG2 binding over arginine 
(R131),7 and valine at position 176 (V176) in FcγR3A increas-
ing human IgG1 affinity over phenylalanine (F176),7 leading to 

elevated levels of ADCP and ADCC, respectively.120 These and 
other known FcR genetic polymorphisms can impact the effi-
cacy of monoclonal antibodies in the context of cancer 
therapeutics.121 Moreover, recent evidence suggests that poly-
morphism within FcγR2C, which is only expressed in approxi-
mately 20% of individuals,122,123 was associated with decreased 
risk of HIV infection in the moderately protective RV144 
vaccine trial,124 yet was associated with infection risk following 
the non-protective Adenovirus 5-vectored HIV clinical vaccine 
trial.125 Together these studies highlight that FcR variation 
between individuals is an additional factor that should be 
taken into account when considering antibody-based 
therapeutics.

While assays for in vitro characterization of antibody effec-
tor function have been established and have predictive value 
for in vivo protection, there remains the question of how 
infection impacts FcR expression and innate immune cell 
function that are critical to consider particularly in the context 
of post-exposure therapeutic antibodies. The effector function 
potential of antibodies is typically evaluated in vitro one func-
tion at a time using resting innate cells from healthy human 
donors or in cell culture, but infection itself may modulate 
abundance of FcR-expressing cells, FcR expression, and activa-
tion of innate cells, thereby altering the repertoire of cells that 
antibodies can leverage during infection. For example, activa-
tion of neutrophils leads to upregulation of the high affinity 
FcγR, FcγRI, which enables enhanced phagocytosis and ADCC 
activity mediated by monomeric antibodies.126,127 In addition, 
in vitro polarized macrophages show distinct impacts on pha-
gocytosis and reactive oxygen species (ROS) depending on the 
mechanism of polarization. Specifically, macrophages polar-
ized by IFNγ (typically considered an M1-polarizing cytokine) 
displayed induction of higher levels of ROS despite lower 
phagocytic activity following antibody-mediated phagocytosis 
compared with macrophages polarized by IL-10 (typically con-
sidered an M2-polarizing cytokine),128 indicating that the 
downstream indirect antibody-effector functions can be modu-
lated by different cytokine milieus.

Developing a fever is the most common symptom of infec-
tion by any pathogen and is thought to aid the immune system 
in combating infection.129 Beyond impacting the stability and 
infectious potential of the pathogen itself, fever and thermal 
stress have been shown to increase recruitment of both innate 
and adaptive immune cells to sites of infection130,131 and 
enhance a broad range of anti-pathogen activities in innate 
immune cells, including respiratory burst, antigen processing, 
and phagocytosis.132–134 Moreover, viral envelope structural 
dynamics are impacted by temperature, allowing for antibody 
access to temporarily exposed epitopes during viral 
breathing,135 which may be further enhanced during fever. 
Thus, the efficacy of antibodies to mediate both neutralization 
and induce innate immune effector functions may be altered in 
the setting of fever.

Finally, as innate immune cells are often targets of viral 
infection, the loss of FcR-bearing cells impacts the efficacy of 
therapeutic antibodies. Ebola virus infection, for example, 
results in loss of non-classical FcγR+ monocytes early during 
infection which ultimately recovers,136 and tracks with 
survival.137 Thus, use of therapeutic antibodies that can 
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harness multiple different innate immune cells may be bene-
ficial depending on the stage of infection the antibody is 
administered.

Convalescent plasma: polyclonal therapeutics

Passive transfer of polyclonal antibodies from convalescent indi-
viduals into patients with acute infection has long been an 
attractive possible alternative therapy to monoclonal antibodies. 
However, the utility of convalescent plasma in treatment of viral 
infection remains unclear. Early studies in the context of Ebola 
virus showed promise,138 yet follow-up studies have yielded 
variable results,139–142 but ultimately indicate that the efficacy 
of Ebola virus disease (EVD) convalescent plasma is correlated 
to antibody titers and high levels of neutralizing antibodies.143 

A majority of human survivors of EVD develop neutralizing 
antibodies, yet EVD survivors differ in the ability to recruit 
innate immune effector functions,144 raising the possibility that 
some convalescent donor plasma may lack effector functionality, 
despite having neutralizing activity. Thus, a strategy aimed at 
screening donor plasma for at least one effector function in 
addition to neutralization may increase the utility and efficacy 
of convalescent plasma in the treatment of patients.

