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In this manuscript, we have studied the microstructure of the axonal

cytoskeleton and adopted a bottom-up approach to evaluate the

mechanical responses of axons. The cytoskeleton of the axon includes the

microtubules (MT), Tau proteins (Tau), neurofilaments (NF), and microfilaments

(MF). Althoughmost of the rigidity of the axons is due to the MT, the viscoelastic

response of axons comes from the Tau. Early studies have shown that NF and

MF do not provide significant elasticity to the overall response of axons.

Therefore, the most critical aspect of the mechanical response of axons is

the microstructural topology of how MT and Tau are connected and construct

the cross-linked network. Using a scanning electron microscope (SEM), the

cross-sectional view of the axons revealed that the MTs are organized in a

hexagonal array and cross-linked by Tau. Therefore, we have developed a

hexagonal Representative Volume Element (RVE) of the axonal microstructure

with MT and Tau as fibers. The matrix of the RVE is modeled by considering a

combined effect of NF and MF. A parametric study is done by varying fiber

geometric and mechanical properties. The Young’s modulus and spacing of MT

are varied between 1.5 and 1.9 GPa and 20–38 nm, respectively. Tau is modeled

as a 3-parameter General Maxwell viscoelastic material. The failure strains for

MT and Tau are taken to be 50 and 40%, respectively. A total of 4 RVEs are

prepared for finite element analysis, and six loading cases are inspected to

quantify the three-dimensional (3D) viscoelastic relaxation response. The

volume-averaged stress and strain are then used to fit the relaxation Prony

series. Next, we imposed varying strain rates (between 10/sec to 50/sec) on the

RVE and analyzed the axonal failure process. We have observed that the 40%

failure strain of Tau is achieved in all strain rates before the MT reaches its failure

strain of 50%. The corresponding axonal failure strain and stress vary between

6 and 11% and 5–19.8 MPa, respectively. This study can be used to model

macroscale axonal aggregate typical of the white matter region of the brain

tissue.

KEYWORDS

mechanical behavior of axon, neuron, cytoskeleton, traumatic brain injury, finite
element analysis, representative volume element (RVE), composite materials,
mechanical characterization

OPEN ACCESS

EDITED BY

Svein Kleiven,
Royal Institute of Technology, Sweden

REVIEWED BY

Yuan Feng,
Shanghai Jiao Tong University, China
Patrick Alford,
University of Minnesota Twin Cities,
United States
Jin Zhang,
Harbin Institute of Technology, China

*CORRESPONDENCE

Ashfaq Adnan,
aadnan@uta.edu

SPECIALTY SECTION

This article was submitted to
Biomechanics,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 25 March 2022
ACCEPTED 22 August 2022
PUBLISHED 06 October 2022

CITATION

Hasan F, Mahmud KAHA, Khan MI and
Adnan A (2022), Viscoelastic damage
evaluation of the axon.
Front. Bioeng. Biotechnol. 10:904818.
doi: 10.3389/fbioe.2022.904818

COPYRIGHT

© 2022 Hasan, Mahmud, Khan and
Adnan. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 06 October 2022
DOI 10.3389/fbioe.2022.904818

https://www.frontiersin.org/articles/10.3389/fbioe.2022.904818/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.904818/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.904818&domain=pdf&date_stamp=2022-10-06
mailto:aadnan@uta.edu
https://doi.org/10.3389/fbioe.2022.904818
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.904818


Introduction

Under dynamic loading (e.g., rotational acceleration), the

human brain tissue experiences shear deformation in different

length scales (Wright and Ramesh, 2012), (Hasan et al., 2021a).

The tissue level deviatoric deformation leads to cellular level

stretching. The degree of stretching depends on the orientation

and location of the individual axons. The rotational acceleration

plane, the interface between white matter and gray matter, and

the presence of stiff membranes can cause significant stress

concentration at the cellular level (Smith and Meaney, 2000).

This type of loading condition may lead to mechanical failure of

the axonal microstructure and cause the most common

pathological feature of Traumatic Brain Injury (TBI) called

Diffuse Axonal Injury (DAI) (al Mahmud et al.,

2020)– (Hasan et al., 2021b). However, we cannot directly

measure or investigate DAI with the current technology

(Wright, 2012). It is crucial to understand how the

mechanical load is transferred from macro to microscale and

to identify injury thresholds based on the cytoskeletal component

failure. A multiscale computational approach is needed to bridge

the injury information to measurable means. To understand how

continuum scale tissue damage is correlated to the cellular

microstructure, in this manuscript, we have studied and

characterized the mechanical behavior of the axonal

cytoskeletal core.

The brain is primarily classified into two regions at the tissue

level: 1) gray matter and 2) white matter (see Figure 1A). The

neuronal cells are randomly distributed in the gray matter giving

its isotropic mechanical response (see Figure 1B); (Koser et al.,

2015). The short-term shear modulus of the gray matter varies

from (Kleiven, 2007)- (Shamloo et al., 2015) varies from

10–34 kPa (Zhang et al., 2004)– (Taylor and Ford, 2009).

Neuronal cells, bundled together to form fiber tracts, are more

organized in the white matter region. Therefore, the mechanical

behavior is anisotropic in the white matter (Eskandari et al.,

2021). The anisotropy can be introduced to the materials

modeling of the white matter using diffusion tensor imaging

(DTI) (Wright, 2012). One typical feature of white matter is that

the glial cells extend their lipid bilayer and wrap the neurons

called the myelin sheaths. Due to this intercellular network of the

glial cells, white matter shows higher stiffness than gray matter

(Weickenmeier et al., 2016). Coarse grain molecular dynamic

simulations were performed to estimate the bulk modulus and

Poisson’s ratio of lipid bilayer in the range of 21–54 MPa and

0.11–0.44, respectively. (el Sayed et al., 2008).-0.44, respectively

(Jadidi et al., 2014), (Ayton et al., 2002). The excessive presence of

the lipid bilayer in the myelin sheath could be another reason for

higher stiffness in the white matter. The typical short-term shear

modulus of the white matter region varies between

(WATANABE et al., 2009)- (Chen et al., 1992) varies between

12–42 kPa (Zhang et al., 2004)– (Taylor and Ford, 2009). Several

studies focused on characterizing white matter tissue properties

in a bottom-up multiscale approach. In those studies, axon, and

extracellular matrix (ECM) properties were used as input

parameters, and a micromechanical method was used to

estimate the effective properties (Arbogast and Margulies,

1999), (Yousefsani et al., 2018). In another study, Samad et al.

(2013) used a top-down approach. The effective properties of

axon and ECMwere estimated using the white matter tissue-level

properties from the relaxation tests (Javid et al., 2014). They have

reported the short-term shear modulus of axon and ECM as

12.86 and 4.29 kPa, respectively. Similar stiffness of axon was also

reported by Robert et al. (2007), who used the microneedle

technique to stretch the PC12 neurites and found the elastic

modulus to be 12 kPa (Bernal et al., 2007).

The inherent mechanical stiffness of the axon is due to its

cytoskeletal components consisting of microtubule (MT),

microfilament (MF), and neurofilament (NF) (see Figure 1C).

