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Abstract

Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain
images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods
was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular
diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles.
Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately
evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-
maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a
mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance
of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The
proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with
unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal,
delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function
for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the
tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries
can be identified.
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Introduction

The advent of modern imaging modalities has enabled studies

to unravel temporal hemodynamic patterns in different regions of

the brain to assist in the assessment of cerebrovascular diseases.

Dynamic-susceptibility-contrast MR (DSC-MR) imaging records

signal changes associated with different blood supply patterns

following the intravenous injection of a bolus of contrast agent.

Based on the bolus profile in the arterial compartment and on

indicator dilution theory [1,2], computations of cerebral hemody-

namic parameters, such as relative cerebral blood volume (rCBV),

relative cerebral blood flow (rCBF), mean transit time (MTT), and

time to peak (TTP), are possible. Hemodynamic parameter maps

have been intensively used in clinical applications, including the

assessment of brain tumors [3–5], brain ischemia [4–7], occlusive

cerebrovascular disease [8], and radiation necrosis [3,5].

Classification of brain hemodynamics into different compo-

nents is essential to facilitate the analysis and assessment of brain

perfusion. In our previous studies, fast independent component

analysis (FastICA) [9,10], the noiseless independent factor analysis

(NIFA) [11], and analysis based on expectation-maximization

(EM) of a mixture of multivariate Gaussians (MoMG) [12] were

developed to discern brain tissues. In the EM-MoMG method, the

data was similarly zero-mean normalized and reduced by principal

component analysis (PCA) [13]. Under the assumptions that the

distribution of the reduced data associated with each tissue type

was multivariate Gaussian distributed and that the overall

distribution of the reduced data was a MoMG [14], alternating

iterative expectation (E) and maximization (M) steps [15] were

performed. The E-steps calculated the expected log-likelihood

conditions using the observed data along with the currently

estimated model parameters. The M-steps updated the model

parameters by maximizing the log-likelihood values. During this

EM process, the posterior probabilities in relation to each tissue

type were obtained at each pixel, which in turn provided sufficient

statistical validity, i.e., maximal probability, to determine the tissue
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type of each pixel. As a consequence, all tissue compartments

could be segmented out simultaneously using the EM-MoMG

method, instead of the one-by-one segmentation process used in

the FastICA method. However, the EM-MoMG method required

a good initial guess of the model parameters to achieve satisfactory

results. In this study, we improved the EM method by using the

results of hierarchical clustering (HC) on whitened perfusion data

as initial parameters for a MoMG.

The segmentation of brain tissues using perfusion images relies

on the clustering of bolus transit-time profiles to discern areas of

different tissue types. However, cerebrovascular diseases would

change the local perfusion of the impaired tissues with different

levels of delay and dispersion, and therefore complicate the overall

distribution of the signal profiles. The delay and dispersion phe-

nomena were resulted from the defect of the blood vessel struc-

tures, such as the internal carotid artery (ICA) stenosis, moyamoya

disease, and arteriovenous malformation. Assessing the accuracy

of the segmentation technique under delay/dispersed circum-

stance is critical to accurately evaluate the severity of the vascular

disease and locate the impaired tissues. However, previous

literatures have focused on the effects of delay and dispersion in

the deconvolution algorithm for estimating the rCBF [16–18], but

not the effects in the tissue segmentation and impaired tissue recog-

nition. In this study, Monte Carlo simulations were conducted to

evaluate the performance of proposed method under different levels

of delay, dispersion, and noise of signal profiles in tissue segmen-

tation. Finally, we analyzed the perfusion data from five normal

participants, a patient with unilateral ICA stenosis, and a patient

with moyamoya disease using the proposed method.

Materials and Methods

Tissue Segmentation using the HC-EM-MoMG Method
Brain regions were extracted from perfusion images using

Otsu’s method [19], followed by an erosion and dilation operation

[20]. The brain region for each image was assumed to comprise N
pixels, and the observation of 65 temporal images was represented

by a 65|N matrix. The dimension of each data set was reduced

by PCA [13] from 65|N to r|N. During PCA, at least 99% of

the data variance was retained.

Similar to PCA, the data whitening process first calculates eigen-

values and corresponding eigenvectors for the covariance matrix of

the zero-mean normalized data. The zero-mean data were then

transformed via a whitening matrix, which was constructed of

eigenvectors and eigenvalues, so that the covariance matrix became

an identity matrix [13]. The compressed, transformed data resulting

from whitening dimension reductions were subsequently used in

HC.

During HC, the compressed data are denoted by a matrix X
with size r|N and each r|1 column vector in X is referred to as

a feature vector, x. Initially, HC was carried out in the data set X
based on a created cluster tree with a multilevel hierarchy in which

any two nearby clusters at one level become merged into one

cluster at the next higher level. The HC algorithm comprised

three major parts. First, each group contains a single feature vector

of X, i.e., N groups in X, and the element in the dissimilarity

matrix is the squared Euclidean distance between any two featured

column vectors in X, which was defined by

d2
rs~(xr{xs)

T (xr{xs)

where d2
rs is the Euclidean distance between two featured column

vectors xr and xs. Second, in order to construct the cluster tree, we

employed the Ward’s method [21] to measure the distance

between two clusters which was defined by

d2(p,q)~npnq

�xxp{�xxq

�� ��
2

2

(npznq)

where d2(p,q) is the distance between two clusters of featured

vectors, np and nq are the numbers of featured vectors in cluster p

and q, respectively, kk2 is the Euclidean distance, �xxp and �xxq are the

centroids of clusters p and q, respectively, which are defined by

�xxp~
1

np

Xn

i~1

xpi and �xxq~
1

nq

Xm

j~1

xqj

where xpi is the ith featured vector in cluster p and xqj is the jth

objects in cluster q. The two clusters with the smallest between-

group distance are grouped together to form a new group. The

algorithm proceeds until all of the feature vectors fall within a

single group, thus forming a hierarchical clustering tree. Third, the

level or scale of clustering is determined by cutting the hierarchical

cluster tree. The HC results for the condensed data, X, were used

to be the initial guess of the mean vectors, the covariance matrices

of the MoMG, and the proportion of each tissue class for the

subsequent EM estimation [12].

