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Abstract

Meter is one of the core features of music perception. It is the cognitive grouping of regular

sound sequences, typically for every 2, 3, or 4 beats. Previous studies have suggested that

one can not only passively perceive the meter from acoustic cues such as loudness, pitch,

and duration of sound elements, but also actively perceive it by paying attention to isochro-

nous sound events without any acoustic cues. Studying the interaction of top-down and bot-

tom-up processing in meter perception leads to understanding the cognitive system’s ability

to perceive the entire structure of music. The present study aimed to demonstrate that

meter perception requires the top-down process (which maintains and switches attention

between cues) as well as the bottom-up process for discriminating acoustic cues. We cre-

ated a “biphasic” sound stimulus, which consists of successive tone sequences designed to

provide cues for both the triple and quadruple meters in different sound attributes, fre-

quency, and duration. Participants were asked to focus on either frequency or duration of

the stimulus, and to answer how they perceived meters on a five-point scale (ranged from

“strongly triple” to “strongly quadruple”). As a result, we found that participants perceived dif-

ferent meters by switching their attention to specific cues. This result adds evidence to the

idea that meter perception involves the interaction between top-down and bottom-up

processes.

Introduction

Meter is one of the core features of music. Meter perception is a hierarchical grouping of beats,

which regularly assigns subjective intensity to beats [1–6]. The most common meters include

the duple, triple, and quadruple meters. The duple meter (heard in marching music, for exam-

ple) has two beats, such as “s-w-s-w. . .” (s: strong/w: weak), while the triple meter (e.g.,

waltzes) has three beats “s-w-w-s-w-w-. . .”. The quadruple meter consists of four beats with

medium-strong (ms) beats “s-w-ms-w-s-w-ms-w. . .”. One can recognize these emphatic

(strong) beats, and thus sense the meter even if the sounds do not exhibit clear differences

among them in actual acoustics.
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Previous studies have suggested that meter perception consists of not only bottom-up pro-

cesses on acoustical cues but also of top-down attentional processes. We perceive beat strength

(also called “accent”) from acoustic features of the sound event (such as pitch, duration, and

loudness) and recognize the strongest beat as the first of its meter cycle [7–10]; i.e., higher, lon-

ger, or louder sound events tend to be perceived as the accented beats. Furthermore, we can

perceive meter by paying attention to isochronous beats without any physical accent [11–16].

Attending to rhythms without any body movements can modulate the motor area of the brain

[17–19], which suggests that the top-down process involves rhythm production.

Musical expertise appears to play an important role in the active processes of meter percep-

tion. Even non-musicians can perceive meter, but musicians can perceive it more accurately

and stably [11,20–23]. This active top-down process in meter perception has been conceptual-

ized as the dynamic attending theory of meter perception [24–26], which places great impor-

tance on the ability to predict the timing of future events based on past sound events. This

ability is especially important for extracting beat regularity, which requires an interaction

between top-down and bottom-up processes. Hence, this theory posits that the perceptual

strength of the beats reflects the allocation of attention.

Typical examples of the interaction between top-down and bottom-up processing can be

seen in figure-ground reversals within the auditory stream segregation of sound sequences.

Listeners can perceive sound series as multiple streams when their duration and frequencies

are in a certain range. The number of streams can be switched according to the interplay of

attention and acoustic features [27–30]. These studies on the interaction between top-down

and bottom-up processes motivated us to ask whether meter perception might also switch

depending on the attribute of sound events that one focuses on. Studying this interaction leads

to understanding the cognitive system’s capacity for perceiving the structure of music.

The present study aimed to assess the effect that switching one’s attentive focus between dif-

ferent acoustic features has on the perception of different meters, as well as its extent. To this

end, we used a novel sound stimulus that consisted of successive sound sequences. We named

it the ‘biphasic stimulus.’ By design, its purpose is to produce the perception of either a triple

or a quadruple meter depending upon which acoustical cues the listeners fixed their attention,

whether it was frequency or duration. We asked participants which of two meters they identi-

fied more strongly in the stimulus, in order to test whether they could perceive different meters

by switching the sound attributes they focused on. Additionally, we preliminarily assessed how

the switch of meter perception was modulated by stimulus acoustical parameters and partici-

pants’ experience to be exposed to the biphasic stimuli beforehand.

