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Automated identification of 
Myxobacterial genera using 
Convolutional Neural Network
Hedieh Sajedi1*, Fatemeh Mohammadipanah2* & Ali Pashaei3

The Myxococcales order consist of eleven families comprising30 genera, and are featured by the 
formation of the highest level of differential structure aggregations called fruiting bodies. These 
multicellular structures are essential for their resistance in ecosystems and is used in the primitive 
identification of these bacteria while their accurate taxonomic position is confirmed by the nucleotide 
sequence of 16SrRNA gene. Phenotypic classification of these structures is currently performed based 
on the stereomicroscopic observations that demand personal experience. The detailed phenotypic 
features of the genera with similar fruiting bodies are not readily distinctive by not particularly 
experienced researchers. The human examination of the fruiting bodies requires high skill and is 
error-prone. An image pattern analysis of schematic images of these structures conducted us to the 
construction of a database, which led to an extractable recognition of the unknown fruiting bodies. 
In this paper, Convolutional Neural Network (CNN) was considered as a baseline for recognition of 
fruiting bodies. In addition, to enhance the result the classifier, part of CNN is replaced with other 
classifiers. By employing the introduced model, all 30 genera of this order could be recognized based 
on stereomicroscopic images of the fruiting bodies at the genus level that not only does not urge us to 
amplify and sequence gene but also can be attained without preparation of microscopic slides of the 
vegetative cells or myxospores. The accuracy of 77.24% in recognition of genera and accuracy of 88.92% 
in recognition of suborders illustrate the applicability property of the proposed machine learning model.

Myxobacteria are nonpathogenic, free-living bacteria that mainly thrive in terrestrial excosystems as well 
as marine habitats. They are aerobic and mesophilic bacteria that mainly exist near the surface of the soil. 
Myxobacteria are Gram-negative with high genomic GC content bacteria that exhibit outstanding characteristics 
such as the formation of the multicellular fruiting body, gliding motility, predation of microorganisms and cel-
lulolysis. They are considered as a taxonomically distinct group due to their elaborated life cycle that is uncom-
mon in the prokaryotic domain1. They are able to lyse other bacteria and yeast cells by predatory behavior. In this 
process, hydrolyzing enzymes and secondary metabolite molecules secrete to the medium and hydrolyze the prey 
to consumable nutrients2.

During the intricate life cycle, Myxobacteria can produce a resistant and dormant form of cells called myx-
ospore, which is generated, forms vegetative cells inside the fruiting body structures during their complex life 
cycle. Fruiting bodies of Myxobacteria vary in colour, shape, and size. The size of the fruiting body ranges from 
10 to 1000 μm depending on genus and species1. The shape of fruiting bodies emanates as spherical, cylindrical, 
mounds and either hybride form of two or more morphologies like fruiting body of the Chondromyces species3. 
Most of the genera produce distinctive and colored fruiting bodies on the surface of the medium that often can 
be observed through naked eyes. Predominantly, fruiting bodies comprise sporangioles that enclose myxospores 
in the form of single or clusters. Identification and classification of Myxobacteria extensively dependent on the 
morphology detail of fruiting bodies, swarming pattern on solid media and shape of the vegetative cells and 
myxospores.

The correlation between morphology and phylogeny of Myxobacteria investigated by Sproer et al. (1999) has 
shown that the phenotypic classification can provide a consistent basis for the description of neotype species. 
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Accordingly, the findings suggested the classification at the genus level based on morphology is consistent for 
most of the Myxobacterial genera.

The order Myxococcales is placed in δ class of Proteobacteria phylum and consists of three suborders, 11 fami-
lies, 30 genera and 58 species4. The taxonomic classification and phylogeny of the order Myxococcales updated on 
September 2018 is presented in Fig. 1.

There are only few reports on image analysis of Myxobacteria, which have been focused on their swarming 
motility patterns. Fruiting body formation in Myxobacteria requires swarming by the sensing of signals under 
starvation conditions. A-signal is involved in the detection of nutrient deficiency in the environment. By entering 
the cells to a developmental pathway, a large number of cells convert to myxospores and a limited population 

Figure 1.  Phylogeny of the order Myxococcales updated on September 2018.
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of cells forms a layer around of myxospores called peripheral cells. On the other hand, C-signal is essential for 
rippling and differentiation.

It is repoted that 49% of drugs approved between 1981 and 2014 originated from natural products or their 
semisynthetic derivatives5. In the last decade, myxobacteria were recognized to be a valuable source of bioac-
tive secondary metabolites producing novel structure skeletons. Thus, they have received notable attention in 
drug discovery plans due to the diversity and unique modes of action of their metabolites6,7. A large number of 
myxobacterial metabolites have been reported having antibacterial activity such as myxovalargin8, sorangicin9, 
saframycin10, sorangiolid11, chondrochlorens12, and thuggacins13 while metabolites like rhizopodin14 and chon-
dramides15 have shown anticancer activity through interactions with microtubule assembly in the eukaryotic cell 
lines. In addition, these bacteria represent other rare bioactivities such as anti-malarial, insecticidal, immunosup-
pressive, and anti-viral activities, etc.7.