Notably, a hexagonal array of MTs constructs a cross-linked

network of viscoelastic nature with microtubule-associated

protein tau (Tau) (see Figures 1D,E). Further study on the

contribution of the axonal cytoskeleton components to the

elastic properties of the axon was performed by Ouyang et al.

(2013) (Ouyang et al., 2013). They carefully disrupted the

individual cytoskeletal members by using Nocodazole,

Cytochalasin D, and Acrylamide to disrupt MT, MF, and NF,

respectively. When no drug was used, the transverse elastic

modulus of the axon was found to be 9.5 kPa. The axonal

elastic modulus was calculated from the atomic force

microscopy (AFM) as 1.4, 5.7, and 3.4 kPa, respectively, by

separately disrupting the MT, MF, and NF. It was concluded

that the maximum stiffness of the axon came from the

contribution of the MT cross-linked network. However, when

all drugs were used, the elastic modulus of the axon was estimated

to be 2 kPa which was very close to the computational estimation

of the axonal membrane stiffness of 4.23 kPa (Zhang et al., 2017).

Several studies were directed toward studying mechanical

responses of axonal cytoskeleton components and reviewed in

ref. (Khan et al., 2020), (Khan et al., 2021a). The viscoelastic

response of MT, MF, NF, and Tau was studied in ref. (Adnan

et al., 2018).– (Ishak Khan et al., 2021). Special attention was

given to the MT-Tau network response in various loading

conditions (e.g., tension, torsion) (Tang-Schomer et al.,

2010)– (Wu et al., 2019). Besides the structural failure, a

cascade of complex molecular events follows the mechanical

insult. The effect of phosphorylation initiates MT-Tau network

disintegration much earlier than the fibers (e.g., MT and Tau)

reach their failure strain (Khan et al., 2021c).

As discussed here, we can see that the study on the brain

tissue mechanics using the top-downmultiscale approach ends at

the tissue to cellular level bridging. The high-fidelity full head

models used the most refined mesh of 1–5.2 mm in size to study

TBI using the finite element method (FEM) (Taylor and Ford,

2009), (Panzer et al., 2013)– (Chafi et al., 2010). Even in the

lowest volume fraction, there could be thousands of axons within
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1 mm mesh which must be resolved. Moreover, experimental

observations indicated that the local cellular level strain was

about 25% of the tissue level strain (Tamura et al., 2007). The

heterogeneity and the interplay of the cellular microstructure is

thought to be the reason of the inter-level mismatch (Montanino

and Kleiven, 2018). Therefore, the threshold strain at the tissue

level related to the TBI cannot be directly used to predict the DAI.

On the other hand, numerous studies were performed at the

sub-cellular level. However, there are gaps between the sub-

cellular level to the cellular level, and no attempts were made to

use the bottom-up approach to connect these two levels. There is

a need for bridging the cytoskeletal component responses to the

effective properties of neuronal axons. The bridging will allow us

to model the intermediate level between the cellular and tissue

level, the axon aggregates. Understanding how cellular level

strain is transmitted to the cytoskeletal sub-cellular level is

also critical. Therefore, in this manuscript, we have addressed

these two issues.

In the first part of this manuscript, we performed three-

dimensional (3D) micromechanical viscoelastic characterization

of the axon cytoskeletal core. We have developed the

representative volume element (RVE) of the axonal

microstructure for the micromechanical study. As discussed

earlier, the primary fibers that carry the mechanical load and

give stiffness to the axons are MTs. The MTs are packed

unidirectionally in the hexagonal orientation and cross-linked

with Tau (Chen et al., 1992). The axoplasm surrounding the MT-

Tau cross-linked network is modeled as the matrix of the RVE.

We have prepared four RVEs to perform the parametric study on

the geometric variables (e.g., Tau radius, Tau spacing, and MT

spacing). We have also varied the stiffness of the MT, and

comparisons are discussed. Since there are three mutually

orthogonal planes of symmetry in the RVE, the 3D

mechanical response is orthotropic, and a total of nine

viscoelastic relaxation functions are required to fully

characterize the axonal core (Naik et al., 2008). As we have

planned to use the relaxation functions as input parameters to

develop the higher-level axon aggregate model, it is suitable for us

to express the relaxation function as the Prony series. Six loading

cases have been implemented on the RVE for the nine relaxation

functions. Three of them are normal, and the rest are shear

loading conditions (Wang et al., 2017). The homogenization is

done by calculating the volume-averaged stress and strain of the

RVE using the FEM (Sun and Vaidya, 1996a); (Barbero). The

nonlinear regression fit is done between the volume-averaged

stress and the hereditary integral expression of the Prony series

coefficients by using the Levenberg-Marquardt algorithm (Gavin,

2019a), (Tzikang and Chen, 2000).

In the second part of this manuscript, we evaluated the

axonal cytoskeletal damage threshold by varying the loading

rates. The criteria for damage threshold are set to the MT and

Tau failure strain of 50 and 40%, respectively (Janmey et al.,

FIGURE 1
Depicting multiscale hierarchical structure of the brain tissue ranging frommacroscale tissue to microscale neuronal cells. (A) Cross-sectional
view of the brain tissue (gray and white matter) in the horizontal plane. (B) Reconstruction of the neocortex shows the heterogeneity posed by
neuronal cells and ECM (Kasthuri et al., 2015). (C) Anatomy of the neuronal cell (de Rooij et al., 2017). (D) SEM image shows how axially oriented MT
are cross-linkedwith the Tau. (C) A cross-sectional view of the transverse plane shows the hexagonal orientation of MT. (C–E) are adapted from
(Chen et al., 1992)).
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1991)– (Wegmann et al., 2011). Based on the previous studies, we

have varied the strain rate from 10/s to 50/s with a 10/s increment

in the direction of MT orientation (Elkin and Morrison,

2007)– (Morrison et al., 2003). The corresponding volume-

averaged failure stress and strain of the axonal cytoskeletal

core have been calculated and summarized.

Material and geometric properties of
axon

We have taken a bottom-up approach from the multiscale

point of view to develop the axon’s representative volume

element (RVE) and characterize the mechanical properties. In

doing so, we have modeled the detailed cytoskeletal components

of the axon. The long stem-like part of the neuronal cell is the

axon, and the main mechanical property is due to its

microstructural components. Microtubules (MT) are the

primary cytoskeletal component from which significant

rigidity is contributed (Ouyang et al., 2013). Axially oriented

MTs are cross-linked by the tau protein (Tau) of viscoelastic

nature. The time-dependent viscoelastic nature of the axon is

generally coming from the Tau. Figures 1C–E shows the detail of

the microstructural components and their orientation.

The cross-sectional view of the axon indicates that the MTs

are oriented in a hexagonal array, and most axonal

microstructure studies model the MT bundle as such. Figures

2A,B shows how the MT bundles are cross-linked with Tau.

Just like any other microstructure of biomaterials, axonal

microstructural parameters vary within a wide range. Figure 2C

shows the geometric definition we have used as parameters.

Table 1 summarizes those parameters and refers to the

literature. The length of the MTs (2L) is between 1 and

10 μm with discontinuity within 80% of the center of the

length. The inner (RIMT) and the outer (ROMT) radii of the

MT are 7 and 12.5 nm, respectively. The Young’s modulus of

MT (EMT) varies between 1.5 and 1.9 GPa. The spacing

between two MTs (dMT) are within 20–38 nm. MT fails at

50% strain (ϵMT).