Passive transfer of convalescent plasma is being explored as 
a therapy for SARS-CoV-2,145 yet to date, the correlates of 
convalescent plasma efficacy have yet to be defined. 
Interestingly, analysis of COVID convalescent donors demon-
strated that only a small fraction of donors had polyfunctional 
antiviral activities,146 further highlighting the need for com-
prehensive screening of donors prior to infusion.

As an alternative to donor-based convalescent plasma, pro-
duction of human polyclonal antibodies in trans-chromosomal 
(Tc) cattle may offer a controlled source of polyclonal neutra-
lizing and functional antibodies for use in patients with 
a number of different viral infections.147–149 These genetically 
modified cattle express human immunoglobulin genes to pro-
duce human virus-specific antibodies following immunization 
with a viral antigen, and passive transfer of the Tc-derived 
antibodies into non-human primates were protective against 
Ebola virus, coincident with high levels of neutralizing activity 
and recruitment of effector function.150

Functional features of vaccine-mediated immunity

The development of vaccines against infectious diseases 
remains the most effective defense against localized and wide-
spread incidence of disease. The induction of a polyclonal anti-
body response against a given pathogen via vaccination can 
target multiple protective epitopes that can limit viruses at 
multiple steps of infection and dissemination. Correlates ana-
lysis of vaccines against both bacterial and viral pathogens 
indicate that the ability to recruit innate immune effector 
function may be a critical component of vaccine-mediated 
protection,151–153 and the functional humoral response can be 
shaped by vaccine vectors, adjuvants, and vaccine regimens.154

In the context of HIV vaccines, the induction of broadly 
neutralizing antibodies via vaccination has long been elusive. 
However, the modestly successful HIV trial RV144 induced 
ADCC-recruiting antibodies that were identified as correlates 

of protection.152 In natural HIV infection, elevated levels of 
effector function-inducing antibodies have been found in elite 
and viremic controller individuals, suggesting that functional 
antibodies may play a role in natural control of HIV.155,156 

Thus, identifying strategies to boost the induction of functional 
antibodies has been of great interest to the HIV vaccine 
community.

Different prime-boosting strategies have been shown to 
impact IgG subclass selection which in turn affects the ability 
of antibodies to recruit effector functions. Specifically, repeated 
protein boosting regimens, such as those used in the non- 
protective VAX-003 trial, forced class-switching to IgG2 and 
IgG4, leading to less functional antibodies,89,157–159 in contrast 
to the elevated IgG3 levels observed in RV144 linked to 
increased effector functions induced by a canarypox-vectored 
prime and two protein boosts.157 However, subsequent boosts 
of uninfected RV144 trial participants with either vector or the 
protein alone failed to recall IgG3 responses, although func-
tional IgG1 responses were recalled by the protein boost 
alone,160 highlighting differences between the composition of 
the primary immune responses and long-term boosts.

Different viral vectors have been evaluated for the ability to 
skew induction of functional antibodies. Adenoviral vectors 
have shown promise across several different pathogens, and 
antibodies induced by the Adenovirus serotype 26 (Ad26) 
vector are polyfunctional in the context of both HIV and 
SARS-CoV-2.153,161,162 The protective efficacy of the vesicular 
stomatitis virus (VSV)-vectored Ebola vaccine, Ervebo, is 
linked to the induction of antibodies,163 and the functional 
activity of vaccine-induced antibodies is skewed toward 
ADCC rather than ADCP.164 Interesting, while the vaccine is 
highly effective in non-human primates and in humans,165,166 

the functional activity of vaccine-induced antibodies is reduced 
when compared to natural survivors of EVD,164 suggesting that 
the activity of vaccine-induced antibodies is sufficient for pro-
tection. Of note, vaccine-induced IgM is posited to play 
a critical role in neutralizing Ebola,167 and thus, ADCD activa-
tion by IgM may further contribute to vaccine-mediated pro-
tection, yet to date, has not been reported.