The E-step of EM estimation is to compute the posterior

probabilities of tissue classes p(i|xn,h
j21) based on the estimation

from previous j-1th iteration:

p(iDxn,hj{1)~
pj{1

i gxn mj{1
i ,Sj{1

i

h i
PK

l~1 p
j{1
l gxn m

j{1
l ,S

j{1
l

h i

Where i = 1,…,K represent labels of tissue classes, gxn mi,Si½ �
represents the multivariate Gaussian density with the mean vector

mi and covariance matrix Si of tissue class i, pi denotes the

proportion of each class i, and hj{1 denotes the parameters

fmj{1
i ,Sj{1

i ,pj{1
i g at the j-1th iteration. The M-step consists of esti-

mating parameters hj as follows (please see Appendix in [12] for

details):

mj
i~

PN
n~1 p(iDxn,hj{1)xnPN

n~1 p(iDxn,hj{1)
,Sj

i~

PN
n~1 p(iDxn,hj{1)xnxT

nPN
n~1 p(iDxn,hj{1)

{mj
i(m

j
i)

T ,

p
j
i~

1

N

XN

n~1
p(iDxn,hj{1):

Once all tissues of interest were identified, averaged signal-time

curves for each tissue type were computed and the arterial input

function (AIF) was modeled from the averaged concentration-time

curve of artery in order to compute the rCBV, rCBF, and MTT of

each segmented tissue types [22–24]. Specifically, we first

computed the concentration-time curve Ct(t) for each pixel using

the formula:

Ct(t)~{
k

TE
ln

S(t)

S0

� �

Brain Hemodynamic Segmentation by an EM Algorithm

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68986



where k is a constant, TE is the echo time, and S(t) and S0 are the

signal intensities of each pixel at time t and at the baseline,

respectively. By using the indicator dilution theory, one can

determine the rCBV for each pixel as a ratio of the area

integrating over the first pass of the contrast agent under the

concentration-time curve, Ct(t), to that under the AIF, Ca(t),

rCBV~

Ð
first
pass

ct(t)dt

Ð
first
pass

ca(t)dt
:

The rCBF can be computed based on the relationship with

concentration-time curve for each pixel:

Ct(t)~rCBF:Ca(t)6R(t)

where 6 denotes convolution, ? denotes multiplication, and R(t) is

the residue function for the pixel. The rCBF : R(t) curve for each

pixel can be resolved using the singular value decomposition

(SVD) method and the value of rCBF at each pixel was

determined by the maximum value of rCBF : R(t) curve [25].

Finally, the MTT of contrast-agent particles passing through a

pixel was defined as

MTT~
rCBV

rCBF

Design of Hypothetical Compartments for Monte Carlo
Simulations

Simulated dynamic images based on a region of interest (ROI)

in one of the raw data sets were adopted. In those images each

simulated data set accommodated the possibilities of having four to

nine hypothetical clusters (Fig. 1). Pixels within each hypothetical

tissue area were assumed to be spatially independent, and pixel

intensities across time were assumed to be multivariate Gaussian-

distributed. The averaged signal-time curves, each of which was a

65|1 vector, and the covariance matrices of intensities across

time, each of which had a dimension of 65|65, within ROIs in

the raw data were employed as hypothetical parameters for the

MoMG model to create sets of noise-free simulated dynamic

images using random number generators. In addition, Gaussian

noise was added to each set of noise-free simulated dynamic

images to produce the signal to noise ratio (SNR) levels of 40 and

70. For each of the hypothetical clusters and each noise level, a

Monte Carlo simulation comprising 1000 runs was performed.

Accordingly, the total number of simulated image sets was 6

(number of hypothetical clusters) |3 (noise levels) |1000(repe-

(repetitions for each combination) = 18000. Each set of simulated

dynamic images was rearranged into a 65|N matrix before

classification, where N (N~5502 in the simulation) was the

number of pixels representing the brain area.

Monte Carlo Simulations for EM-MoMG with Differenet
Initializations

The parameters of MoMG for EM segmentation were

initialized by 2 different means: 1) HC results from whitened

data; 2) random sampling of columns from the matrix representing

the PCA data, which was used in our previous EM-MoMG

method [12]. The number of tissue classes to be tested ranged

from 4 to 9. After comparing posterior probability values at each

pixel, the cluster resulting in the maximum probability was iden-

tified, that pixel was then labeled accordingly. The classification

rate for each cluster, denoted by ri, was defined by the observed

proportion of agreements, i.e., ri~fi=ni , where fi was the number

of agreements for the ith cluster and ni was the total number of

pixels in the ith class. The classification rate for a set of simulated

dynamic images, denoted by R, was computed by R~100|PK
i~1

ri|ni=Nð Þ (as a percentage), where K is the number of clus-

ters. No delay and dispersion effects were added to these simulated

perfusion images.