The Tau protein, on the other hand, shows viscoelastic

mechanical behavior and is usually modeled as the Kelvin-

Voigt model. The radius of Tau (Rtau) varied between 4 and

10 nm. The Young’s modulus of Tau (Etau) is 5 MPa and the

retardation time (τtau � μtau/Etau) is 0.35 s. Therefore, the Tau

FIGURE 2
(A,B) Axonal microstructural model for analysis (adapted from (Wu et al., 2019)). (C)Geometric properties of the MT-Tau cross-linked network.

TABLE 1 Material and geometric properties of the cytoskeletal components.

Parameters Quantity Value References

ROMT MT Outer Radius 12.5 nm Pampaloni et al. (2006)

RIMT MT Inner Radius 7 nm Pampaloni et al. (2006)

EMT MT Young’s Modulus 1.5–1.9 GPa Soheilypour et al. (2015)

dMT End-to-End MT Spacing 20–38 nm Rosenberg et al. (2008)

Rtau Tau Radius 4–10 nm Spillantini and Goedert, (1998)

Etau Tau Young’s Modulus (for KV model) 5 MPa (Soheilypour et al., 2015), (Peter and Mofrad, 2012b)

τtau Tau Retardation Time (for KV model) 0.35 s (Ahmadzadeh et al., 2014), (Wegmann et al., 2011)

dtau Tau-Tau Spacing 20–40 nm Hirokawa et al. (1988)

2L MT Length 1–10 μm (Pampaloni et al., 2006), (Yu and Baas, 1994)

ϵMT MT Failure Strain 50% (Janmey et al., 1991)– (Sarangapani et al., 2013)

ϵtau Tau Failure Strain 40% Wegmann et al. (2011)

Gmatrix Matrix Shear Modulus 552.63 Pa Ouyang et al. (2013)
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viscosity is measured to be μtau � 1.75MPa.s. The spacing of Tau

(dtau) is within 20–40 nm. Tau failure strain (ϵtau) is 40%.

As mentioned, the available material data for Tau protein

is for the Kelvin-Voigt (KV) model. However, we have used

ANSYS Mechanical for the viscoelastic characterization, and

ANSYS only accepts viscoelastic parameters for General

Maxwell (GM) model (Citation: “Ansys® Academic

Research Mechanical, Release 18.1, Help System, Ansys

APDL Theory Guide, ANSYS, Inc.”). Another challenge is

that the relaxation modulus must be input for shear and bulk

modulus. Therefore, we have first estimated the GM

parameters for Young’s modulus by fitting creep responses

of KV and GM. Then Alfrey’s correspondence principle was

utilized to evaluate the shear relaxation parameters

for Tau. Figure 3A shows the two steps of finding the

parameters.

The constitutive relation between the stress (σ) and strain (ϵ)
for KV and 3-parameter GM model is given below,

KV: σ � Etauϵ + μtau _ϵ (1)
GM: σ + μ1tau

E1tau
_σ � E∞tauϵ + μ1tau(E∞tau + E1tau)

E1tau
_ϵ (2)

Eqs 1, 2 are solved for creep loading (σ ≠ 0 and _σ � 0) by

setting Etau � E∞tau and μtau � μ1tau. Figure 3B shows the fit by

increasing E1tau. From the analysis, the best fit is considered for

E1tau � 100Etau. The viscoelastic Young’s modulus relaxation

function for the 3-parameter GM is then,

E(t)tau � E∞tau + E1tau exp ( − t

τ1tau
) (3)

Where t is the time and the relaxation time for the Maxwell

element is τ1tau � μ1tau/E1tau � 3.5ms.

Once we have estimated the values of the 3-parameter GM

model for Young’s modulus, we determined the shear modulus

values. Alfrey’s correspondence principle states that the

viscoelastic modulus is related to the Hookean linear elastic

material in the frequency domain (Brinson and Brinson,

2008). In the linear elastic theory, the shear modulus and

Young’s modulus is related by,

G � E

2(1 + ]) (4)

In the above equation, G, E, and ] are shear modulus,

Young’s modulus, and Poisson’s ratio in the linear elastic

domain, respectively. In the frequency domain, Eq. 4 is,

�G
p(s) � �E

p(s)
2(1 + �]p(s)) (5)

FIGURE 3
(A) Procedure of defining the Tau properties for ANSYS. (B) Creep response fit of 3-parameter General Maxwell to Kelvin-Voigt.
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Where,s � a + ib, isacomplexfunction.InEq.5,thefrequencydomain

representationof theshear,Young’s, andPoisson’s ratio is related to the

time domain representation via the Laplace transformation.

�E
p(s) � s∫∞

0
e−stE(t)taudt

�G
p(s) � s∫∞

0
e−stG(t)taudt (6)

�]p(s) � s∫∞

0
e−st](t)taudt

Considering constant Poisson’s ratio for Tau, ](t)tau � 0.33

and using Eq. 3, we can substitute Eq. 6 into Eq. 5 to solve the

shear relaxation function. The expression for the shear relaxation

modulus for Tau is as given below,

G(t)tau � G∞tau + G1tau exp ( − t

τ1tau
) (7)

Where long term shear modulus,G(∞)tau � G∞tau � 1.87MPa,

G1tau � 187.97MPa and τ1tau � 3.5ms. The short-term shear

modulus is defined as, G(0)tau � G0tau � G∞tau + G1tau �
189.83MPa.

Finally, the matrix is modeled as compressible Neo-Hookean

material. The strain energy density function is given as,

W � Gmatrix

2
(I1 − 3) + 1

d
(J − 1)2 (8)

Where,Gmatrix is initial shear modulus, I1 is first deviatoric strain

invariant, d � 2/Kmatrix is materials incompressibility parameter

and J is determinant of the deformation gradient (Inc., 2021).

The effective properties of the matrix come from the combined

effect of microfilaments and neurofilaments. Nocodazole is used to

disrupt theMT network, and the effective Young’s modulus of axon

due to the intact structure of microfilaments and neurofilaments is

1.47 kPa (Ouyang et al., 2013). Considering effective Poisson’s

ratio of the axon to be 0.33, the initial shear modulus (Gmatrix)
and bulk modulus (Kmatrix) are input as 0.55 and 1.44 kPa,

respectively.

Composite RVE modeling

The composite RVE of the axon is prepared for the finite

element (FEM) micromechanical model. 4 RVEs are modeled by

varying the geometric properties. The base RVE is called the RVE-1,

and it is modeled for RIMT � 7nm, ROMT � 12.5nm, Rtau � 4nm,

dMT � 20nm, dtau � 40nm and L � 0.5μm (Figure 4). The

estimated volume fraction of MT (αMT) and Tau (αtau) are

0.185 and 0.036, respectively, for the RVE-1. Keeping all other

parameters fixed, Rtau, dtau and dMT are parametrized for RVE-2,

RVE-3, and RVE-4, respectively, and the details are summarized in

Table 2.