To screen Myxobacteria for their bioactive metabolites, samples collected from different environments are 
cultured on several media and differentiated manually. This often makes the whole process of screening labour 
intensive, time-consuming, and experienced-technicians-oriented16. In addition to the 16S rRNA gene sequenc-
ing, other genomic approaches such as full genome sequencing, multi-locus sequencing, and metagenomics 
have been used in their identification17 which are time-consuming18 and are not needed for the primary iden-
tification at the genus level. Therefore, for impressive deduction of labour work during strains screening pro-
grams, a high throughput computer-based isolation instead of the experience of an expert is highly appreciated. 
Artificial pattern recognition or machine learning systems was applied in this study to provide the identification 
of Myxobacteria at the genus level based on self-experience approach. Consequently, pattern recognition systems 
implicate algorithms, which their performance will be improved through experience19.

No study aimed at characterizing the Myxobacterial genera based on their automated image analysis is 
reported so far.

In the current study, the development and the application of user-aided image acquisition and automated pro-
cessing pipeline for the identification of myxobacterial strains based on their descriptive features were achieved. 
The method proved its robustness toward size and shape variations of the fruiting bodies due to their different 
maturity state; and changing qualities of images, different technical alterations, and different fields of view. The 
provided method is fast and accurate, while requires inexpensive assembly of the instrument to assemble the sys-
tem. In addition, learning of their pattern is active, which results in auto-updating the database. Finally, the appli-
cation of the method is simple, and there is no need for complex knowledge or years of experience or courses.

Convolutional Neural Network is employed for discrimination between different myxobacterial genera. 
Furthermore, to increase the accuracy of recognition, the fully connected part of DCNN was swapped with other 
classifiers. Experimental results illustrate that the proposed model can identify the genera with the accuracy of 
77.24% and the higher taxa of suborder with the accuracy of 88.92%.

The structure of the paper is as the following. Section 2 introduces preliminary work includes Extreme 
Learning Machine (ELM) classifier, On-Line Sequential ELM (OSELM)20, Constraint ELM (CELM)21, and 
Convolutional Neural Network. Section 3 describes materials and methods. Experiments and validation are 
explained in Section 5 and Section 6 concludes the results.

Preliminary Work
ELM model.  Suppose a set of samples available for building a model is {(xi, ti)|xi ∈ RD, ti ∈ RM, i = 1, 2, … N}. 
Also, suppose l as the number of hidden nodes and g(x) as the activation function in a multi-layer perceptron 
neural network. With these assumptions, input weights W and the hidden biases b can be specified randomly. In 
this regard, the hidden layer output of ELM can be obtained by Eq. (1):
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where wi ∈ RD, bi ∈ R, i = 1, 2, …. L.
Considering β as the output weights, based on the proof presented by Huang et al. (Huang et al., 2017), the 

norm of β is smaller, and the generalization performance of ELM is more suitable. Consequently, by finding the 
least square solution of the problem the output weights can be obtained by Eq. (2):
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where h(xi) is the i th output vector of the hidden layer, ti is the i th label vector
Based on the Karush–Kuhn–Tucker22 theory, Eq. (2) can be expressed by the following Lagrange function:
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where each αi Lagrange multiplier relates to an instance xi. The following set of equations can be calculated by the 
partial derivative of Eq. (3):
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where α = [α1, …, αN]T and the least square solution of β is attained by computing the three equations. The 
answer is as Eq. (7):
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Accordingly, the output function of ELM is as Eq. (8):
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The calculation of dot product in ELM can be replaced by introducing the kernel function k(xi . xj) as Eq. (9).  
To decrease the computational complexity of high dimensional dot product, it is essential to make sure that 
k(xi . xj) is simply a mapping method of the relative location of two input examples23.

. = −k x x k x x( ) ( ) (9)i j i j

OSELM.  In the first phase of OSELM which is boosting phase the Single Layer Feed forward Network (SLFNs) 
is trained using the primitive ELM method with some batch of training data in the initialization stage and these 
boosting training data will be discarded as soon as this phase is completed. The required batch of training data is 
very small, which can be equal to the number of hidden neurons (e.g. for 10 neurons, 10 training samples may be 
needed to boost the learning).

In the second phase, the OSELM learns the train data one-by-one or chunk-by-chunk and all the training data 
will be discarded after the learning process on these data is finished22.

CELM.  The algorithm of CELM was proposed for constraining the weight vectors {Wj|j = 1 .…. L} from the 
input layer to the hidden layer by drawing from the closed set of difference vectors of between-class instances, 
which are the set of vectors correlating the instances of one class with instances of a different class24. The pseudo 
code of CELM training process is illustrated in Algorithm 1. It can be seen that except that the CELM constrains 

Algorithm 1.  Training process of CELM.
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Family Genus Sporangiole¥

Characteristics of the Fruiting Body Characteristics of the Swarm

Stalk Shape of the fruiting body
Size 
(μm) Texture

Color and shape of the 
swarm Swarmedge

Agar 
corrosion

Cystobactereaceae

Archangium − − Variable in size and shape, strings of 
myxospores in hardened slime 50–1000 Hard Branched radial veins Flame like −