Monte Carlo Simulations with Delay and Dispersion
Delay and dispersion are two popular phenomena in the

hemodynamics of subjects with cerebrovascular diseases. Thus,

Monte Carlo simulations were conducted to investigate the

influences of these two factors on the proposed HC-EM-MoMG

method. The concentration-time curves, Ctissue(t), for anomalous

tissue types were created using the following formula [22]

Ctissue(t)~rCBFtissue
:(Ca(t)6Reff ,tissue(t,MTTtissue))

where the effective residue function Reff ,tissue(t) [18] is given by

Reff ,tissue(t)~

exp ({(t{tdelay,tissue)=MTTtissue), btissue~0

exp ({(t{tdelay,tissue)=btissue){ exp (({t{tdelay,tissue)=MTTtissue)

(btissue=MTTtissue){1
, btissuew0

8<
:

in which tdelay,tissue and btissue denote time delays relative to AIF and

dispersion, respectively. The values of MTTtissue, rCBFtissue,

tdelay,tissue, and btissue were estimated to simulate the concentration-

time curves of the delayed/dispersed artery (dArtery), delayed/

dispersed gray matter (dGM), and delayed/dispersed white matter

(dWM). Specifically, we calculated the values of rCBF and MTT

for artery, GM, and WM, based on the raw data of hypothetical

compartments. The normal rCBF and MTT values of artery, GM,

and WM were also used for dArtery, dGM and dWM, respec-

tively. The derived simulated concentration-time curves were then

converted into signal-time curves using the following equation

S tð Þ~S �
0 exp {Ctissue tð Þ�TEð Þ

where S0 is the baseline signal and TE is echo time. In addition to

the signal-time curves for dArtery, dGM, and dWM, signal-time

curves for artery, GM, WM, vein combined with sinus (vein+sinus),

sinus, as well as for CSF including the corpus plexus (CSF+cp)

tissues were also used in these simulations. Hence, there were 9

hypothetical tissue types in the test of delay and dispersion effects.

With tdelay values of 0, 1, 2, 3, 4, and 5 s and dispersion b values of 0,

1, 2, 3, 4, and 5 s, overall 36 combinations of abnormal conditions

were simulated (Fig. 2). The number of voxels in the impaired

components, i.e., dArtery, dGM and dWM, were designated to be

50%, 25%, or 13% of the total voxels in the artery, GM and WM

components. Noise-free and SNR levels of 40 and 70 were created.

Brain Hemodynamic Segmentation by an EM Algorithm
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Figure 1. An example of seven hypothetical tissue clusters and the mean signal-time curves. The number of pixels and intensity
distribution of each hypothetical cluster were generated based on the ROI on one of the raw data sets.The selected ROIs on the raw data represented
artery (551 pixels), GM (1741 pixels), WM (1636 pixels), vein and sinus (610 pixels), sinus (80 pixels), CSF and cp (412 pixels), and artifact (175 pixels),
respectively. The averaged signal-time curves (65|1), and covariance matrices of intensities across time (65|65) within ROIs on the raw data were
employed as the hypothetical parameters for the MoMG model to create a set of noise-free simulated dynamic images using random number
generators.
doi:10.1371/journal.pone.0068986.g001
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The total number of simulated data sets was 6 (different tdelay’s) |6

(different b’s) |3 (different numbers of voxels in abnormal

components) |3 (noise levels) |1000 (repetitions for each

combination) = 324000. Fig. 3 illustrates the 9 simulated mean

signal-time curves in which the time settings of tdelay and b for the

impaired compartments were both 5 s.

Participants and Data Recording
This study received prior approval from the Institutional

Review Board of Taipei Veterans General Hospital. Each

participant provided written informed consent before participating

in this study. Five healthy volunteers (3 males and 2 females) aged

from 18 to 47 years, one 78 year-old male with a unilateral ICA

stenosis, and one 57 year-old female with moyamoya disease

participated in this study. A multi-slice gradient-echo echo-planar-

imaging pulse sequence on a 1.5 Tesla scanner (Signa CV/i, GE

Medical Systems, Milwaukee, WI, USA) was used to acquire

dynamic perfusion images. For the healthy subjects, trans-axial

imaging was used with TE/TR = 60/1000 ms, flip angle = 90

degrees, FOV = 24 cm 624 cm, matrix = 1286128, slice thick-

ness/gap = 5/5 mm for 7 slices, one acquisition, and 70 images

per slice location with a one second temporal resolution. Twenty

ml of Gd-DTPA-BMA (OmniscanH, 0.5 mmol/ml, Nycomed

Imaging, Oslo, Norway) followed by 20 ml of normal saline were

delivered administratively using a power injector (SpectrisH,

Medrad, Indianola, PA, USA) at a flow rate of 3–4 ml/s in the

antecubital vein. Some imaging protocol settings were changed

for the ICA patient, i.e., TE/TR = 40/1000 ms, flip angle = 60

degrees, slice thickness/gap = 7/14 mm for 7 slices. All routines

were implemented using MATLAB (MathWorks, Inc., Natick, MA,

USA) codes and carried out on a 2.66 GHz Intel-Core2-based

personal computer.

Results

Simulation Results for Different Initializations of EM-
MoMG

Table 1 presents the average classification rates+standard devia-

tions (in percentages) for Monte Carlo simulations obtained from

the EM-MoMG method initialized by 2 different approaches. The

EM-MoMG method initialized by the results from HC on whitened

data outperformed the initialization approach using the random

sampling on PCA data. The average classification rates were higher

using HC on whitened data (between 99.0+0.39% for noise-free

Figure 2. The effects of delay and dispersion. Each row represents the delay effects (tdelay = 0, 1, 2, 3, 4, 5 s) with a mixture of the dispersion
effects in each column (b = 0, 1, 2, 3, 4, 5 s) for the signal-time curves of artery (red), GM (green), and WM (brown). The solid curves stand for the
normal artery, GM and WM, and the dashed curves depict the corresponding delayed and dispersed versions.
doi:10.1371/journal.pone.0068986.g002
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conditions with four hypothetical tissue clusters and 93.6+1.42%

for the condition of SNR = 40 with 9 hypothetical tissue clusters,

Table 1). The standard deviations of classification rates were also

smaller (always less than 1.42%) using the HC results on whitened

data as initialization, thereby implying the HC-EM-MoMG method

can produce accurate and reliable segmentations.