Linear viscoelastic theory

To fully characterize the viscoelastic material properties of

the axon, we have conducted relaxation tests. The relaxation test

is defined as the time response of the stress as the strain remains

constant. Since the viscoelastic material response is a

combination of both viscous and elastic behaviors, the time-

dependent stress is a function of the strain and time as,

σ � f(, t) (9)

Hereditary integral is used to represent the constitutive

relation between the stress and strain under small

deformation assumption as,

FIGURE 4
(A) Base RVE (RVE-1) for MT and Tau volume fractions of 0.185 and 0.036, respectively. MT is oriented in direction 3. (B) MT-Tau crosslinked
network is shown with matrix hidden. (C) The unit cell of hexagonal array of MT is shown on the 1-2 plane.

TABLE 2 RVE parameters.

# RVE Varying
parameter and value

αMT αtau

RVE-1 - 0.185 0.036

RVE-2 Rtau � 6nm 0.185 0.085

RVE-3 dtau � 20nm 0.185 0.071

RVE-4 dMT � 38nm 0.094 0.036
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σ ij � ∫t

0
Cijkl(t − τ) dϵkl(τ)

dτ
dτ i, j, k, l � 1, 2, 3 (10)

In the above equation, τ is a dummy variable and Cijkl(t) is
the relaxation modulus. In the Voigt vector form, Eq. 10 can be

represented as (Naik et al., 2008),

σ11(t)
σ22(t)
σ33(t)
σ23(t)
σ13(t)
σ12(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
� ∫t

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133

C2211 C1122 C1133

C3311

C2311

C1311

C1211

C3322

C2322

C1322

C1222

C3333

C2333

C1333

C1233

C1123 C1113 C1112

C2223 C2213 C2212

C3323

C2323

C1323

C1223

C3313

C2313

C1313

C1213

C3312

C2312

C1312

C1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dϵ11(τ)/dτ
dϵ22(τ)/dτ
dϵ33(τ)/dτ
dϵ23(τ)/dτ
dϵ13(τ)/dτ
dϵ12(τ)/dτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
dτ

(11)

For an anisotropic material Cijkl(t) is a 6 × 6 matrix of the

relaxation moduli. However, for different material symmetry, the

number of the independent relaxation function could vary between

2 and 21. For the axon microstructure, we have three orthogonal

planes of symmetry, and therefore the number of the independent

relaxation functionreduced to9. InVoigtnotation, theyaregivenas,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1(t)
σ2(t)
σ3(t)
σ4(t)
σ5(t)
σ6(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�∫t

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13

C21 C22 C23

C31

0
0

0

C32

0
0

0

C33

0
0

0

0 0 0

0 0 0
0

C44

0

0

0

0
C55

0

0

0
0

C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dϵ1(τ)/dτ
dϵ2(τ)/dτ
dϵ3(τ)/dτ
dϵ4(τ)/dτ
dϵ5(τ)/dτ
dϵ6(τ)/dτ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
dτ

(12)

Due to the tensor symmetry, 9 independent relaxation

functions are, C11, C22, C33, C44, C55, C66, C12 � C21,

C13 � C31, and C23 � C32. Each of these relaxation functions

can be expressed in terms of the Prony series for the General

Maxwell model (Figure 5A) given as (Tzikang and Chen, 2000),

Cij(t) � Cij0
⎛⎝1 −∑n

k�1
hijk(1 − e−t/τijk)⎞⎠ (13)

Where.

The coefficients are defined as, hijk � Cijk/Cij0

The relaxation time for each Maxwell element

is, τijk � Cijk/μijk
And the short time modulus is related to the long-term

modulus as, Cij0 = Cij∞ +∑n
k�1Cijk with the subscript k refers to

the kth Maxwell element (see Figure 5A).

Figures 5B,C show a typical relaxation loading condition.

Ideally, the strain needed to be step-increased and kept constant

for enough long time for the stress to relax. However, in practice,

this is not possible; rather, strain is increased in a short period of

time until t1 and then kept constant for stress to relax until t2.

After that, the strain is reduced to zero at t3 and the simulation is

continued till t4 to capture the asymptotic value of the relaxed

stress. Therefore, the loading function is given as,

ϵj(t) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϵ*jt/(t1 − t0) for t0 < t≤ t1
ϵ*j for t1 < t≤ t2

−ϵ*jt/(t3 − t2) for t2 < t≤ t3
0 for t3 < t≤ t4

(14)

dϵj(t)
dt

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϵ*j/(t1 − t0) for t0 < t≤ t1
0 for t1 < t≤ t2

−ϵ*j/(t3 − t2) for t2 < t≤ t3
0 for t3 < t≤ t4

(15)

In the above two equations j � 1, 2, 3, 4, 5, 6. Total 6 loading

cases are required to fully characterize 9 Cij(t) of Eq. 12. The
simulated data is then used to estimate the volume-averaged

time-dependent stress and strain for each time-step for each

loading case. The volume-averaged stress and strain is defined as,

σ i(t) � 1
VRVE

∫
V
[σ i(t)]ρdVρ (16)

FIGURE 5
(A) General Maxwell viscoelastic model. Typical relaxation test: (B) time history of volume-averaged strain and (C) stress response.
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ϵj(t) � 1
VRVE

∫
V
[ϵj(t)]ρdVρ (17)

Where, VRVE is the volume of the RVE. In the above two

equations, the [σ i(t)]ρ , [ϵj(t)]ρ and dVρ are the stress, strain,

and volume, respectively, of the ρth -element (i.e., mesh element)

of the finite element model. For every time step, the

instantaneous volume averaged stress-strain constitutive

relation is then used to estimate the relaxation function from

Eq. 18,

σ i � ∫t

0
Cij(t − τ)dϵj(τ)

dτ
dτ i, j � 1, 2, 3, 4, 5, 6 (18)

Once the relaxation function is realized, then a nonlinear

regression analysis is done to curve fit the coefficients of Eq. 13.

For n number ofMaxwell elements (spring and damper in series),

total 2n + 1 coefficients are needed to fit (see Figure 5A).

Load cases

As discussed in the previous section, 6 load cases are required for

complete viscoelastic material characterization of the axon RVE.

Figures 5B,C show a typical loading function and for all cases, t1, t2,

t3 and t4 are 3ms, 12ms, 15ms, and 40ms, respectively. Figure 6

shows the deformation boundary condition for the individual load

case.We have adopted the composite RVE analysis proposed by Sun

et al. (1996) (Sun and Vaidya, 1996b). The first three load cases are

for axial loading, while the last three cases impose shear deformation.