Cystobacter  +  − Rounded, elongate, or coiled singly or 
in groups 50–180 Hard Tough slime sheet with veins Flame like −

Hyalangium + − Small spherical sporangioles with 
glassy shape 35–45 Glassy

Yellow or brown/Thin, tough 
slime sheet with very fine 
veins

Fine veins −

Melittangium + + Semispherical sporangiole like a 
mushroom cap 50–100 Soft Bright yellow/Slime sheet and 

radial veins Flare- to flame-like −

Stigmatella + + Spherical sporangioles singly or in 
clusters 300–350 Hard Yellow/Tough slime sheet 

with oscillating waves Flare like −

Vitiosangium − − Oval to Bean shaped, solitary mounds 20–200 Soft Coherent swarm with 
scattered ripples Flare like —

Myxococcaceae

Corallococcus − − Coral, hornlike, often solitary 20–1,000 Hard Colorless/thin and 
transparent Flares, flames −

Myxococcus − +| Rounded to oval, often solitary 50–200 Soft Colorless to shade of orange 
and yellow/thin, film-like Flares, flames −

Pyxidicoccus + − Ovoid clusters 30–80 Hard Colorless/thin, film-like Flares, flames −

Aggregicoccus − − Spherical fruiting body-like aggregates ND Soft Transparent swarms, wavy, 
rippling structures

Intricate veins on 
edges −

Angiococcus + − Spheroidal sporangioles 30–40 Soft Thin, spreading swarm of 
gliding cells Flare-like −

Anaeromyxobacteraceae Anaeromyxobacter + − Polyhedral or spherical solitary or 
cluster ND Soft — — −

Vulgatibacteraceae Vulgatibacter − − Fruiting body-like aggregates ND Soft No swarming unstructured −

Polyangiaceae

Byssovora + − Polyhedral sporangioles in sorus 220–560 Soft Pseudoplasmodial thin layer Fanlike +

Chondromyces + +
Sessile, spectacular, complex, and 
elegant miniature tree- or flowerlike 
fruiting body

1000 Hard light orange and burrow/
Thin, filmlike, transparent Fanlike +

Jahnella + − Coils shape sporangioles in cluster
60–
90 × 80–
120

Tough Orange/Scattered long veins Bands in agar +

Polyangium + − Oval to polyhedral sessile sporangioles, 
arranged in a cluster or solitary 50–400 Soft Pseudoplasmodial swarm Fan-shaped +

Sorangium + − Ovoid to polyhedral sporangioles in 
cluster and chain 20–30 Hard Yellow or orange/Soft radial 

veins Curtain-like +

Aetherobacter + − Fascicles in chains or rolls in aggregates 50–3000 Soft Swarm forms ring- or halo-
like colonies

Coherent migrating 
cells +

Minicystis + − Small fruiting bodies, ovoid 
sporangioles 4.0–12.0 Soft Swarm appears film-like, thin 

and transparent

unstructured, with 
loose migrating 
cells sometimes 
with tiny flares

−

Racemicystis + — Varying size 200–800 Tough Orange to beige Sweep like −

Sandaracinaceae Sandaracinus − − Fruiting body-like aggregates sessile 
and irregular 50–150 Soft Orange/shallow wave 

depressions
Cell mounds at 
the end −

Phaselicystidaceae Phaselicystis + − Bean, sausage, or ovoid shaped 
sporangioles

20 × 25, 
49 × 56 Tough Tough, slimy net-like veins Flame- or flare-like +

Labilithrichaceae Labilithrix − − Raised colonies instead of the Fruiting 
body ND Soft Slimy Hairy-like −

Nanocystacea

Enhygromyxa − − Fruiting body like aggregates 
(Rounded, hump, globular) 100–150 Soft Colorless/light orange to red/

delicate slimy veins
Flare to 
pseudoplasmodium +

Nannocystis + − Spherical, oval to short sausage-shaped 
sporangiole

6 × 3.5–
110 × 0 Hard Excavated/deep tunnels Trails or fine wave +

Plesiocystis − − Fruiting-like body aggregates 100–500 Soft Thin, transparent, 
pseudoplasmodium Flare-like +

Pseudenhygromyxa − − Fruiting-like body aggregates 50–800 Soft Colorless to pale peach/
slimy veins Flare-like +

Kofleriaceae Kofleria − − Yellow knobs in agar or on surface ND Soft Yellow/film-like with radial 
veins Lateral rim −

Haliangiaceae Haliangium + − Fruiting-like aggregate or sessile oval-
shaped sporangioles 15–150 Soft Colorless to yellow shades/

thin, film-like Flare- to flame-like +

Table 1.  The macro-morphological specification of Myxobacterial genera used in observational identification. 
¥Sporangiole: Packages of myxospores. +Indicate the presence. −Indicate the absence. ND: Not Distinguishable.
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the input connection weights of the hidden neuron, the CELM is similar to the ELM. Experiment results are 
shown that CELM has a performance with higher efficiency compared to ELM24.