The mean classification rates from all initialization methods

decreased slightly with the change from the noise-free condition to

SNR = 40. In the case of the proposed HC-EM-MoMG method,

the minimal mean classification rate and maximal standard devia-

tion were 93.6% and 1.42%, respectively, in the 9 hypothetical

tissue clusters with SNR = 40 (Table 1). The classification

performances degraded as the number of hypothetical tissue clusters

increased. In the worst case, i.e., SNR = 40, the results obtained

from the HC-EM-MoMG method were from 98.9+0.40% to

93.6+1.42%.

In addition, we computed minimal description length (MDL)

[26] values when different numbers of tissue classes were used in

Figure 3. Simulated mean signal-time curves for nine tissue types. The curves of dArtery, dGM and dWM were simulated with tdelay = 5 s and
b = 5 s compared to their normal counterparts, namely, artery, GM and WM.
doi:10.1371/journal.pone.0068986.g003

Table 1. The averaged classification rates+standard deviations (in percentage) for Monte Carlo simulations resulted from the EM-
MoMG method with 2 different initials.

Number of hypothetical tissue clusters

SNR Initials methods 4 5 6 7 8 9

NF* HC results of whitened data 99.0+0.39 97.0+0.72 96.7+0.86 96.3+0.93 95.1+1.31 94.1+1.35

Random sampling on PCA data 95.7+12.48 96.4+4.28 92.9+17.48 91.0+18.86 87.9+18.01 89.1+19.13

70 HC results of whitened data 99.0+0.40 96.9+0.74 96.5+0.88 96.1+0.95 95.0+1.30 93.9+1.38

Random sampling on PCA data 95.3+14.11 95.5+9.77 92.5+18.00 91.0+18.60 87.0+19.90 88.8+19.28

40 HC results of whitened data 98.9+0.40 96.7+0.75 96.2+0.93 95.9+0.99 94.8+1.34 93.6+1.42

Random sampling on PCA data 95.2+14.05 95.7+5.26 93.1+16.49 90.5+19.88 86.7+19.63 88.8+18.87

*NF: noise-free.
doi:10.1371/journal.pone.0068986.t001
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the EM-MoMG method with HC on whitened data under noise-

free, and SNR = 70, and 40 conditions. The results indicated that

the MDL values were minimal when the number of tissue classes

was identical to the hypothetical ones.

Simulation Results with Various Delays, Dispersions, and
Percentages of Abnormal Voxels

Table 2 shows the simulation results with different delays and

dispersions under various noise conditions. The results showed

that the classification rates increased as either delay or dispersion

increased. For example, the classification rates under noise-free

conditions increased from 71.0+5.32% to 89.9+5.92% when the

delay increased from 1 s to 5 s, and increased from 76.4+5.87%

to 87.3+4.36% as dispersion increased from 1 s to 5 s. In general,

the classification rates were satisfactory when the differences in

either delay or dispersion between normal and corresponding

impaired compartments were longer than one second. As exam-

ples, the classification rates were mostly over 80% when (b, tdelay) =

(0, 2), (1, 1), (2, 0), and were over 85% when (b, tdelay) = (0, 3), (1, 2),

(2, 1), (3, 0). The results also show that as noise increased from the

noise-free condition to SNR = 40, the mean classification rates also

decreased. As examples, the mean classification rates decreased

from 87.0+7.94% with noise-free condition to 86.6+6.55% with

SNR = 40 at (b, tdelay) = (5, 5). In addition, the mean classification

rates obtained from the six normal tissues and the three impaired

compartments (dArtery, dGM, dWM) under different levels of

delay and dispersion were 4% to 20% lower than the rates from

the 9 normal tissues shown in Table 1. This result suggested that

some of the perfusion profiles of the impaired compartments may

be equivocal and more difficult to distinguish. However, as delay

and dispersion were both longer than one second, the mean

classification rate was greater than 85%.

The classification rates that were determined using different

percentages of abnormal voxels are presented in Table 3. The

results demonstrated that a higher abnormal proportion produces

a lower mean classification rate and a larger standard deviation.

The mean classification rates decreased from a range between 78.2

and 90.1% with a 13% abnormal percentage to a range between

56.3 and 88.9% with a 50% abnormal percentage. Moreover, the

standard deviations increased from at most 6.11% with a 13%

abnormal percentage to 9.65% with a 50% abnormal percentage.

Classification Results from Normal Participants
Data from the five normal participants were processed and their

perfusion images segmented into different compartments based on

minimizing MDL values. Various tissue types, such as artery, GM,

WM, vein+sinus, sinus, CSF+cp, CSF, vein with noise, sinus with

noise, as well as artifacts, were segmented from normal data sets.

The ratios of GM to WM for rCBV, rCBF, and MTT were

2.19660.097, 2.25960.119, and 0.96860.023, respectively.

These ratios were in agreement with other published reports

[3,27,28].

Results from a Patient with Right Internal Carotid Artery
(ICA) Stenosis

The stenosis subject was a 78 year-old male subject with a right-

side ICA 99% stenosis. A right-lateral neck angiogram of the

subject showed the high-degree stenosis on the right ICA (white

arrows in Fig. 4(b)). Another cerebral angiogram with an anterior-

posterior projection at the early arterial phase, and with contrast

Table 2. The averaged classification rates+standard deviations (in percentage) for Monte Carlo simulations resulted from the EM-
MoMG method initialized by the results of HC on the whitened simulated data with different delayed time, dispersion and various
SNRs.