Load Case 1, 2 and 3
For the first three load cases, the face at x3 � 0 was defined as

the symmetric region with displacement boundary condition

defined as,

face, x3 � 0 w(x1, x2, 0) � 0 (19)

In the above equation, x1, x2 and x3 are principal

coordinates, and u, v, and w are displacements, respectively,

in the three principal coordinates shown in Figure 6. The

displacement boundary conditions for the other five faces for

the first three load cases are,

Load Case 1

face, x1 � 0 u(0, x2, x3) � 0

face, x1 � a1 u(a1, x2, x3) � δ1(t)

FIGURE 6
6 load cases for the viscoelastic characterization.
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face, x2 � 0 v(x1, 0, x3) � 0 (20)
face, x2 � a2 v(x1, a2, x3) � 0

face, x3 � a3 w(x1, x2, a3) � 0

Load Case 2

face, x1 � 0 u(0, x2, x3) � 0

face, x1 � a1 u(a1, x2, x3) � 0

face, x2 � 0 v(x1, 0, x3) � 0 (21)
face, x2 � a2 v(x1, a2, x3) � δ2(t)
face, x3 � a3 w(x1, x2, a3) � 0

Load Case 3

face, x1 � 0 u(0, x2, x3) � 0

face, x1 � a1 u(a1, x2, x3) � 0

face, x2 � 0 v(x1, 0, x3) � 0 (22)
face, x2 � a2 v(x1, a2, x3) � 0

face, x3 � a3 w(x1, x2, a3) � δ3(t)

Load Case 4,5 and 6
Three shearing deformation is implemented as.

Load Case 4

face, x1 � 0 u(0, x2, x3) � 0
face, x1 � a1 u(a1, x2, x3) � 0

face, x2 � 0
v(x1, 0, x3) � 0
w(x1, 0, x3) � 0

face, x2 � a2
v(x1, a2, x3) � 0

w(x1, a2, x3) � δ4(t)

(23)

Load Case 5

face, x1 � 0
u(0, x2, x3) � 0
w(0, x2, x3) � 0

face, x1 � a1
u(a1, x2, x3) � 0

w(a1, x2, x3) � δ5(t)
face, x2 � 0 v(x1, 0, x3) � 0
face, x2 � a2 v(x1, a2, x3) � 0

(24)

Load Case 6

face, x1 � 0
u(0, x2, x3) � 0
v(0, x2, x3) � 0

face, x1 � a1
u(a1, x2, x3) � 0

v(a1, x2, x3) � δ6(t)
face, x3 � 0 w(x1, x2, 0) � 0
face, x3 � a3 w(x1, x2, a3) � 0

(25)

Prony series fit to the time-dependent
strain

Once we have the simulation data for the volume-

averaged stress and strain (Eqs 16, 17) for different load

cases, we can utilize a formulation that can be used to fit the

Prony series parameters given in Eq. 13. The hereditary

integral in Eq. 18 will be used by

substituting the strain function (Eqs 14, 15) and the Prony

kernel (Eq. 13).

Mathematical formulation
For the multiple loading process, the hereditary integral

is done for the four steps of loading

shown in Figures 5B,C. Considering ϵ0 � ϵ(0) � 0 and t0 � 0

we can derive the formulation in four steps as, Step 1: 0< t≤ t1

σ i(t) � ϵ0Cij(t) + ∫t

0
Cij(t − τ) dϵj(τ)

dτ
dτ

� Cij0ϵ*i
t1

⎡⎣t −∑n
k�1

hijkt +∑n
k�1

hijkτ ijk −∑n
k�1

hijkτ ijke
−t/τijk⎤⎦ (26)

Step 2: t1 < t≤ t2

σ i(t) � ϵ0Cij(t) + ∫t1−

0
Cij(t − τ) dϵj(τ)

dτ
dτ

+ ∫t

t1+
Cij(t − τ) dϵj(τ)

dτ
dτ

� Cij0ϵ*i
t1

⎡⎣t1 −∑n
k�1

hijkt1 +∑n
k�1

hijkτ ijke
−(t−t1)/τij k −∑n

k�1
hijkτ ijke

−t/τij k⎤⎦ (27)

Step 3: t2 < t≤ t3

σ i(t) � ϵ0Cij(t) + ∫t1−

0
Cij(t − τ) dϵj(τ)

dτ
dτ

+ ∫t2−

t1+
Cij(t − τ) dϵj(τ)

dτ
dτ + ∫t

t2+
Cij(t − τ)dϵj(τ)

dτ
dτ

� Cij0ϵ
*
i

t1
⎡⎣t1 −∑n

k�1
hijkt1 +∑n

k�1
hijkτijke

−(t−t1)/τijk −∑n
k�1

hijkτ ijke
−t/τijk⎤⎦

− Cij0ϵ
*
i

(t3 − t2)
⎡⎣t −∑n

k�1
hijkt +∑n

k�1
hijkτijk − t2 +∑n

k�1
hijkt2

−∑n
k�1

hijkτijke
−(t−t2)/τijk⎤⎦

(28)

Step 4: t3 < t≤ t4

σ i(t) � ϵ0Cij(t) + ∫t1−

0
Cij(t − τ) dϵj(τ)

dτ
dτ

+ ∫t2−

t1+
Cij(t − τ) dϵj(τ)

dτ
dτ + ∫t3−

t2+
Cij(t − τ)dϵj(τ)

dτ
dτ

+ ∫t

t3+
Cij(t − τ) dϵj(τ)

dτ
dτ

� Cij0ϵ
*
i

t1
⎡⎣t1 −∑n

k�1
hijkt1 +∑n

k�1
hijkτijke

−(t−t1)/τij k −∑n
k�1

hijkτijke
−t/τij k⎤⎦

− Cij0ϵ
*
i

(t3 − t2)
⎡⎣t3 −∑n

k�1
hijkt3 +∑n

k�1
hijkτijke

−(t−t3)/τijk − t2 +∑n
k�1

hijkt2

−∑n
k�1

hijkτ ijke
−(t−t2)/τij k⎤⎦ (29)
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We have found that n � 2 (two Mx elements in Figure 5A)

can provide a good fit to the data, hence total (2n + 1 �) 5
parameters (Cij0, hij1, hij2, τij1 and τij2) are reported for each

relaxation function (Cij(t)).

Nonlinear regression for the curve fitting
The Prony series coefficients defined in Eqs 26–29 will

be estimated using the nonlinear regressionmethod. TheMarquardt-

Levenberg method has been implemented for the data fit (Press

et al., 1989). The error function (χ2) is minimized for unknown

constant coefficients (C) in every iteration and given as (Gavin,

2019b),

χ(C)2 � ∑Nd

i�1
[yi − y(xi;C)

σSDi
]2

(30)

Where, Nd is the number of data points, the simulated stress,

and strain data points are yi and xi, respectively. Function

y(xi;C) is given by Eqs 26–29 for coefficient vector,

C � {Cij0, hij1, hij2, τij1, τij2}T. For the ith data point the

FIGURE 7
Contour plot of the element normal stress in direction 1 ([σ1(t)]ρ from Eq. 16).C11(t) estimation for the RVE-1 with EMT � 1.5GPa by imposing the
load case 1. (A) t1 � 3ms, δ1(t1) � 3nm (B) t2 � 12ms, δ1(t2) � 3nm (C) t3 � 15ms, δ1(t3) � 0nm (D) t4 � 40ms, δ1(t4) � 0nm. (E) Nonlinear regression
data fit with 99% confidence interval (c.i.) is shown for volume averaged normal stress in direction 1 for RVE-1, EMT � 1.5GPa for load case 1. (F)
Comparison of C11(t) for different RVEs.
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FIGURE 8
Contour plot of the element normal stress in direction 2 ([σ2(t)]ρ from Eq. 16). C12(t) and C22(t) estimation for the RVE-1 with EMT � 1.5GPa by
imposing the load case 2. (A) t1 � 3ms, δ2(t1) � 3nm (B) t2 � 12ms, δ2(t2) � 3nm (C) t3 � 15ms, δ2(t3) � 0nm (D) t4 � 40ms, δ2(t4) � 0nm.