Methods

Participants

A total of 16 participants (6 males; 24.5 ± 3.8 years old) participated in the study. None of the

participants were professional musicians, though some participants had received musical prac-

tices as amateurs (10 participants, 7.4 ± 5.2 years). No participants reported a history of hear-

ing difficulty. All participants have signed written informed consent. The consent form and all

other experimental procedures were approved by the Ethics Review Committee on Experi-

mental Research with Human Subjects of the Graduate School of Arts and Sciences, The Uni-

versity of Tokyo, Japan (#580).

Note that a half of the participants had experienced the biphasic stimuli before the present

study. We classified participants into three groups to assess the effect of the prior experiences,

while we did not perform the statistical test on this ad hoc assessment. Eight participants lis-

tened to the stimuli for the first time in this study (labeled as ‘unexperienced’), but the other
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eight experienced the stimuli in the pilot experiment (‘experienced’; two participants) or in the

training where they tap along to the sound (‘trained’; six participants) before starting the cur-

rent experiment (Table 1). Details of the pilot experiment and the training were described in

later section.

Stimuli

We designed two types of stimuli with sound sequences consisting of various types of band-

limited noise bursts, and were designed to contain acoustical cues for two different meters (tri-

ple and quadruple) at the same time (Fig 1). One type of stimulus had a triple-meter cycle in

center frequencies of the noise bursts (high-low-low) and a quadruple cycle in their temporal

durations (long-short-short-short) (Fig 1A). Another type of stimulus had the opposite prop-

erty, in which triple and quadruple meters were assigned to durations and frequencies, respec-

tively (Fig 1B). In other words, we designed triple-frequency quadruple-duration stimulus and

triple-duration quadruple-frequency stimulus. The inter-onset interval (IOI) of noise bursts

was fixed at 300 ms.

We created five conditions by manipulating the difference in center frequency of the high

and low noises from the baseline frequency of 1500 Hz. These differences were 102, 128, 160,

200, and 250 Hz, respectively. Thus, the center frequency of high noise was 1580 Hz when the

frequency difference condition was 160 Hz (= 1500 + 160/2), while that of low noise was 1420

Hz (= 1500–160/2). We named these five frequency conditions by combining “F” with the

Table 1. Summary of participants’ information.

group n # male: female age (years old) # amateur musicians duration of practice as amateur (years)

unexperienced 8 3:5 24.6 ± 5.3 4 9.8 ± 5.8

experienced 2 1:1 25.5 ± 2.1 2 6.0 ± 5.7

trained 6 2:4 24.0 ± 1.3 4 5.8 ± 5.0

https://doi.org/10.1371/journal.pone.0256712.t001
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Fig 1. Schematic drawings of the biphasic meter stimuli. The stimuli consisted of various types of band-limited noise bursts. Inter-onset intervals

were fixed at 300 ms. A. One type of stimulus had triple-meter regularity in the center frequencies of the noise bursts (high-low-low) and a

quadruple cycle in their temporal durations (long-short-short-short). B. Another type of stimulus had the opposite property; triple and quadruple

meters were assigned to durations (long-short-short) and frequencies (high-low-low-low), respectively. C. Schematic spectrogram of the former

type of stimulus (shown in panel A) when the frequency difference is 160 Hz and the duration difference is 80 ms (F160-D80 condition). The

bandwidth was 120% of the center frequency.

https://doi.org/10.1371/journal.pone.0256712.g001
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digits for frequency difference (e.g., “F102” for the condition with 102 Hz of frequency

difference).

We also set five conditions by manipulating the difference in duration between long and

short bursts of noise from the baseline duration of 100 ms. The differences were 51, 64, 80,

100, and 125 ms. Therefore, when the difference was 80 ms, the duration of the long burst was

140 (100 + 80/2) ms, and that of the short burst was 60 (100–80/2) ms. Similar to frequency

conditions, the duration condition was labeled as a combination of “D” and duration differ-

ences in milliseconds (consequently, “D51” refers to a 51-ms difference condition).