Finally, vaccine adjuvants are used to boost magnitude, 
durability, and quality of the immune response, often acting 
through stimulation of innate immunity and antigen uptake 
by antigen presenting cells, and increasing evidence suggests 
that different adjuvants may qualitatively impact antibody 
function. For example, MF59 induced more ADCC- 
activating antibodies compared with alum in the context of 
influenza vaccination;168 a toll-like receptor (TLR)-7 stimu-
lating adjuvant induced production of antibodies with high 
ADCD activity; and a TLR-3 stimulating adjuvant induced 
polyfunctional antibodies.168,169

Approaches to modify effector function in 
monoclonal antibodies

Isotypes and IgG subclasses

Human IgG3 binds with the highest affinity to FcγRs, followed 
by IgG1, IgG4, and then IgG2.7 Despite the higher affinity to 
FcγRs conferred by IgG3 and association with increased 
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pathogen control in natural and vaccine-mediated protection, 
virtually all monoclonal antibody therapeutics have been gen-
erated as human IgG1. Concerns regarding potential immuno-
genicity of different human IgG3 allotypes, short half-life, 
stability and purification methods have long hampered the 
investment in IgG3-based therapeutics.170 However, advances 
in engineering have increased the stability and manufactur-
ability of recombinant IgG3,171,172 which may open the door to 
the development of IgG3-therapeutic antibodies with high 
levels of effector function for a range of infectious diseases.

There has been increased interest in the development of IgA- 
based prophylactics and therapeutics due to the enrichment of 
IgA at mucosal sites, which are common sites of entry for many 
pathogens.173 Recent reports that IgA can neutralize SARS-CoV-2 
with elevated potency compared to IgG1174,175 have added to the 
growing interest in utilizing IgA-based therapeutics against viral 
infection. FcαR (CD89), and IgA-mediated activation of neutro-
phils results in phagocytosis, ADCC, and production of neutro-
phil extracellular traps against viruses such as Ebola virus and 
HIV.176 Additional unique properties of IgA may further con-
tribute to antiviral efficacy, especially for influenza virus. The 
conserved cytoplasmic tail of IgA that allows for the dimerization 
of two IgA molecules has blocks influenza virus entry via compe-
tition between binding to the sialic acid receptors that influenza 
uses as an entry receptor via sialylated glycans on the IgA tail.177

Glyco-engineering

IgG are glycosylated with biantennary glycan structures at a single 
site on each heavy chain of the Fc domain, and afucosylated 
glycans increase IgG affinity for FcγR3A by 100-fold,8 resulting 
in elevated ADCC activity, but does not enhance binding to other 
FcγRs receptors. As a result, no major effect on monocyte/macro-
phage FcγR2A-mediated phagocytosis has been observed. 
Production of afucosylated recombinant antibodies in mamma-
lian cell lines that lack the fucosyltransferase FUT8 or in Nicotiana 
benthamiana plants has shown to increase potency and efficacy of 
Ebola monoclonal antibodies.76,89,90,178 Novel approaches such as 
adenovirus-associated virus delivery of short-hairpin RNAs to 
transiently knock down FUT8 with simultaneous expression of 
broadly neutralizing HIV antibodies offers an exciting new oppor-
tunity to deliver and sustain high levels of afucosylated antibodies 
in vivo.179

Agalactosylated antibodies, a well-established biomarker of 
rheumatoid arthritis180 and HIV,181 have been linked to 
increased phagocytic activity induced by HIV-specific 
antibodies182 yet has also been shown to reduce complement- 
mediated inflammation via FcγRIIb.183 As the role of antibody 
galactose in effector function has yet to be fully resolved, to 
date there has been little movement in the development of 
galactosylated antibody therapeutics but could represent 
a new avenue to modify phagocytosis and complement.

Point mutations

Mutational screens and co-crystal structure analysis of antibo-
dies in complex with FcRs have identified critical amino acids 
in both the hinge and constant domains of the antibody Fc 
domain that alter binding affinity to FcγRs,34,184–192 

complement,184,188,193–195 and/or the neonatal Fc-receptor 
(FcRn) to increase antibody half-life.196–200 Engineering these 
mutations into monoclonal antibodies has allowed for the 
analysis of the role of FcR-mediated activation in infection, 
dissection of mechanisms, and highlighted potential opportu-
nities to enhance efficacy of monoclonal therapeutics.