FIGURE 9
Contour plot of the element normal stress in direction 3 ([σ3(t)]ρ from Eq. 16). C13(t), C23(t) and C33(t) estimation for the RVE-1 with EMT �
1.5GPa by imposing the load case 3. (A) t1 � 3ms, δ3(t1) � 3nm (B) t2 � 12ms, δ3(t2) � 3nm (C) t3 � 15ms, δ3(t3) � 0nm (D) t4 � 40ms, δ3(t4) � 0nm.
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standard deviation is given by σSDi. Initial values of vector C

are defined first, and then at each iteration the χ(C)2 is

minimized. An improved C is estimated until χ(C)2 reaches

a minimum and does not change. The thermodynamic

constraint for each coefficient is defined as (Tzikang and

Chen, 2000),

Cij0 > 0, hijk≥ 0,∑ hijk≤ 1 and τ ijk≥ 0 (31)

Results and discussion

Viscoelastic characterization of axon

A total of 30 simulations have been carried out for 4 different

RVEs. In the first 6 simulations, the Young’s Modulus of MT is

set to 1.5 GPa and then increased to 1.9 GPa for another set of

6 simulations with RVE-1. Then rest of the 18 simulations are

performed for three RVEs (RVE-2, RVE-3, and RVE-4) with

FIGURE 10
(A) Nonlinear regression data fit with 99% confidence interval (c.i.) is shown for volume averaged normal stress in direction 1 for RVE-1,
EMT � 1.5GPa for load case 2. (B)Comparison ofC12(t) for different RVEs. (C)Nonlinear regression data fit with 99% confidence interval (c.i.) is shown
for volume averaged normal stress in direction 2 for RVE-1, EMT � 1.5GPa for load case 2. (D) Comparison of C22(t) for different RVEs.
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FIGURE 11
(A) Nonlinear regression data fit with 99% confidence interval (c.i.) is shown for volume averaged normal stress in direction 1 for RVE-1,
EMT � 1.5GPa for load case 3. (B)Comparison ofC13(t) for different RVEs. (C)Nonlinear regression data fit with 99% confidence interval (c.i.) is shown
for volume averaged normal stress in direction 2 for RVE-1, EMT � 1.5GPa for load case 3. (D) Comparison of C23(t) for different RVEs. (E) Nonlinear
regression data fit with 99% confidence interval (c.i.) is shown for volume averaged normal stress in direction 3 for RVE-1, EMT � 1.5GPa for load
case 3. (F) Comparison of C33(t) for different RVEs.
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EMT � 1.5GPa. Results from a total of 30 simulations are

discussed here.

Load case 1, 2 and 3
The coefficients of the Prony series for the relaxation

function C11(t) are estimated from load case 1 for the

different RVEs. C12(t) and C22(t) are estimated from load

case 2 while C13(t), C23(t) and C33(t) are estimated using

load case 3. Representative contour plots of elemental stress

for the three load cases are given in Figures 7, 8, 9. In those

figures, we have shown plots for RVE-1 with EMT � 1.5GPa.

Nonlinear regression data fit for the Prony series coefficients

using the volume-averaged stress from FEM simulations and Eqs

26–29 are shown in Figures 7E, 10A,C, 11A,C,E for load case 1 to

3, respectively. In those figures, DataFEM and DataFit corresponds

to yi and y(xi;C) in Eq. 30, respectively. Figures 7F, 10B,D,

11B,D,F show the comparison ofCij(t) for different RVEs for the
first three cases.

Since the orientation of the MT is in direction 3, Young’s

modulus of MT has no significant effects on the relaxation

functions in the transverse plane (C11(t), C12(t), C22(t),
C13(t) andC23(t)). Increasing Young’s modulus of MT

showed increased short-term relaxation modulus in the

direction 3 (C330). The increasing Young’s modulus does not

affect the relaxation time for C33(t) as well.
The volume fraction of Tau (αtau) is increased in RVE-2 and

RVE-3 while the volume fraction of MT (αMT) is kept constant as

the base RVE (i.e., RVE-1). In RVE-2, we increased the αtau by

increasing the Tau radius to 6 nm, while in RVE-3, we increased

the Tau density by reducing the Tau spacing to 20 nm. In the first

three load cases, increasing αtau has shown increased short-term

relaxation modulus (Cij0) for all relaxation functions (Cij(t)).
There is no effect on the relaxation time except for C33(t)
where RVE-2 showed a longer relaxation time compared to

RVE-3.

In RVE-4, the αMT is reduced by increasing the end-to-end

distance between the MTs to 38 nm and αtau is kept constant to

the value of base RVE-1. Again, the effect of the αMT is

insignificant in the transverse plan as expected. However,

decreasing αMT has the most interesting effect on the

C33(t) as the short-term relaxation modulus (C330) is

almost reduced to half, and the relaxation time is the

fastest compared to other RVEs. Overall, the stiffness of the

axon in direction 3 is 5–7 times higher than the stiffness in

directions 1 and 2. The Prony series coefficients are tabulated

in Table 3 with the mean and standard error associated with

the 5 observations (2 for RVE-1 and 3 for RVE-2, RVE-3, and

RVE-4).

Load case 4, 5 and 6
The shear relaxation functions are estimated using load

cases 4, 5, and 6. Figures 12–14 show the elemental shear stress

contour plots for the mentioned load cases on the RVE-1.

Nonlinear regression data fit shown in Figures 12E, 13E, 14E,

while the comparison of the relaxation function is shown in

Figures 12F, 13F, 14F, respectively. Young’s modulus of MT

has no significant effects on the shear relaxation functions. As

we have seen earlier, the increasing volume fraction of Tau

increases the short-term modulus in RVE-2 and RVE-3,

respectively. Similarly, decreasing volume fraction of MT

showed lower short-term modulus and short relaxation

time. From Table 3, it is evident that shearing relaxation

functions (C44(t), C55(t) and C66(t)) have lower stiffness

compared to the normal relaxation functions (C11(t), C22(t)
and C33(t)). This is reflected as well in the macroscale modulus

of the brain tissue. The bulk modulus of white matter and gray

matter is in the Gigapascal range (~2 GPa), while the short-

term shear modulus is in the kilopascal range (~40 kPa)

(Zhang et al., 2004).

In Table 3, we have summarized the mean value of the

Prony series coefficients for all 5 observations along with the

standard error defined as σ  
N

√ where σ is the standard deviation

and N is the number of observations. To the best of our

knowledge, this is the first attempt to fully characterize the

TABLE 3 Prony series coefficients for all Cij(t).