Frequency and duration differences in our stimuli were in the range that participants

explicitly perceive them when these differences were presented respectively in the frequency or

duration domain. The discrimination threshold of the center frequency of the band noise is

known to be approximately 3–16 Hz when the center frequency is 2000 Hz [31], while the

minimum frequency difference in the present study was 102 Hz. On the duration difference,

the discrimination threshold has been reported as around 10 ms for a 100 ms noise-burst [32],

which is much shorter than our minimum duration difference of 51 ms.

The bandwidth of each noise burst was 120% of the center frequency, and the rise/decay

time was 10 ms. In total, we prepared 25 different stimuli (5 frequency × 5 duration condi-

tions) for each of the two types of the meter assignment (frequency-triple vs. duration-triple

type). Each stimulus consisted of 12 noise bursts, resulting in a total duration of 3.6 s.

Procedure

The task of participants was to evaluate how well they identified the quadruple meter in a stim-

ulus by pressing buttons corresponding to a five-point scale; 1: “strong triple”, 2: “triple rather

than quadruple”, 3: “neither triple nor quadruple”, 4: “quadruple rather than triple”, and 5:

“strong quadruple”. In one trial, we instructed a participant to focus on either frequency or

duration by showing the phrase “height difference” or “duration difference” on a PC monitor

for 0.8 s, and then we presented one stimulus twice successively. After collecting the response

from the participant, we presented the next trial immediately. One whole trial was around 10 s

in duration. We presented 100 trials (25 conditions × 2 types × 2 instructions) in random

order as one block, and we conducted six blocks per participant. There was a break between

blocks lasting at least five minutes.

The experiment was programmed and run with the use of Presentation 18.1 (Neurobeha-

vioral Systems, Inc., USA). Visual stimuli were presented on a 21-inch LCD monitor (EIZO

FlexScan L797; Eizo, Japan). The distance between the participant and the monitor was 80 cm.

Auditory stimuli were generated using MATLAB R2017a (MathWorks) and presented binau-

rally at approximately 70 dB SPL via external soundcard (UA-22, Roland, Japan) and ear-

phones (Earphone Insert, Compumedics Neuroscan Inc., USA). We instructed the

participants to perform the task without any synchronized body movements such as finger tap-

ping or head nodding. Immediately before starting the experiment, unexperienced participants

listened to stimuli of the F250 condition with no duration difference as well as of the D125

condition without any frequency differences in order to learn to identify differences of fre-

quency and duration in stimuli.

Participants’ prior experience

The experienced group (two participants) joined the pilot experiment before the present study.

We presented them with the biphasic stimuli: the frequency condition consisted of F100, F125,

F158, F200, and the duration condition included D50, D63, D79, D100. IOI for each noise

burst was 300 ms, and the bandwidth was fixed as 2000 Hz. The procedure was the same as the
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current study. We instructed which feature should be focused on (height or duration differ-

ence), then presented one stimulus. Participants rated how well they perceived the quadruple

meter in the presented stimulus using a scale of 1 (strong triple) to 5 (strong quadruple). The

participants rated the frequency-triple stimulus on day 1 and the duration-triple on day 2.

The trained group (six participants) practiced focusing attention on one acoustic cue (fre-

quency or duration) by listening to the stimulus and accompanying it with hand tapping. At

first, we presented them with a simple stimulus, which only differed in one feature. Then, we

presented stimuli that included an additional difference. Participants understood the differ-

ence in frequency through practice by listening and tapping along to the F250-D0 condition

first. Then, we presented them with stimuli of the F250-D51, F200-D64, and F160-D80 condi-

tions, in that order. They tapped along to the sound while paying attention to the frequency

difference; this helped them understand the meter [14,16,33,34]. If they reported that they

could fully pay attention to the frequency difference of one stimulus, we presented the next

stimulus. In the training of attention to the duration difference, we presented the participants

with F0-D125, F102-D125, F125-D100, and F160-D80 conditions, in that order. The training

took between 30 minutes to an hour, depending on the participant.

Analysis

To assess whether the participants perceived different meters by switching their attention

between acoustic features, we categorized data as “triple-targeted” or “quadruple-targeted” tri-

als in which participants paid attention to the acoustic feature with the regularity of triple or

quadruple meter, respectively. We calculated the difference of subjective rating scores between

the triple- or quadruple-targeted trials for each acoustical condition. This difference should be

larger when the participant successfully perceived different meters by switching their attention

between two acoustic features. For assessing the effect of attentional switching, we averaged

the rating difference data across all trials by participant. To test whether the rating difference

was significantly different from zero, we performed a one-sample Wilcoxon signed-rank test

with the significance level α at 0.05.