Delay

SNR Dispersion 0 s 1 s 2 s 3 s 4 s 5 s

NF* 0 s – 71.0+5.32 80.5+5.70 85.5+4.86 88.0+4.83 89.9+5.92

1 s 76.4+5.87 83.7+5.40 86.4+5.51 89.0+4.89 89.3+5.46 88.4+6.96

2 s 83.0+5.18 85.9+4.71 88.1+4.88 88.1+5.66 87.7+7.13 86.7+8.71

3 s 85.3+5.06 87.1+4.65 89.0+5.00 87.6+7.07 87.6+6.85 87.8+7.57

4 s 86.8+4.87 87.7+4.40 88.6+5.11 87.8+6.15 87.3+7.60 87.3+7.62

5 s 87.3+4.36 88.8+4.88 89.0+5.92 87.6+7.13 87.1+7.43 87.0+7.94

70 0 s – 69.2+4.84 77.7+5.63 85.0+5.14 87.3+5.62 88.2+6.25

1 s 75.0+5.14 82.8+4.24 86.0+5.16 88.6+5.11 88.8+5.92 86.3+7.33

2 s 82.1+4.82 85.3+5.05 87.4+4.57 88.9+5.49 87.1+6.01 86.7+6.99

3 s 85.2+4.52 86.3+4.65 87.4+4.59 87.7+6.50 86.8+7.38 87.3+6.83

4 s 85.64.94 86.4+4.39 87.8+5.38 86.5+6.26 86.6+7.47 86.5+7.53

5 s 86.6+4.62 87.3+4.68 87.6+5.77 87.8+6.50 86.6+7.18 86.7+6.90

40 0 s – 67.5+4.65 75.8+5.51 82.6+4.71 86.2+5.35 87.8+5.76

1 s 72.4+5.08 80.1+5.09 84.3+5.04 87.3+5.02 86.8+6.11 85.4+6.80

2 s 79.2+4.14 83.3+4.93 85.3+4.89 86.5+5.29 86.5+6.51 85.6+7.29

3 s 82.6+4.77 84.6+4.28 86.7+5.11 86.8+6.01 85.5+7.45 85.5+6.52

4 s 83.6+5.06 85.8+4.68 86.1+5.36 84.8+6.32 85.7+6.88 86.4+6.34

5 s 85.1+4.22 86.2+5.27 85.8+6.47 85.1+6.68 85.5+7.61 86.6+6.55

The percentage of impaired tissue number of voxels is 25%.
*NF: noise-free.
doi:10.1371/journal.pone.0068986.t002

Brain Hemodynamic Segmentation by an EM Algorithm

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68986



injection from the aortic arch, was provided to illustrate the

delayed perfusion on the right ICA. The right hemisphere of the

brain exhibited delayed circulation (white arrow in Fig. 4(c)). This

delayed perfusion was observed on consecutive trans-axial DSC-

MR images (see Fig. 4(a)). The subject’s right hemisphere (abnormal

side; left side of the images) had a signal drop and recovery between

the 14th and 28th images, whereas the left hemisphere (normal side;

right side of images) had a signal drop and recovery between the

12th and 22nd images, i.e., the signal drop occurred 2 s earlier and

recovery occurred 6 s earlier on the normal side than on the

stenosis-affected side. In addition, a trans-axial T2-weighted MR

image (Fig. 4(d)) and a diffusion-weighted image (Fig. 4(e)) at a

similar slice location as the DSC-MR image confirmed that there

was no evidence of infarct or stroke on the slice. Segmented results

(Fig. 4(f)) from the DSC-MR image using HC-EM-MoMG shows

nine compartments, namely artery (red), GM (green), WM (brown),

CSF+cp (gray), right ICA stenosis induced delayed/dispersed artery

(pink), delayed/dispersed GM (yellow), delayed/dispersed WM

(light brown), vein+sinus (blue), and artifact (dark blue). In Fig. 4 (f),

it is worth noting that the GM and WM component maps cross the

midline from the normal side to the stenosis side, especially in the

anterior and posterior regions. Those results support the clinical

findings that the subject’s anterior and posterior communicating

arteries in the circle of Willis were intact. The averaged signal-time

curves and corresponding spatial maps (Fig. 4(g) and (f)) demon-

strate that tissues with similar characteristic perfusion profiles can be

grouped by the EM algorithm. The results suggest that the impaired

parts (dArtery, dGM and dWM) can be discerned from their

contralateral counterparts (artery, GM and WM) by applying the

HC-EM-MoMG method. One should note that the delayed or dis-

persed arterial input function (dAIF) obtained from the signal-time

curve of dArtery was used to calculate the rCBF for dGM and dWM

for minimizing the error induced by the delay and dispersion

whereas the AIF obtained from the normal artery was used for other

normal tissues such as GM, WM, CSF+cp, and vein+sinus.

Fig. 4(h)–(j) exhibit hemodynamic-parametric maps (rCBV, rCBF

and MTT) and the details for each of the classified tissue types are

given in Table 4. The results show evidence of delay and dispersion

in the impaired compartments. In particular, the TTP of the dGM

(23.31+2.44 s) was larger than that of the normal GM (17.85+
1.23 s), implying that there was delayed perfusion on the stenosis

side. Moreover, the rCBF of the dGM (39.51+15.32 ml?100 g21?

min21) was lower than that of the normal GM (54.26+21.12 ml?

100 g21?min21), and the MTT of the dGM (9.16+1.86 s) was

significantly longer than that of the normal GM (5.85+0.94 s),

suggesting the presence of a dispersive effect from the ICA stenosis.

Results from a Patient with Moyamoya Disease
Another case was a 57 year-old female patient with moyamoya

disease. She suffered from sudden vision loss on her left side for 3

days. Her right cerebral angiogram at the early arterial phase with

lateral projection showed stenosis of the distal internal carotid

artery, proximal segments of the anterior and middle cerebral

arteries (red arrows in Fig. 5(b)). Intracranial collateral arteries, so-

called moyamoya vessels, are seen in the basal ganglia region (blue

arrow in Fig. 5(b)). The prominent branches of external carotid

artery (arrowheads in Fig. 5(b)) form the extracranial collaterals.

Another arterial phase angiography taken at 1.5 seconds later than

Table 3. The averaged classification rates+ standard deviations (in percentage) for Monte Carlo simulations resulted from the EM-
MoMG method initialized by the results of HC on the whitened simulated data with different delayed time, dispersion and various
abnormal percentage under the condition of SNR = 70.