Cij(t) Cij0 [kPa] hij1 hij2 τij1[ms] τij2 [ms]

C11 389.60± 47.90 0.43± 0.02 0.55± 0.02 4.54± 0.40 5.66± 0.40

C12 133.09 ±16.48 0.35± 0.05 0.65± 0.05 4.63± 0.14 4.64± 0.15

C22 383.44± 49.03 0.31± 0.01 0.68± 0.01 3.32± 0.05 6.01± 0.24

C13 87.68± 4.40 0.41± 0.05 0.59± 0.05 7.02± 0.46 7.06± 0.43

C23 67.27± 9.58 0.43± 0.03 0.57± 0.03 5.37± 0.15 5.27± 0.25

C33 1601.38± 209.24 0.19± 0.07 0.75± 0.06 19.27± 5.08 23.84 ±7.49

C44 68.68±16.85 0.22± 0.07 0.76± 0.07 7.70± 0.95 4.77±0.23

C55 48.46± 13.35 0.18± 0.07 0.80± 0.07 8.80± 0.68 4.74±0.19

C66 80.55± 5.20 0.36± 0.04 0.62± 0.04 5.91± 0.51 9.29± 1.18
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viscoelastic responses of the axon cytoskeletal network.

Therefore, there is no data available to validate or compare

the values tabulated in Table 3 directly. However, there were

numerous attempts to estimate the mechanical properties of

axons. In Figure 15A, we have drawn the cross-sectional

organization of the axon in the transverse plane (e.g.,

directions 1 and 2). The red outer layer is the myelin

sheath, an extension of the lipid bilayer of the

oligodendrocytes in the central nervous system (CNS) or

the Schwann cells in the peripheral nervous system (PNS).

The myelin sheath is typical of the white matter tissue region

and does not exist in the gray matter region. The bulk

modulus (Kms) and the Poisson’s ratio (]ms) of the lipid

bilayer are 54MPa and 0.11 ~ 0.44, respectively (Jadidi

et al., 2014), (Ayton et al., 2002). The radius of the axon

fiber (with myelin sheath) is defined as Rms. Virtually it is

FIGURE 12
Contour plot of the element shear stress in directions 2 and 3 ([σ4(t)]ρ from Eq. 16). C44(t) estimation for the RVE-1 with EMT � 1.5GPa by
imposing the load case 4. (A) t1 � 3ms, δ4(t1) � 3nm (B) t2 � 12ms, δ4(t2) � 3nm (C) t3 � 15ms, δ4(t3) � 0nm (D) t4 � 40ms, δ4(t4) � 0nm. (E)
Nonlinear regression data fit with 99% confidence interval (c.i.) is shown for volume averaged shear stress in directions 2 and 3 for RVE-1, EMT �
1.5GPa for load case 4. (F) Comparison of C44(t) for different RVEs.
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challenging to separate the outer layer of the myelin sheath as

sheaths from neighboring axons packed together (Lee et al.,

2019). Several studies have shown that the g-ratio, defined as

the ratio between the axon radius (Ra) and sheath radius

(Rms), varied between 0.5 and 0.7 (Lee et al., 2019), (Duval

et al., 2019). Just beneath the myelin sheath, there is an axon

membrane skeleton made of Actin rings connected by

Spectrin tetramers with the thickness (tm) of 10 nm (Zhang

et al., 2017), (Xu et al., 1979). The inner-axonal space (IAS) is

shown with the yellow shaded area in Figure 15A, with the

radius of the IAS defined as Ra. In the pyramidal neurons, the

cytoskeletal network of MT and Tau is located far from the

axon membrane, and hence we defined two inner regions and

separated them with the black dotted circle of radius Rc. The

thickness (Ra − Rc) of the inner region 1 can typically extend

up to 200 nm (Peters et al., 1968), (Leterrier, 2016). Since both

Rms and Rc are directly related to the Ra by g-ratio and axon

inner region thickness, respectively, we can estimate their

FIGURE 13
Contour plot of the element shear stress in directions 1 and 3 ([σ5(t)]ρ from Eq. 16). C55(t) estimation for the RVE-1 with EMT � 1.5GPa by
imposing the load case 5. (A) t1 � 3ms, δ5(t1) � 3nm (B) t2 � 12ms, δ5(t2) � 3nm (C) t3 � 15ms, δ5(t3) � 0nm (D) t4 � 40ms, δ5(t4) � 0nm. (E)
Nonlinear regression data fit with 99% confidence interval (c.i.) is shown for volume averaged shear stress in directions 1 and 3 for RVE-1, EMT �
1.5GPa for load case 5. (F) Comparison of C55(t) for different RVEs.
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values by carefully choosing the axon radius (Ra). Ouyang et al.

(2013) used atomic force microscopy (AFM) to characterize the

transverse elastic modulus (e.g., E1 or E2) of the unmyelinated

axon by separately disrupting the individual cytoskeletal

components (Ouyang et al., 2013). They reported axon

radius to be 0.5 µm and estimated the transverse elastic

modulus as E1 � E2 � 9.5 kPa. By disrupting the MTs using

Nocodazole, the axon elastic modulus was found Ei � 1.47 kPa

which is taken to be the modulus of the inner region 1. Zhang

et al. (2017) performed a coarse-grain molecular dynamic

simulation to study the stiffness of the axon membrane and

validated the result by AFM experiments (Zhang et al., 2017).

They also used an axon of radius 0.5 µm and reported the

stiffness of the membrane to be Em � 4.23 kPa. Therefore, we

have taken the radius of the axon Ra � 0.5 μm which gives the

volume fraction of the membrane, inner region

(Ra − Rc � 200 nm), and cytoskeletal region to be αm � 0.04,

αi � 0.60, and αc � 0.36, respectively, for the unmyelinated

FIGURE 14
Contour plot of the element shear stress in directions 1 and 2 ([σ6(t)]ρ from Eq. 16). C66(t) estimation for the RVE-1 with EMT � 1.5GPa by
imposing the load case 6. (A) t1 � 3ms, δ6(t1) � 3nm (B) t2 � 12ms, δ6(t2) � 3nm (C) t3 � 15ms, δ6(t3) � 0nm (D) t4 � 40ms, δ6(t4) � 0nm. (E)
Nonlinear regression data fit with 99% confidence interval (c.i.) is shown for volume averaged shear stress in directions 1 and 2 for RVE-1, EMT �
1.5GPa for load case 6. (F) Comparison of C66(t) for different RVEs.
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axon. We can use the inverse rule of mixture often termed as

the Reuss model to estimate the transverse elastic modulus of

the axon as (Clyne and Hull, 2019)

E1 � [αms

Ems
+ αm
Em

+ αi
Ei

+ αc
C110

]−1
(32)

For the unmyelinated axon (αms � 0) and myelinated axon

(g-ration is varied), the estimated E1 is plotted in Figure 15B and

compared with the experimental value by varying the αi. For the

volume fraction of the inner region 1 of αi � 0.145, the estimated

transverse modulus equals the experimental value, which is a

good estimation. In Equation (32), the elastic modulus of the

myelin sheath is defined as Ems � 3Kms(1 − 2]ms).

FIGURE 15
(A) Cross-sectional view of the axon microstructure. (B) The axon’s effective transverse elastic modulus is estimated using the inverse rule of
mixture based on the composite theory.