Convolutional neural network.  On a general overview, after feeding images to convolution neural net-
work, which includes several layers of types convolutional, nonlinear, and pooling, the transformed images are 
delivered to the output layer that can predict a class in classification problems or a single number in regression 
problems. Typically, the convolutional neural network includes the following layers:

Input layer.  Usually values for raw pixels of the input image are incorporated into the input layer.

Convolution layer.  The convolutional layer is the main layer of a CNN. Neurons in this layer are connected to 
the regions of the image or the previous layer. These areas called the filters to move vertically and horizontally and 
extract features from the image of the previous layer. For each part, a dot product of the weights and the input 
is computed, and a bias value is added to it. The step size of filter shift is named stride. The number of weights 
applied for a filter is obtained by Eq. (10) 25:

× ×h w c (10)

where h and w is the height and the width of the filter, and c is considered the number of channels in the input. By 
using Eq. (11), the number of parameters in a convolution layer is calculated.

× × + ×h w c n(( 1) ) (11)

where 1 is for the bias and n is the number of filters. The output size of the convolutional layer is calculated using 
Eq. (12):

− + ×
+

I F P
S

( 2 ) 1 (12)

where I is input size of layer, F is filter size, P is padding dimension and S is stride number.
The layer’s parameters consist of a set of learnable filters. Through the forward flow, each filter is convolved 

with the input data. Convolution is simply the result of the dot product between the elements of the filter and the 
input. Accordingly, in the training process of the network, the filters are learnt and are activated when it faced 
with some specific features at some spatial positions in the input.

A neuron in CNN investigates a small region in the input and shares parameters with neurons in the same 
activation map.

Batch normalization layer.  This layer normalizes its inputs xi by estimating the mean μB and variance σB
2 of a 

mini-batch and on each input channel. Afterward, it normalizes the activations using Eq. (13):

µ
=

−

σ +
x

x

(13)
i

i B

B
2 

No. Name of the genus
No. of 
images No. Name of the genus

No. of 
images

1 Aggregicoccus 11 16 Pseudenhygromyxa 4

2 Anaeromyxobacter 1 17 Phaselicystis 13

3 Archangium 8 18 Byssovora 3

4 Cystobacter 10 19 Chondromyces 17

5 Hyalangium 9 20 Jahnella 11

6 Melittangium 9 21 Polyangium 9

7 Stigmatella 14 22 Sorangium 21

8 Corallococcus 15 23 Sandaracinus 14

9 Myxococcus 38 24 Minicystis 20

10 Pyxidicoccus 13 25 Vulgatibacter 1

11 Haliangium 5 26 Aetherobacter 14

12 Kofleria 10 27 Angiococcus 9

13 Enhygromyxa 1 28 Racemicystis 11

14 Nannocystis 14 29 Vitiosangium 6

15 Plesiocystis 8 30 Labilithrix 3

Table 2.  The quantity of each class in MYXO.DB, which contains 322 samples and 30 classes.
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when the mini-batch variance is very small,   improves numerical stability. To allow for the possibility that inputs 
with zero mean and unit variance are not optimal for the layer that follows the batch normalization layer, the 
batch normalization layer further shifts and scales the activations Eq. (14):

γ β= +y x (14)i i

Here, the offset β and scale factor γ are learnable parameters that are updated during network training. At the 
end of the learning process, batch normalization layer calculates mean and variance over the full training set and 
stores them in sequence in trained mean and trained variance properties25.

Pooling layer.  Pooling layer does a form of down sampling. There are several non-linear functions to imple-
ment pooling among which max-pooling is the most common. It partitions the input image into a set of 
non-overlapping rectangles and, for each such sub-region, outputs the maximum. The intuition is that the exact 
location of a feature is less important than its rough location relative to other features. The pooling layer serves 
to progressively reduce the spatial size of the representation, to reduce the number of parameters and amount of 
computation in the network, and hence to also control overfitting. It is common to periodically insert a pooling 
layer between successive convolutional layers in CNN architecture. Pooling layers provide a form of translation 
invariance. Specially max-pooling across rotated/scaled database images gains rotation/scale invariance. The 
Poolsize property determines the size of the rectangular regions. The output size of a pooling layer with input size 
InputSize is as Eq. (15):

=
− + ×

+Output Size inputsize poolsize paddingsize
stride

( 2 ) 1 (15)

Activation layer.  This layer applies the non-saturating activation function. It increases the nonlinear properties 
of the decision function and of the overall network without affecting the receptive fields of the convolution layer. 
ReLU is the abbreviation of Rectified Linear Units. ReLU is preferable to other functions, because it trains the 
neural network several times faster without a significant penalty to generalization accuracy26. Other functions 
are also used to increase nonlinearity, for example, the saturating hyperbolic tangent and the sigmoid function.