Delay

Percentage Dispersion 0 s 1 s 2 s 3 s 4 s 5 s

50% 0 s – 56.3+2.55 60.1+6.97 73.7+8.07 81.3+7.52 85.3+8.14

1 s 58.1+5.55 66.6+8.71 77.0+6.96 82.8+7.51 84.9+8.41 87.9+8.85

2 s 63.4+8.95 74.6+7.04 81.3+7.76 84.5+8.71 86.2+9.65 88.7+8.68

3 s 70.5+8.48 77.7+8.31 83.4+8.07 86.4+8.14 86.9+9.43 87.2+9.48

4 s 75.9+8.05 81.4+8.52 84.6+8.30 86.5+8.58 87.9+9.05 88.9+9.00

5 s 78.3+8.06 81.9+7.67 86.0+8.83 86.8+9.00 87.3+9.26 88.2+9.08

25% 0 s – 69.2+4.84 77.7+5.63 85.0+5.14 87.3+5.62 88.2+6.25

1 s 75.0+5.14 82.8+4.24 86.0+5.16 88.6+5.11 88.8+5.92 86.3+7.33

2 s 82.1+4.82 85.3+5.05 87.4+4.57 88.9+5.49 87.1+6.01 86.7+6.99

3 s 85.2+4.52 86.3+4.65 87.4+4.59 87.7+6.50 86.8+7.38 87.3+6.83

4 s 85.6+4.94 86.4+4.39 87.8+5.38 86.5+6.26 86.6+7.47 86.5+7.53

5 s 86.6+4.62 87.3+4.68 87.6+5.77 87.8+6.50 86.6+7.18 86.7+6.90

13% 0 s – 78.2+4.89 83.8+4.59 89.2+3.35 89.5+4.35 90.0+3.77

1 s 82.0+4.05 88.0+2.24 89.7+3.77 89.7+3.73 90.1+3.62 89.0+4.39

2 s 87.4+2.74 89.1+3.49 89.2+4.19 89.5+3.68 89.1+4.93 88.8+5.32

3 s 89.0+2.92 89.1+3.94 89.3+3.89 89.0+3.86 88.5+5.25 88.4+5.01

4 s 89.1+3.41 88.9+4.58 89.9+3.04 88.9+4.58 89.0+4.52 88.5+5.04

5 s 89.3+3.49 89.1+3.63 89.0+3.88 88.8+4.02 88.3+5.10 88.1+6.11

The abnormal percentage was the ratio of number of abnormal voxels to total number of voxels in a tissue type.
In the case of abnormal percentage = 50%: numbers of voxels in dArtery, dGM and dWM are 551*50%&275, 1741*50%&870 and 1636*50% = 818, respectively. Other
two cases can be calculated in the same manner by replacing percentage of 50% with 25% and 13%, respectively.
doi:10.1371/journal.pone.0068986.t003
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Fig. 5(b) shows the late arrival blood supply (arrows in Fig. 5(c)) via

the collaterals. Her right parietal region is less blood-irrigated

(arrowheads in Fig. 5(c)). The full perfusion could be shown by the

consecutive trans-axial DSC-MRIs (see Fig. 5(a)). In addition, a

trans-axial T2-weighted MR image shows abnormal high signals

in her parietal-occipital region (arrows in Fig. 5(d)) and a diffusion-

weighted image confirms an acute infarct with diffusion restriction

(arrows in Fig. 5(e)). Segmented results (Fig. 5(f)) from DSC-MRI

shows eight hemodynamic components, namely artery (red), gray

matter (green), white matter (brown), CSF (gray), ischemic or

infarct area (purple), areas supplied by collateral arteries with risk

of infarct (cyan), vein and sinus (blue), and artifacts (dark blue).

The averaged signal-time curves (Figs. 5(g)) demonstrated that the

artery arrived earliest with maximum signal drop followed by the

GM or vein+sinus, WM or CSF, risk of infarct, and infarct. Infarct

area, mainly the right parietal-occipital brain, was the last to

receive blood flow and shows much smaller signal drops compared

to other areas. The resulting right occipital infarct as seen in

Figs. 5(d) and (e) may be explained by the hemodynamic aberra-

tion shown in the infarct area (purple). Whereas the risk of infarct

area presented the averaged signal-time curve with delay and dis-

persion effects compared to that of the GM tissue, and the spatial

map of the risk of infarct resided near to the infarct area. In addi-

tion, using the classified regions (Fig. 5(f)) as masks on parametric

images (Figs. 5(h)-(j)), the hemodynamic parameters, (rCBV,

rCBF, MTT), for compartments artery, GM, WM, CSF, infarct,

risk of infarct, and vein+sinus, can be easily calculated, respectively

(see Table 5). The infarct area presented much lower rCBV

(1.46+0.93 ml?100 g21) and rCBF (9.95+5.37 ml?100 g21?min21)

but higher MTT (8.50+2.63 s) in comparison with that of GM and

WM areas. In contrast, the risk of infarct area performs relatively

toward normal rCBV (4.49+1.83 ml?100 g21) and rCBF (29.986

12.68 ml?100 g21?min21), which implies this area is worth in

therapy to recover. These values can be re-computed after treat-

ment to assess therapeutic effects.

Discussion

In this study, we improved the EM method by using the results

of HC on whitened data to initialize the model parameters used in

the MoMG model. It is worth noting that performing HC on

whitened data is equivalent to conducting clustering on the

independent component images resulting from FastICA [10]. To

clarify, let the zero-mean-normalized and whitened data be X. In a

matrix of such data, each row represents an image and each

column encodes the temporal information for each voxel, which

can be regarded as a feature vector in the clustering process. In

addition, let the optimal rotation matrix in the FastICA method be

denoted by G. The resultant independent component images that

manifest one major tissue type in each image are therefore denoted

by GX. Since any rotation matrix holds the property GTG~I,

where the superscript ‘T’ stands for the matrix transpose, it follows

that the Euclidean distance between any pair of feature vectors,

namely, xr and xs, remains the same after rotational transforma-

tion, i.e., (Gxr{Gxs)
T(Gxr{Gxs)~(xr{xs)

TGTG(xr{xs)~

(xr{xs)
T(xr{xs). This shows that clustering on xr’s is the same

a clustering on Gxr’s.