We supplementarily assessed how much the frequency and duration conditions modulated

the switch of the perceived meter. For this aim, we used data obtained only from participants

who exhibited clear switches in the meter rating (11 participants). We quantified slopes of the

frequency and duration factors by fitting a linear mixed-effects regression (LMER) model. The

rating difference was set as a response variable, and frequency, duration, and the interaction

between them were included as fixed effects in the model. Note that we centered the frequency

and duration values by subtracting their means. The participant index was used as a random

effect. Thus, the model expression we used here was as follows: rating_difference ~ frequency
+ duration + frequency×duration + (1|subject). We performed the analysis in R version 4.0.4

[35]. To fit the model, we used ‘lmer’ function of the lme4 package [36]. We also adopted ‘r.

squaredGLMM’ function of the MuMin package [37] to calculate the LMER’s fitted ness with

R-squared value [38].

To analyze the effect of participants’ prior experience, we only reported the individual rat-

ing difference because we have not designed our experiment to test the statistical significance

of the experience effect.

Results

Previous studies have suggested that meter perception involves the interaction between top-

down and bottom-up processes. According to this idea, we expected that the perceived meter

could switch depending on the regularity of the stimulus attribute that the listener focused on.
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Thus, the present study aimed to examine whether a listener could perceive meter by switching

their attention across different acoustic features and, if so, to what extent.

We designed the biphasic sound stimuli to contain two different meters (triple and quadru-

ple) for different acoustic features. The participants evaluated the subjective strength of the

quadruple meter. We found that the rating scores were low in triple-targeted trials

(mean ± SD; 1.84 ± 0.68) and high in quadruple-targeted trials (3.95 ± 0.81) (Fig 2). The one-

sample Wilcoxon signed-rank test showed that the rating difference between quadruple- and

triple-target trials was significantly different from zero (n = 16, V = 133, p< 0.001). Five out of

16 participants did not exhibit clear switching in the rating score (shown as gray circles in Fig

2). Removing these non-switchers data points emphasized the rating difference between two

targeted trials (triple-targeted: 1.45 ± 0.29; quadruple-targeted: 4.43 ± 0.33). We confirmed

that the rating difference after removing non-switchers was significantly different from zero

(n = 11; V = 66, p< 0.001). These results suggest that the perceived meter changed due to a

switch in the attentional focus on different acoustical features.

We also explored how acoustical parameters of the biphasic stimuli effectively elicit differ-

ent meter perceptions in the successfully switched participants (n = 11). The subjective ratings

ranged from 1 to 2 in triple-targeted trials (Fig 3A) and 4 to 5 in quadruple-targeted trials (Fig

3B). The rating difference was slightly elevated when the duration difference increased irre-

spective of the frequency condition (Fig 3C and 3D). The largest difference was 3.32, obtained
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Fig 2. Mean subjective rating of triple- and quadruple-targeted trials. Participants (n = 16) rated perceived meters

from the biphasic stimuli on a five-point scale (from 1: “strong triple” to 5: “strong quadruple”). The rating score was

relatively lower (more triple) for triple-targeted trials, and higher (more quadruple) for quadruple-targeted ones,

suggesting that the listeners perceived different meters depending on the acoustic features which they attended. Gray

circle and line indicate the five non-switchers. Asterisk (�) shows the significant difference (p< 0.05).

https://doi.org/10.1371/journal.pone.0256712.g002
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when the frequency and duration conditions were F200-D100 and F250-D100. On the other

hand, the smallest difference was 2.61 acquired in the following conditions: F128-D51,

F160-D51, and F250-D51. The LMER model fitting showed linear increases of the rating dif-

ference as functions of frequency and duration with the slopes of 0.89×10−3 points/Hz and

4.82×10−3 points/ms, respectively (Table 2). The interaction term had a slope of 0.06×10−3.

These results indicate that a change in the frequency condition from F102 to F250 (148 Hz

increase) raises the rating difference by 0.13 points, and a prolongation in the duration condi-

tion from D51 to D125 (74 ms) elevates the rating difference by 0.36 points. The model fitting

performance was moderate (R2 = 0.74). Such small slopes were caused partially due to nonline-

arity in the pattern of rating difference scores, in which the score rose with the duration

increase but fell from D100 to D125 (Fig 3C), for example.