Fully connected layer.  The fully connected layer is a traditional Multi-Layer Perceptron that uses a Softmax acti-
vation function in the output layer. The term “Fully Connected” implies that every neuron in the previous layer is 
connected to every neuron on the next layer. The result of this layer is a vector of 1 × 1 × n, where n is the number 
of classes. After several convolutional and pooling layers, the classification in the neural network is done via fully 
connected layers. This layer(s) is the part that learns supervisory in contrast to the convolutional, pooling and 
activation layers that learn nonsupervisory.
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Figure 2.  The representative images of each genus in MYXO.DB.
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Softmax layer.  This layer receives the output of the previous (fully connected) layer and converts it to a proba-
bility distribution on the classes. This is done through Eq. (16):
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where 0 < p(Cr|x.θ) ≤ 1 and θ∑ . | == p x c p c( ) ( ) 1j
k

j j1 . Also θ= . |a p x c p cln( ( ) ( ))r r r , p(x. θ. cr) is the conditional 
probability of the sample given class r and p(cr) is the class prior probability27.

Materials and Methods
The details of preparing MYXO.DB and the proposed method are described in this section.

Classification of Myxobacteria based on the appearance of the fruiting bodies.  The appearance 
of the fruiting body that harbors the myxobacterial spores (myxospores) can be categorized as Table 1. These 
morphological characteristics are currently used by expert researchers to distinguish the genera from each other. 
Therefore, this morphological identification key demands the deep understanding and visualization skill of the 
researchers in order to lead them to the right genus.

Selection of the stereomicroscope images of the typical fruiting bodies.  Morphological features 
of the spore producing structures called fruiting bodies were selected based on their typical descriptive morphol-
ogy from the valid publications. The images were selected based on the descriptive literature and the number of 
investigated genera was 30 as exists in the order of Myxobacteria at the time of conducting the experiment.

During the process of pattern recognition, the features that describe the fruiting bodies including shape, size, 
intensity, and texture were extracted from the typical fruiting bodies of all 30 genera of this order.

Preparing the dataset of MYXO.DB.  Since the source of images were quite different in terms of the 
parameters including contrast, resolution, size, illumination, having noise and capturing camera aspects, design-
ing an automatic image processing method for automatic segmentation of samples from images was complex. 
Therefore, to form a dataset for automatic recognition of Myxobacteria, the single samples or compact fruit-
ing bodies were cropped manually. The genera, which produce single fruiting body, were considered individ-
ually, while the genera that does not form concrete fruiting bodies are not produced, their swarm pattern was 
considered.

As mentioned before, identification and classification of Myxobacteria dependents principally on the mor-
phology of fruiting bodies, swarming pattern on medium, shape of vegetative cells and myxospores shape. In 
preparing the dataset of MYXO.DB, morphology of fruiting bodies was analyzed. Furthermore, the colony mor-
phology for some Myxobacteria was considered. Table 2 represents the number of single fruity bodies, which 
could be extracted from each genus of the 30 classes. Some sample derived images of each genus of MYXO.DB 
are illustrated in Fig. 2.

As mentioned in the previous section for learning the difference between distinct types of Myxobacteria and 
the similarities within the samples of a certain genus, an adequate number of samples should be available. In this 
regard, some classes with a small number of instances have not been considered in some experiments. In this 
regard, two datasets with a smaller number of classes were constructed.

MY25 dataset is a subset of MYXO.DB, which contains 313 images, which are categorized into 25 classes. In 
this dataset, the classes with less than four samples have been removed from the MYXO.DB.

In MY22 dataset, the MYXO.DB dataset is augmented and the number of instances increased by cropping 
some sub images from each image sample. The augmented dataset contains 629 images, which are categorized 
into 22 classes. In this dataset, the classes with less than eight samples have been omitted.

To recognize the suborder of each strain, MYCategories dataset is built which contains 319 images samples of 
MYCategories were categorized into three classes includes Cystobacterineae, Sorangiineae and Nannocystineae.

By viewing the samples, it can be concluded that some classes are similar to each other for example Stigmatella 
and Myxococcus in terms of the morphology of fruiting body. Such similarities can encounter the automatic 
recognition systems with a notable challenge. On the other hand, a few number of samples for some classes like 
Anaeromyxobacter, Myxococcus and Vulgatibacter prevents a pattern recognition system from automatic learning. 
Like learning of a human being child, for an efficient machine learning process, there should be sufficient training 
samples or experiences28.

Figure 3.  The structure of the proposed CNN for automatic identification of the genera.
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Further, the color of the fruiting body and the background, and the shape and orientation of colonies are 
diverse in different samples of a certain class.

Preprocessing.  The discriminating features of Myxobacteria are their shape and texture. Their color can be 
altered by some culture conditions; therefore, color is not a reliable distinguishing feature for recognizing differ-
ent types of Myxobacteria.

Some descriptors of the object morphology like area, convex area, roundness etc. denote the size and shape 
approximately. Consequently, before imposing the sample images to any pattern recognition system, initially, all 
the images should be converted to gray scale image to drop the color information.

In addition, all the images have been normalized to the size of 100 × 100 pixels because of the below reasons:

•	 Capturing device for each image of Myxobacteria has a certain property.
•	 The resolution and the amount of the noise in images are dissimilar.
•	 Different level of maturity causes diverse size of individuals or colonies.
•	 The magnification magnitude of the microscope in image capturing may be disparate.

The input of the proposed method is normalized gray scale images. Equation (17) is used for converting a 
colored image I in RGB color space to gray scale image Ig 29 where IR, IG and IB are the image I in Red, Green and 
Blue color plate and Ig is the resulted gray level image.