Monte Carlo simulations were carried out to compare the

performance using HC results from whitened data and the

random sampling of columns from the matrix representing the

PCA data. The results of HC on the whitened data produced

superior data clustering in terms of accuracy and variance than

that obtained from random sampling on PCA data. That

superiority was due to the similarity of scales in the corresponding

components in any pair of column (feature) vectors from the

whitened data. Through that similarity, each component in the

subtraction of each paired vectors contributed equally to the

calculation of Euclidean distance. On the contrary, in PCA data,

the first components were the dominant terms in any pair of

column vectors, and they overwhelm the contributions from the

remaining components, producing results in which the features

from the rest of components of each column vector have been

suppressed. Thus, clusters resolved from the dissimilarity matrix

can be better discriminated based on the whitened data. In brief,

the simulation results suggest that the HC-EM-MoMG method

performed well, particularly when the SNR was higher than 40.

Various tissue types, such as artery, GM, WM, vein+sinus,

sinus, CSF+cp, CSF, vein with noise, sinus with noise, as well as

artifacts, were segmented from normal data sets. Additionally,

impaired tissue types, namely, dArtery, dGM, dWM, were

segmented from an ICA subject’s data, and the infarct and risk

of infarct were distinguished from others normal tissues in the

moyamoya data. Since the slice locations from each of the normal

subjects were not exactly the same, the segmented tissue types and

the optimal number of clusters (between 7 and 8) varied slightly

Figure 4. Segmentation results using the HC-EM-MoMG method for a patient with ICA stenosis. (a) Consecutive trans-axial DSC-MRI (12th

to 35th second). (b) Right-lateral neck angiogram illustrated 99% stenosis on the right ICA labeled by the white arrows. (c) Another cerebral
angiogram in anterior-posterior projection at the early arterial phase with the contrast injection from the aortic arch. The white arrow pointed out the
delayed perfusion on the right ICA. (d) A trans-axial T2-weighted MR image at the similar slice location with the DSC-MRI. (e) A trans-axial Diffusion-
weighted image confirms no infarct or stroke on the slice. (f) Segmented results shows nine hemodynamic components, namely artery (red), gray
matter (green), white matter (brown), CSF and cp (gray), right ICA stenosis induced dArtery (pink), dGM (yellow), dWM (light brown), vein and sinus
(blue), and artifact (dark blue). (g) The averaged signal-time curves of corresponding tissues. (h) rCBV map (scale unit is ml?100 g21). (i) rCBF map
(scale unit is ml?100 g21?min21). (j) MTT map (scale unit is second).
doi:10.1371/journal.pone.0068986.g004

Table 4. The hemodynamic parameters of segmented tissue types for the patient with unilateral ICA stenosis.

artery GM WM CSF+cp dArtery dGM dWM vein+sinus

TTP (second) 16.44+1.03 17.85+1.23 17.91+1.11 22.48+8.33 21.44+2.02 23.31+2.44 24.33+2.56 17.68+3.78

rCBV (ml?100 g21) 7.05+3.76 5.34+2.36 2.55+1.02 1.41+1.11 9.09+4.27 6.06+2.64 2.96+1.08 11.40+6.12

rCBF (ml?100 g21?min21) 74.74+42.08 54.26+21.12 27.45+9.91 11.06+8.18 57.82+24.15 39.51+15.32 19.54+6.60 96.59+55.89

MTT (second) 5.64+1.02 5.85+0.94 5.52+0.82 6.02+2.45 9.30+1.88 9.16+1.86 9.08+1.56 7.28+1.73

doi:10.1371/journal.pone.0068986.t004
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among subjects. Nevertheless, the artery, GM, WM, CSF+cp (or

CSF) could be consistently segmented from the five normal data

sets and the delivery of the contrast agent appeared in the

following order: artery, GM, WM, and CSF+cp (or CSF).

The proposed HC-EM-MoMG method successfully showed

spatial and temporal hemodynamic patterns for each of the

dissected tissue compartments. Three advantages of using the

proposed method are as follows. First, the averaged signal-time

curve for arterial tissue can be used as an AIF; in particular, the

dAIF can be identified in the subject with an ICA stenosis. That

allows calculation of the hemodynamic parameters of abnormal

tissues, which can be used to compensate for delay and dispersion

effects. In the ICA stenosis subject, for example, the rCBF values

of the dGM and dWM obtained from the normal AIF were

46.21+17.75 and 22.90+8.06, respectively, whereas from the

dAIF, the values were 39.51+15.32 and 19.54+6.60, respective-

ly. Second, in this method, voxels with similarly abnormal

perfusion can be grouped into the same cluster, the corresponding

signal-time curves and the hemodynamic parameters, namely

rCBV, rCBF, MTT, and TTP, can be quantified for each tissue

type, which can aid in diagnosis and therapeutic assessment. As

presented in Fig. 4(f), the spatial location of each impaired

compartment (dArtery, dGM, dWM) can be identified, and theirs

hemodynamic parameters showed longer TTP and MTT, but

lower rCBF compared to the normal tissues (see Table 4). In the

case of moyamoya, the infarct area exhibited smaller signal drop

and higher mean signal intensity of averaged signal-time curve

which was similar to that of CSF, implying insufficient blood

supply and death of brain tissue (Fig. 5(g)). This also can be

observed with low rCBV and rCBF in infarct area. However, the

hemodynamic parameters of risk of infarct, which were better than

that of infarct area, presented lower rCBV, rCBF but longer TTP

and MTT compared to GM. Although the risk of infarct exhibited

the ‘‘toward-abnormal’’ states, it was potentially salvageable by

clinical intervention for preventing enlargement of the infraction.