Several approaches have been developed to take advantage 
of these mutations, and the most recent platform, Rationally 
Engineered and Functionally Optimized Monoclonal antibo-
dies (REFORM), utilizes a high-throughput cloning approach 
to rapidly generate Fc-variants, and a systems serology 
approach to profile effector functions across the panel of anti-
bodies that then can be tested in vivo to determine the impact 
of specific effector profiles on antibody efficacy.112 Using this 
approach in the context of Ebola virus revealed the role of 
antibody-dependent complement activation and moderate 
not maximal ADCC activity in combination with neutralizing 
activity in complete protection against disease and death in an 
animal model, highlighting that combinations and levels of 
induction of effector functions may be key to more precise 
and highly effective antibodies.112 A similar approach based 
on the SARS-CoV-2 specific non-neutralizing antibody 
CR3022 demonstrated that while enhancing Fc effector func-
tion led to reduced viral loads, increased lung pathology and 
weight loss were observed,201 further highlighting the critical 
need to balance protective and pathologic functions of anti-
bodies and warranting the need to carefully select induction of 
specific effector functions.

Conversely, some viral diseases can be enhanced by Fc- 
dependent mechanisms, and thus strategies to ablate Fc- 
FcR interactions may be needed. For example, increased 
antibody function is associated with more severe disease 
in the context of Dengue virus infection,70 and cross- 
reactive Dengue virus antibodies have been demonstrated 
to enhance Zika virus, a related flavivirus, infection.202,203 

Engineering of mutations to ablate effector functions in 
neutralizing antibodies such as L234A/L235A (LALA) or 
the glycosylation site N297, which disrupts Fc-FcR interac-
tions, have been shown to block infection without increas-
ing the risk of antibody-dependent enhancement of 
infection and disease.202,204

Translating the role of antibody effector function 
between animal models

It is worthwhile briefly discussing the challenges of translating the 
role of effector functions in controlling viral infection between 
different animal models and humans. There are significant differ-
ences in expression of FcRs across different species, often compli-
cating the analysis of mechanism of action of therapeutic 
antibodies. Some innate functions, such as antibody-dependent 
complement activation, can be readily translated across species as 
the complement pathway is highly conserved,205 but other func-
tions are more difficult to translate. Mice express a unique FcγR, 
FcγRIV, which mediates ADCC in mice and is expressed on 
macrophage and neutrophils but not NK cells,27 and non- 
human primates have multiple FcR polymorphisms that can 
modulate induction of effector functions.206,207 Chimerized anti-
bodies composed of human Fab domains with species-specific 
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subclasses is one approach to determining if effector function 
enhances protective efficacy,208 but still does not provide direct 
translation to efficacy in humans. Transgenic expression of 
human FcRs in mice is another alternative to evaluate human 
IgG in mouse models,187 yet is still in the setting of a mouse innate 
immune system and mechanisms of antibody-mediated protec-
tion may not directly translate to humans. However, these 
approaches have been fundamental in demonstrating the vast 
repertoire of functions that antibodies can mediate beyond 
neutralization.

Moving forward, development of bridging analyses to 
help translate findings between the most commonly used 
animal models for viral infection (mice, non-human pri-
mates, and guinea pigs) and humans are needed. 
Comparative analysis of human antibody binding to recom-
binant FcRs from other species has provided a preliminary 
framework for these bridging analyses,112,209 but additional 
comparative analyses using innate immune cells from dif-
ferent animal model species are needed to fully develop 
cross-species maps to define mechanistic translatability 
across model systems.

Concluding remarks

Our understanding of the repertoire of antiviral effector func-
tions that can be deployed by antibodies is constantly expand-
ing and offers the opportunity to harness the antibody Fc 
domain to enhance efficacy and potency of monoclonal anti-
body therapeutics against viral infection. Despite the advances 
in experimental assays, production techniques, and antibody 
engineering technology that allow for modulation of antibody 
effector functions, there are still many unknowns that are 
critical to examine in order to safely and effectively direct 
innate functions. Specifically, defining the role of specific effec-
tor functions in antiviral control/modulation of infection and 
the impact of infection on expression of FcRs on innate cells 
will be critical next steps. Advances in antibody engineering 
technology together with a deeper understanding of the anti-
body and innate features that regulate antibody Fc-effector 
function will undoubtedly lead to the development of highly 
effective next generation antibody therapeutics and vaccines 
against viral infection in the future.
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