We had noticed a large variability in the rating score across participants in pilot studies.

This fact appeared to be explained that the perceptual switch depends on the prior experience

B

C

strong
quadruple

strong
triple

A

1

2

3

4

5
triple-targeted
F102
F128
F160
F200
F250

1

2

3

4

5
quadruple-targeted

0

1

2

3

4
D

F102
F128
F160
F200
F250

2.5

3.0

3.5

Fig 3. Subjective rating and rating difference for 25 conditions (frequency × duration conditions) in successfully
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triple-meter or (B) quadruple-meter regularity. C,D. Rating difference between quadruple-targeted and triple-targeted

trials as (C) line plots and (D) a color map. Error bar indicates the standard error across participants.

https://doi.org/10.1371/journal.pone.0256712.g003

Table 2. Summary of the LMER model fitted to the rating difference for 25 conditions in switchable participants (n = 11).

Variable slope SE df t-value

frequency 0.89 × 10−3 0.41 × 10−3 261 2.18

duration 4.82 × 10−3 0.81 × 10−3 261 5.91

frequency × duration 0.06 × 10−3 0.02 × 10−3 261 3.62

https://doi.org/10.1371/journal.pone.0256712.t002
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with the stimuli and that more intentional training enables one to switch successfully. As an

additional exploration in the present study, we trained a subset of the participants (n = 6)

before starting the current experiment. Note that we did not have a clear hypothesis on the

prior experience effect at this point, and hence, this exploration was not statistically well-

designed. Thus, we here described the result just as a case report. We classified them into three

groups (unexperienced, experienced, trained) and calculated the individual rating differences

(Fig 4). Results demonstrate that all trained participants were able to switch perceive meters

successfully (6 out of 6), while only the half of the unexperienced and experienced participants

succeeded (unexperienced: 4 out of 8, experienced: 1 out of 2). Although the prior experience

for listening to the stimuli (without the training) seems not to contribute to the extent of

switching, all trained participants switched and perceived different meter. This result is consis-

tent with an idea that enhanced top-down attention on beats facilitates the meter perception.

Discussion

The present study investigated whether it was possible to perceive different meters by switch-

ing one’s attention to different acoustic features in the sound stimulus designed to contain tri-

ple or quadruple periodicity in frequency and temporal duration. We found that participants

perceived meters differently depending on the sound attribute what they paid attention to (Fig

2). The result suggests that meter is perceived not only through bottom-up processes (by dif-

ferentiating acoustic cues) but also through interactions with top-down processes (by paying

attention to them).

We supplementarily explored how changes in the acoustic parameters influence metric per-

ception in the biphasic stimulus. The analysis allows us to know mainly two things. First, the

LMER shows the quantitative descriptions of each effect’s slope (Table 2), which indicates the

extent of increasing attentional switch between two meters along with a unit increase of the

frequency or duration difference of the biphasic stimulus. Second, the pattern of the rating
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https://doi.org/10.1371/journal.pone.0256712.g004
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difference (Fig 3C and 3D) implies what the optimal condition would be. As results, the rating

difference was not entirely linear with increasing frequency and duration conditions: the dif-

ference was higher for the F200-D100 and F250-D100 conditions than for the F250-D125, rais-

ing the possibility that not merely increasing both frequency and duration does not facilitate

meter perception in the stimuli and that there are the appropriate parameters. These effects of

manipulating the acoustical features should depend on the range of frequency and/or duration

that we arbitrarily chose after a pilot study. Note that the differences in frequency and duration

were much greater than differential thresholds reported in previous studies (see Stimuli in

Methods) [31,32]. Future studies should address the effects of extended ranges of acoustic

features.