The value of the recognition of risk of infarct area using HC-EM-

MoMG method may facilitate the prognosis for treatment, which

is similar to using MR perfusion-diffusion mismatch in identifying

patients with acute ischaemic stroke for thrombolysis [29,30].

Third, the segmented spatial maps derived from the method are

useful when evaluating the hemodynamic compensation mecha-

nism from collateral circulation through the circles of Willis; in

particular, the integrity of the anterior communicating artery

(AcoA), both side posterior communicating arteries (PcoA), and

the basilar artery (BA) can be assessed. This compensation mecha-

nism is illustrated in Fig. 4 (f) where the spatial distribution of the

normal GM crosses the midline of two hemispheres within the

anterior carotid artery (ACA) and posterior carotid artery (PCA)

territories. As a result, the hemodynamics of these two areas on the

stenotic side and in the normal GMs were grouped into one

cluster, thereby suggesting the presence of perfusion compensation

via the AcoA and BA. This result was supported by an angiogram

assessment (red arrows in Fig.4 (c)) in which AcoA and BA patency

was evident.

In future studies, the concept of the bargaining problem can be

implemented for the optimisation of the parameters to assess the

delay and dispersion effects. From the perspective of Game theory

[31], the delay and dispersion parameters can be served as two

players in the game, and the optimisation of these parameters can

be achieved by the notion of an equilibrium point [32–34]. The

optimisation of this two-player benefit in a non-zero-sum game is

based on the optimisation of payoffs in the terms of game theory,

where we expect to observe equilibrium in a set of alternatives in a

spatial game theoretical framework [35]. Target recognition

techniques, such as the cross-plot method [36,37], can also be

integrated for the automatic identification of tisse type after hemo-

dynamic clustering using our proposed HC-EM-MoMG algo-

rithm. Cross-plots of binary patterns (i.e., the binary maps of tissue

templates) are exploered as image signatures for the observed

target (i.e., the binary maps of tissue clusters) by capture of the

spatial features with minimal computation [36,37]. Some other

segmentation mehods can be applied to facilitate the preprocessing

of brain perfusion images, for example, an active contour model

can automatically define the region of interest to remove the non-

target image pixels, such as skull and scalp, or to locate the brain

lesion, such as brain tumors [38].

In summary, we improved the EM method by using the results

of HC on whitened data to initialize the parameters of MoMG

models, termed as HC-EM-MoMG method. The results of Monte

Carlo simulations confirmed that the mean classification rates of the

Figure 5. Segmentation results using the HC-EM-MoMG method for a patient with moyamoya disease. (a) Consecutive trans-axial DSC-
MRI (15th to 38th second). (b) Right cerebral angiography at early arterial phase on lateral projection shows stenosis of the distal internal carotid
artery, proximal segments of the anterior and middle cerebral arteries (red arrows). The moyamoya vessels are seen in the basal ganglia region (blue
yellow). The prominent branches of external carotid artery (arrowheads) form the extracranial collaterals. (c) Another arterial phase angiogram taken
at 1.5 seconds after (a) shows the late arrival blood supply (arrows). Her right parietal region is less blood-irrigated (arrowheads). (d) A trans-axial T2-
weighted MR image shows abnormal high signals in her parietal-occipital region (arrows). (e) Diffusion-weighted image confirms an acute infarct with
diffusion restriction (arrows). (f) Segmented results shows eight hemodynamic components, namely artery (red), gray matter (green), white matter
(brown), CSF (gray), ischemic or infarct area (purple), areas supplied by collateral arteries with risk of infarct (cyan), vein and sinus (blue), and artifacts
(dark blue). (g) The averaged signal-time curves of corresponding tissues demonstrated that the artery arrived earliest with maximum T2* signal drop
followed by the GM or vein+sinus, WM or CSF, risk of infarct, and infarct. (h) rCBV map (scale unit is ml?100 g21). (i) rCBF map (scale unit is
ml?100 g21?min21). (j) MTT map (scale unit is second).
doi:10.1371/journal.pone.0068986.g005

Table 5. The hemodynamic parameters of segmented areas for the patient with moyamoya disease.

Artery GM WM CSF infarct risk of infarct vein+sinus

TTP (second) 17.40+1.29 19.03+1.61 21.20+2.01 21.94+9.18 29.71+6.18 24.63+2.22 22.96+5.73

rCBV (ml?100 g21) 7.05+2.86 4.71+2.13 2.67+1.00 0.35+0.41 1.46+0.93 4.49+1.83 5.61+3.64

rCBF (ml?100 g21?min21) 63.93+28.64 43.59+18.61 20.18+7.58 3.28+2.41 9.95+5.37 29.98+12.68 35.36+29.05

MTT (second) 6.70+1.00 6.45+1.05 7.90+1.37 6.78+3.30 8.50+2.63 9.04+1.78 10.46+4.12

doi:10.1371/journal.pone.0068986.t005
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proposed method can achieve over 93.6% and small standard devia-

tions, which was superior to that using the random sampling as

initializations. Moreover, this is the first study to assess the delay and

dispersion effects on the hemodynamic segmentation, which is criti-

cal to the cerebrovascular diseases. Our results of Monte Carlo simu-

lations showed that most classification rates of the HC-EM-MoMG

method were greater than 80% whenever the differences in delay or

dispersion between normal and corresponding impaired compart-

ments were longer than one second. Finally, the analysis of data

from the patients with unilateral ICA stenosis and moyamoya

disease illustrated the effectiveness of the method for identifying

impaired compartments. The proposed method can quantify

impaired hemodynamics and serve as an aid in diagnosis and

therapeutic assessment, such as evaluation of the integrity of the

circle of Willis and identification of the risk of infarct area.
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