FIGURE 16
Contour plot of themaximumprincipal strain (elemental mean) for the strain rate of 5/sec, at (A) 2.5% strain, (B) 5% strain, (C) 7.5% strain, and (D)
10% strain (the matrix is hidden to show the strain on the Tau proteins).
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Damage Criteria of Axon Based on the
Cytoskeletal Component Failure

In the second part of this manuscript, we have studied the

axonal damage threshold based on the cytoskeletal component

failure for different loading rates. As mentioned earlier, the load

path of a mechanical insult extends from the tissue level to the

cellular level and finally to the cytoskeletal level. It is

experimentally verified that the maximum local strain in the

axon is about only 25% of the tissue level strain (Tamura et al.,

2007). This is perhaps due to the undulation of the neuronal

axons (Wright, 2012) and the heterogeneity of the cellular

microstructure (Montanino and Kleiven, 2018). In this

manuscript, we have directly evaluated the cellular level stress

and strain by calculating the volume-averaged stress and strain of

the RVEs and correlating the cytoskeletal failure as the damage

threshold criteria. We have considered the failure strain of the

MT and Tau as 50 and 40%, respectively (Janmey et al.,

1991)– (Wegmann et al., 2011). A total of 5 loading rates

have been introduced in the direction of the MT orientation

(direction 3). The strain rates are varied from 10/s to 50/s with a

10/s increment. A total of 25 simulations have been performed

for 5 RVE cases (e.g., RVE-1 with EMT � 1.5GPa, RVE-1 with

EMT � 1.9GPa, RVE-2, RVE-3, and RVE-4). In all simulations,

Tau reached its failure strain of 40% much earlier than the MT

achieved its 50% failure strain. Montanino et al. (2018) suggested

that MT failure strain was never achieved until the axonal strain

reached 25% which is significantly higher than the typical axon

failure criteria (Montanino and Kleiven, 2018). Similar results

were observed by Peter et al. (2012) who predicted cross-link

failure than MT failure (Peter and Mofrad, 2012a). As Tau are

oriented in the transverse plane (direction 1 and 2) and

perpendicular to the loading direction in their reference

configuration, we considered the elemental mean of the

maximum principal strain of the Tau elements in the FEM

model. A representative contour plot of the maximum

principal strain of the cytoskeletal components is given in

Figure 16. The Tau near the end of the MT showed the

maximum strain (see Figure 16D), which is also predicted in

(Ahmadzadeh et al., 2014), (Wu et al., 2018), (Wu et al., 2019).

In Figure 17A, we have plotted the strain vs. strain rate curve

for different RVEs. For the Base RVE (i.e., RVE-1 with

EMT � 1.5GPa) the failure strain varies between 6.6 and 8.1%,

which agrees well with the recent studies that identified the

neuronal failure due to Tau is 7.3% (Estrada et al., 2021). The

axon can fail much earlier as the MT’s stiffness increases to

1.9 GPa. However, decreasing the volume fraction of the MT

(i.e., RVE-4) showed the lowest stiffness (see Figure 11F) and

hence can stretch up to 8.9–10.6% of strain before the damage

initiated via Tau failure. The most interesting effect is observed

when the volume fraction of Tau is increased in RVE-2 and RVE-

3. As we have seen in Figure 11F, increasing αtau increased the

short-term stiffness in direction 3. This contradicts the plot in

Figure 17A, where we can see higher failure strain in RVE-2 and

FIGURE 17
Axon cytoskeletal damage evaluation by mapping damage threshold values for (A) axon volume averaged failure strain vs. strain rate, and (B)
axon volume averaged failure stress vs. axon volume averaged failure strain for different RVEs. 40% strain is taken as the failure strain of Tau, and
corresponding axonal stress and strain are plotted for different loading rates.
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RVE-3. This is due to the longer relaxation time observed while

αtau is increased in Figure 11F. The RVE can stretch more within

the time of the loading rates. It is also evident that as RVE-2

showed a longer relaxation time than RVE-3, it can sustain a

higher strain before it fails via Tau failure.

Finally, in Figure 17B, we have plotted the failure stress vs.

failure strain for different RVEs. In experimental observations,

both in-vitro and in-vivo, cellular level stress cannot be identified.

The current work can address this issue using the FEM analysis,

and the failure stress value can be used for further study in larger

FEM models. For the base RVE, the failure stress varies between

9.5 and 12.8 MPa as the strain rate increases. Increasing stiffness

of MT shows higher failure stress from 10.5 to 14.1 MPa while

decreasing αMT shows lower failure stress varied from 5 to

6.6 MPa. On the other hand, increasing αtau shows higher

failure stress from 13 to 19.8 MPa corresponds to higher

failure strain, as discussed earlier.

Conclusion

We have studied the cytoskeletal microstructure of the

neuronal axon and developed the RVE to characterize the

viscoelastic response. A total of six load cases are needed to

estimate nine independent relaxation moduli, and they are

summarized in the manuscript for further use in the axon

aggregate model. The short time modulus (Cij0) is maximum

in the longitudinal direction along with the MT orientation

(C33(t)). The effect of Young’s modulus of the MT is

insignificant in all relaxation moduli except C33(t), which is

increased as EMT is increased. The softest mode is found when

the volume fraction of MT is reduced, corresponding to the

shortest relaxation time. Increasing the volume fraction of Tau

increases the stiffness and shows a longer relaxation time.

In the second part, we have studied axon damage based on

the cytoskeletal component failure. The loading rate is varied

between 10/s to 50/s to be consistent with the previous studies.

The axon failure strain varies between 6.01 and 11.01%,

considering Tau fails at 40% strain. Due to the limitation of

achieving conversed FEM solution for the large deformations, all

simulations are carried out up to 12% strain of the RVEs for all

strain rates. We have not observed the MT reach its failure strain

of 50% in this range of stretch. However, Tau failure is a good

indication of the structural damage of the axon cytoskeleton,

which can lead to functional damage as well. A recent study

showed that axon failed at 7.3% strain via Tau failure when

subjected to the loading rate <100/s, which agrees well with the

results shown in this work (Estrada et al., 2021). The failure stress

is also estimated and varies between 5 and 19.8 MPa.

As mentioned earlier, previous studies based on neuronal

injury had identified both strain and strain rate threshold

values; however, Wright (2012) identified that it is difficult

to determine the combined effects of strain and strain rate from

the available literature (Wright, 2012). Not to mention that it is

also challenging to identify the stress level of the damaged axon

experimentally in-vitro and in-vivo. Therefore, this work can

address this issue by correlating the axon’s strain to strain rate

and the failure stress level at the cellular level, which can be

utilized in further studies of axon aggregates using FEMmodels.

However, we need to address that due to the lack of data related

to the Tau failure strain as a function of strain rate, we have used

a fixed failure strain of 40%. Other than that, the cross-linked

network of MT and Tau can also disintegrate by Tau

detachment due to phosphorylation. The interfacial strength

of Tau binding sites with MT is not included; instead, a perfect

bonded condition is used in the FEM study. This also leads to

higher stiffness along the MT direction. Other than the

structural damage of the cytoskeletal microstructure, there

are other forms of event that can lead to diffuse axonal

injury (DAI) due to a mechanical insult (Montanino et al.,

2021). Morphological damage due to the axonal swelling,

mechanoporation through the plasma membrane, and glial

cells damage can initiate a complex cascade of molecular

events that can further cause cytoskeletal damage, which is

also not investigated.
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