= . × + . × + . ×I I I I0 2989 0 5870 0 1140 (17)g R G B

Feature extraction by convolution neural network.  In this paper, for automated recognition of dif-
ferent fruiting bodies a CNN classification model is designed. By the emerging application of deep learning in 
computer vision applications, extracting the features through the CNNs is beneficial for producing general image 
descriptors. CNNs resulted in high efficiency in many image classification applications30. CNNs were inspired 
by biological processes in which the connectivity pattern between neurons is deduced by the organization of the 
animal visual cortex31. The major ascendancy of CNNs is partial independence from previous information and 
human effort in feature design.

A CNN includes a stack of different types of layers that convert the input data into an output value or label. 
After a brief description of the applied algorithm in this study, the structure of the designed CNN for automatic 
recognition of Myxobacteria fruiting bodies is described as the following.

Input layer.  The input of this layer is images with equal size and labeled. In our modeling, raw pixels of images 
with the size of 28 × 28 are fed into the input layer.

Convolutional layer.  Our model comprised four convolution layers. In the first convolution layer, 16 filters, in 
the second layer, 32 filters, in the third layer, 64 filters, and in the last layer 128 filters are used. The size of filters is 
considered 3 × 3 with the padding size of one.

Structure Feature Extraction Layers Fully Connected Accuracy

1

Convolution Layer (fi (2,16), Padding (3,3))

F (O(22)) 65.46%

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (2,32), Padding (3,3))

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (2,64), Padding (3,3))

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (2,128), Padding (3,3))

2

Convolution Layer (fi (3,16), Padding (1,1))

F (O(22)) 74.246%

Max-Pooling (Pol (2,2)), Stir(2,2))

Convolution Layer (fi (3,32), Padding (1,1))

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (3,64), Padding (1,1))

3

Convolution Layer (fi (3,16), Padding (1,1))

F (O(22)) 77.24%

Max-Pooling (Pol (2,2)), Stir(2,2))

Convolution Layer (fi (3,32), Padding (1,1))

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (3,64), Padding (1,1))

Max-Pooling (Pol (2,2), Stir(2,2))

Convolution Layer (fi (3,128), Padding (1,1))

Table 3.  Configuration of CNN on Myxobacterial pictures in MY22. fi: Filter. M: Max-Pooling Layer. Pol: Poll-
size. Stir: Stride. O: Output.
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Batch normalization layer.  In order to normalize the extracted features using the convolution layer, a batch nor-
malization layer is considered following each convolution layer. The applied model contains four convolutional 
layers and one batch normalization layer after each one.

Rectified linear unit (ReLU) layer.  This layer activates max (0, x) activation function on each neuron, that causes 
the negative values to be converted to zero. The proposed model comprises four ReLU layers.

Pooling layer.  Four max-pooling layers are considered in the model of this study. The pool size in these layers as 
well as the stride size of each layer, is [2 2]. Therefore, the size of the output from the first, the second, the third, 
and the fourth pooling layers are 14, 7, 3, and 1, respectively.

Fully connected layer.  The proposed model encompassed one fully connected layer.

Softmax Layer.  The ultimate layer in the model is Softmax layer. This layer is placed after fully connected layer to 
replicate the outputs of fully connected layers to a probability distribution on the defined classes.

The features extracted from the convolutional and pooling layers comprise descriptors reflecting data on the 
acquired inside shape of the fruiting bodies (e.g., area of the convolutional mask relative to the colony size, mask 
area in the center and border of the colony, object sizes, number of objects in the mask, and deviations).

The combined feature set obtained from the last layer of unsupervised part of CNN assists as a quantitative 
signature of the phenotype of the Fruiting bodied. The images from the same genus or belonging to the same phe-
notypic class share some matching characteristics from the various existing features. The structure of the designed 
CNN for automatic recognition of the genera is displayed in Fig. 3.

In each convolutional layer, the input convolves with some different filters. In the next pooling layer the size 
of convolved images reduced to smaller images. This routine is continued to the end of the first phase of CNN.

The first part of a CNN is a feature extraction phase, which also called unsupervised phase. In this phase, the 
features, which are corresponding to texture and shape, are learned. The output of this phase is diverted to the 
second part. The second part is a classifier also called supervised phase.

Feature 
extraction Classifier

Accuracy 
(%) Precision (%)

Recall 
(%) Parameters

CNN

MLP 80.7 100 100 Learning Rate: 0.3 Hidden Layer: 1 No. of Nodes: 3

RBF 25.4 46.2 100 No. of Batches: 100

SVM 76.84 100 100 Kernel Function: Linear

XGBoost 74.91 100 100

ELM 73.85 75.6 100 Activation Function: Sigmoid No. of Nodes: 100

CELM 21.54 35.6 100 Activation Function: Sigmoid No. of Nodes: 20

OSELM 70.77 75.3 78.4 No. of Nodes: 50 No. of train samples: 50 No. of Blocks: 20

KELM 76.92 100 100 Kernel Function: RBF No. of Nodes: 500

CNN baseline 64.62 100 100 Epochs: 30 Learning rate: 0.01 Iteration per epoch: 1

Table 4.  Configuration of CNN on Myxobacterial pictures in MY25.