As preliminary results, we found that half of the participants in the unexperienced and

experienced groups showed switching perception, whereas all participants in the trained group

successfully switched (Fig 4). These findings suggest that training with sound-synchronized

tapping, rather than passive listening to the stimuli, enhances top-down processes for meter

perception, perhaps by explicitly directing listeners’ attention to the appropriate cues. Tapping

to beats enhances detecting whether the probe tone after a short silence coincided with the

timing of preceding beats [33,34], and listening to identical beats with tapping on every two or

three of them facilitates duple or triple meter perception [14,16]. These previous reports sug-

gest that body movements synchronized with regular-interval sound sequences enhance the

ability to perceive the metric structure in the sound sequence. Interestingly, four unexper-

ienced participants who had received musical practice (see Fig 4, participants E, F, G, and H)

showed greater contrasts in the rating scores across triple- and quadruple-targeted trials com-

paring to the others in the unexperienced group without practice (participants A, B, C, and D).

Since musical expertise has reported improving meter perception accuracy [11,20–22], partici-

pants’ musical practices might also influence the individual differences in top-down processing

in our experiment. The influence of prior experiences and the training on meter perception of

the biphasic stimulus needs to be further assessed in future studies.

Further, the present study would provide an implication that meter perception is rooted in

an active process of identifying subjective regularities in the inputting auditory stream. At least

two-thirds of participants perceived the targeted meter by switching their attention to the

acoustic features, suggesting that they can selectively recognize the specific regularity in ambig-

uous sound sequences. This ability might be related to more general auditory attention, e.g.

the cocktail-party effect; selective listening to a specific acoustical regularity of speech sounds

against background noises [39]. Such general auditory ability could share a common founda-

tion with the meter perception of the biphasic stimulus, and this issue should be addressed in

future researches.

This study employed triple and quadruple meters for the biphasic stimuli, instead of duple

meter, which is one of the most typical meters. This is because we intended to avoid the risk of

participants perceiving a sextuple meter (grouping as a set of six beats) from the stimulus con-

taining triple and duple meters. In fact, we confirmed that several volunteers have reported

hearing a sextuple meter in such stimuli during our pilot study. The biphasic stimulus for triple

and duple meters exhibited the most accented sound (high and long) in a six-sound cycle as

the common multiple of two meters, and tends to sound as a sextuple meter at a relatively

faster tempo. Even for isochronous sound sequences (with no physical accent), participants

hear the grouping of six sounds when the sound-interval is 300 ms or less [40,41]. In contrast,

the combination of triple and quadruple meters (used in this study) potentially provides the

cue for a twelve-beat meter, but it is rarer in music than the sextuple meter and has more ele-

ments that make up a group. Hence, it is difficult to perceive twelve-beat meter in our stimuli

at the current tempo, IOI of 300 ms. We did not examine whether a change in tempo altered
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meter perception. According to a previous review [4], the range of IOI for meter perception is

between 100 ms to 6 s. As discussed above, there could be a relationship between tempo and

meter perception; the listener might perceive longer meters (more beats in one cycle) with a

faster tempo, or shorter meters with a slower tempo. Future studies are required to address

how the variety of meters from the biphasic stimuli with different tempo is perceived.

We developed the sound stimuli that has multiple acoustic features like actual music but is

easier to control. Previous studies used short melodies and rhythmic sequences, which had

similar patterns to real music pieces, in order for participants to perceive the meter [21,42].

These stimuli were not suitable for our purpose since they contained too many cues in differ-

ent acoustical features, such as pitch, duration, and timbre. Our stimulus design (with a limited

variety of acoustical cues) allowed us not only to assess the interaction directly but also to finely

adjust the differences in frequency and duration in order to examine the changes in meter

perception.

The present study demonstrated that participants controlled their attention to certain

acoustic features for perceiving the meter. This provides an insight into how we perceive meter

through the interaction between top-down-bottom-up processing. Furthermore, we contrib-

uted to assessing the key feature of musical expertise since our preliminary results suggest the

possibility that the training leads to the enhancement of top-down processes for meter percep-

tion. Musicians produce and perceive the meter that guides their performance, and their top-

down processing of meter perception should be stronger than that of non-musicians. Though

further studies are necessary to sophisticate the training procedure for promoting meter per-

ception, we believe that enhancements of the interaction between top-down and bottom-up

processes must be the key for musical expertise, particularly in meter perception and

production.

Supporting information

S1. The F200-D100 condition of the biphasic stimulus which has quadruple-frequency tri-

ple-duration cycles.

(WAV)

S2. The F200-D100 condition of the biphasic stimulus which has triple-frequency quadru-

ple-duration cycles.

(WAV)
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