Figure 4.  Accuracy and loss of training and validation set of MY25.
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The learning algorithm of the second part is stochastic gradient descent with momentum32.

Extreme convolution neural network (E-CNN).  In this algorithm, in the first step, the features of 
images are extracted using the convolution neural network and then these features are sent as inputs for Extreme 
learning machines algorithm.

Feature extraction.  As we see in the second method, convolution neural networks are one of the best methods for 
feature extraction. The first step in this method is feature extraction. We carried out this using a convolution neural 
network. The features that are extracted by this method are mostly related to the edges, colors, and textures of the 
images. We use the model defined in the second method to extract the features at this stage. The best features that can be 
selected for this are features that are extracted from the fully connected layer. Our defined model for convolution neural 
network extracts three features for each image. Then these features are sent as inputs to the next step of the algorithm

Classification.  At this stage, the features extracted by CNN are classified by different classifiers. Considering 
that CNN in its late layer uses back propagation algorithms, its speed and accuracy are low. Therefore, by putting 
this layer in place with a better learning algorithm such as SVM, the speed, and accuracy of this algorithm can be 
increased. In this paper, we will use different algorithms to examine classification accuracy.

Experiments and Validation
The accuracy of our model was assessed by evaluating it to differentiate the complex and not very typical pheno-
types of the fruiting bodies.

All the experiments were run by 10-fold cross-validation strategy. One round of cross-validation involves 
partitioning the dataset into complementary subsets, performing the analysis on one subset (i.e. training set), 
and validating the analysis on the other subset (i.e. validation set or testing set). To reduce variability, 10 rounds 
of cross-validation were performed using different partitions, and the validation results were averaged over the 
rounds33. The used performance measure is classification accuracy, which is obtained by Eq. (18):

= ∑
∑

=

=

Accuracy
TD
T (18)

i
C

i

i
C

i

1

1

where C is the number of classes which in our case is 22. TDi denotes true detection of instances in class i and Ti 
is the total number of instances in class i.

The accuracy of our model in the detection of distinct classes is reported by TP and FP values that indicate 
True Positive Rate and False Positive Rate, respectively.

TP denotes the number of instances, which belong to a class and recognized truly by the proposed modeling 
as the members of that class. FP denotes the number of instances, which are wrongly recognized as the members 
of a genus, but they truly belong to other genera. The classification models are trained by the training set and 
evaluated by the test set which has not been encountered during modeling. This evaluation strategy confirms the 
ability of the models to predict unseen samples.

Figure 5.  Confusion matrix for CNN-SVM on MY25.
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Here, we describe an automated image analysis tool that facilitates the identification of Myxobacterial genera 
independent of need for microscopic or nucleotide sequencing In addition, this can increase the efficiency of the 
isolation process by optimization of the isolation condition from early on towards retrieving more of the diverse 
genera instead of compiling the strains that are member of a few limited genera.

Preparing a dataset that includes images with different size and variation in the shape of the fruiting body, 
results robustness of the proposed method toward shape variations and size of the fruiting bodies due to their 
maturity, using various culture media or different fields of view.

Configuration of CNN on myxobacterial pictures-MY22.  In Table 3, three different configurations of 
baseline CNN executed on 22 classes were compared. As one can see, the third configuration provides the best 
accuracy. Thus, this configuration is used for all of the experiments in our study. However, the best accuracy of 
CNN is 77.24%.

Results on myxobacterial pictures- MY25.  The results of MY25 dataset are shown in Table 4. The size of 
the extracted feature vector for this dataset is 1 × 25. As it can be seen, in this case CNN-MLP has the best result 
among other algorithms. The accuracy and loss of training and validation set of MY25 when the number of iter-
ations is increased is presented in Fig. 4.

Figure 5 shows the confusion matrix for CNN-SVM on MY25 dataset. Light gray cells show the number of 
correct classified samples and the dark gray cells related to the number of misclassified samples. As can be seen 
in the figure, the number of correct classified samples from Myxococcus genus is zero and all the samples in this 
class were classified as Pyxidicoccus wrongly. The samples from Myxococcus genus include single bodies but the 
samples from Pyxidicoccus genus are colonies. The structure of their fruiting body is similar to each other as both 
belong to the same family. Although it seems that, the CNN features should be discriminative enough to separate 
these two classes but in practice, it is not successful. Finding other structures for CNN may reduce the misclas-
sification error.

Feature 
extraction Classifier

Accuracy 
(%)

Recall 
(%)

Precision 
(%) Parameters

CNN

MLP 89.72 96.7 1 Learning Rate: 0.3 Hidden Layer: 1 No. of Nodes: 3

RBF 31.81 97.3 50.7 No. of Batches: 100

SVM 89.88 1 1 Kernel Function: Linear

XGBoost 86.94 97.3 1

ELM 77.24 80.4 79.6 Activation Function: Sigmoid No. of Nodes: 100

CELM 9.7 24.6 1 Activation Function: Sigmoid No. of Nodes: 20

OSELM 78.86 82.2 79.8 No. of Nodes: 180 No. of train samples: 300 No. of Blocks: 10

KELM 85.37 87.3 1 Kernel Function: RBF No. of Nodes: 20

CNN baseline 77.24 1 1 Epochs: 30 Learning rate: 0.01 Iteration per epoch: 3

Table 5.  Configuration of CNN on Myxobacterial pictures in MY22 dataset.

Figure 6.  Accuracy and loss on training and validation set of MY22.
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Results on myxobacterial pictures-MY22.  The results of MY22 dataset are listed in Table 5. The size of 
the extracted feature vector for this dataset is 1 × 22. As can been seen, CNN-SVM has the optimum result among 
other algorithms. The accuracy and loss of training and validation set of MY22 when the number of iterations is 
increased is shown in Fig. 6.

Results on myxobacterial MYCategories.  The results of MYCategories dataset are listed in Table 6. The 
size of the extracted feature vector for this dataset is 1 × 3. As you see in Table 6 where CNN-SVM has the dis-
tinguished result among other algorithms. The accuracy and loss of training and validation set of MYCategories 
when the number of iterations is increased is illustrated in Fig. 7.

Figure 8 shows the confusion matrix for CNN-SVM on MYCategories. Row 1 shows that from 135 samples 
belong to Cystobacterineae suborder. The number of 116 samples were been recognized correctly, 11 samples 
were wrongly recognized in the suborder Sorangiineae and eight samples were displaced as Nannocystineae sub-
order. The results of the Fig. 8 show that the probability of wrong recognition between Cystobacterineae and 
Sorangiineae is higher compared to others.

Conclusion
Application of pattern analysis in microbiology and biotechnology is accelerating the speed and accuracy of the 
procedures and practices. By increasing the number of Myxobacterial genera especially with similar fruiting 
bodies, the challenge in their instant recognition has emerged recently. The conventional techniques that involve 
observation of the macromorphology and its characteristics such as color, shape, and pigment is considered 
acceptable criteria for bacterial identification in some groups of bacteria. However, morphology oriented meth-
ods have some impediment, for instance, they usually need proficient personnel who have a solidified knowledge 
on the morphology and taxonomy of Myxobacteria.

In recent decades, automated methods have been applied in laboratories for rapid identification of bacteria. 
Using machine learning methods, a combination of experience and technology in the task of bacterial identifi-
cation will be provided. It is anticipated that in the near future the number of new genera in all microbial taxa 
will dramatically be increased. This fact has been observed in the last five years with the introduction of six new 

Feature 
extraction Classifier Accuracy (%) Precision (%) Recall (%) Parameters

CNN

MLP 88.23 92.9 89.6 Learning Rate: 0.3 Hidden Layer: 1 No. of Nodes: 3

RBF 88.58 92.3 88.6 No. of Batches: 100

SVM 88.92 91.7 92.4 Kernel Function: Linear

XGBoost 86.15 90.8 89.4

ELM 77.19 88.4 82 Activation Function: Sigmoid No. of Nodes: 10

CELM 61.4 70.4 65.3 Activation Function: Sigmoid No. of Nodes: 20

OSELM 80.7 75.2 82.3 No. of Nodes: 180 No. of train samples: 10 No. of Blocks: 20

KELM 78.95 79.8 80.4 Kernel Function: RBF No. of Nodes: 10

CNN base line 78.95 86.9 86.9 Epochs: 30 Learning rate: 0.01 Iteration per epoch: 1

Table 6.  Performance of different methods on MYCategories.

Figure 7.  Accuracy and loss on training and validation set of MYCategories.
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genera that do not have the peculiar characteristic shape of fruiting bodies that are even named as pseudo fruiting 
bodies. However identification of some myxobacterial genera such as Stigmatella, Chondromyces, Corallococcus, 
Myxococcus, Cystobacter, and Archangium is rather easy by observation, there are challenges in case of some 
genera that produce a amorphousand disorded forms of the fruiting body like Kofleria, Jahnella, Enhygromyxa, 
Plesiocystis, Pseudenhygromyxa and Haliangium, etc.

Automated imaging and analysis have the potential to improve the duration and accuracy of identification of 
Myxobacteria required for a variety of ecological and biotechnological projects.

The introduced automated recognition can enable an analysis of individual fruiting bodies, taken over 
time or all presented at a single image. Additionally, the classification of distinct fruiting body shapes based on 
image-derived features was independent of whether pictures are colored or on a grey scale. Phenotypic changes 
in the morphology of fruiting body due to being in variant maturity stage can be expressed as minor changes in 
feature space, which can be corrected and attributed to the respected suborder.

In this study, a platform that uses stereomicroscopic image analysis and pattern recognition to differentiate 
between 30 genera of Myxobacteria was developed based on the phenotypic signatures. The images of the newly 
discovered genera of Myxobacteria can be added to the dataset and the proposed structure can be retrained to 
discriminate between genera automatically.

In this work, the images were gathered from different resources, captured by various cameras with disparate 
resolution and lightening environment. Image capturing with the similar situation can enhance the accuracy of 
the recognition result and hence the efficiency of automated identificatio system.

Data availability
The analysis data of this study are available from the corresponding authors for follow up studies.
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