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a b s t r a c t 

Presented in this article are 2D and 3D graphical datasets 

in the form of micrographs and tomograms that were ob- 

tained as part of a systematic microstructural characteriza- 

tion by scanning electron microscopy and X-ray microto- 

mography to illustrate freeze-cast bamboo-inspired tubular 

scaffolds with functional gradients (“Bamboo-inspired Tubu- 

lar Scaffolds with Functional Gradients” [1]). Four material 

combinations of the coaxial ‘core-shell’ molds and their two 

end pieces were used to freeze cast highly porous tubes 

(Tube/Rod/Holder): ASA (Aluminum, 316 Stainless Steel, Alu- 

minum), ASP (Aluminum, 316 Stainless Steel, Epoxy (Plas- 

tic)), SCA (316 Stainless Steel, Copper, Aluminum), and CSP 

(Copper, 316 Stainless Steel, Epoxy (Plastic)). Three tech- 

niques were used to coat the best performing CSP freeze- 

cast tubes: spray freezing (SF), spray coating (SC), and brush 

freezing (BF). The structure and density profile of the un- 

coated and coated tubes was quantified using X-ray micro- 

tomography and their functional gradients, and the resulting 
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mechanical performance in bending were determined and 

compared. The structure-property-processing correlations de- 

termined for the coated and uncoated coaxially freeze cast 

tubular scaffolds offer strategies for the biomimetic design 

of bamboo-inspired porous tubes, which emulate bamboo’s 

stiff outer shell supported by a porous, elastic inner layer to 

delay the onset of ovalization and failure, thereby increasing 

the tubes’ mechanical efficiency. 

© 2020 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Specifications Table 

Subject Materials Science 

Specific subject area Biomaterials, Biomimetic Materials 

Type of data Tables, Figures, Videos 

How data were acquired Scanning Electron Microscopy (Vega 3, Tescan, Brno, Czech Republic); X-ray 

Microtomography (Skyscan 1272, Bruker, Kontich, Belgium: 50 kV, 360 ° scans, 

1.5 μm pixel resolution; NRecon Reconstruction Software) 

Data format Raw and Analyzed Data Files. 

Parameters for data collection Highly porous freeze-cast tubes were imaged in their dry state after 

lyophilization, either complete (X-ray microtomography) or after longitudinal 

and transverse sectioning (scanning electron microscopy. 

Description of data collection Scanning electron micrographs and the static and dynamic volume renderings 

of the X-ray microtomograms illustrate the tubes’ microstructures in 2D and 

3D, respectively. 

Data source location Provided with this Data article as Supplementary Files 

Data accessibility With the Article 

Related research article Kaiyang Yin, Max D. Mylo, Thomas Speck, Ulrike G.K. Wegst (2020) 

Bamboo-inspired Tubular Scaffolds with Functional Gradients, J. Mech. Behav. 

Biomed. Mater. https://doi.org/10.1016/j.jmbbm.2020.103826 

alue of the data 

• The combination of SEM micrographs with X-ray microtomograms illustrate particularly well

how different mold designs and coating techniques result in hierarchical microstructures and

graded pore morphologies along the length and across the section of radially freeze-cast

tubes. 

• The systematic correlations between structure and processing parameters discovered in this

study benefit the freeze casting community with strategies for the custom-design of graded

tubes and the biomedical community, who may wish to use them, for example, as conduits

for peripheral nerve repair or as soft ureteral stents. 

• The comprehensive data presented for functionally-graded bamboo-inspired tubes along the

length and across the section can serve as a benchmark for tubes made with modified pro-

cessing conditions or different fabrication techniques. 

. Data Description 

.1. Tube Microstructures by Scanning Electron Microscopy and X-ray Microtomograhy 

Presented in Figs. 1-8 are the results of a systematic microstructural characterization of

reeze-cast [11–15] bamboo-inspired [1–6] tubular scaffolds [ 1 , 7–10 ] with functional gradients.

hown are scanning electron micrographs ( Fig. 1 ) and volume renderings of X-ray microtomo-

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jmbbm.2020.103826
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Fig. 2. Transverse (left) and longitudinal (right) sections of a typical ASA tube. 

Fig. 3. Transverse (left) and longitudinal (right) sections of a typical ASP tube. 

Table 1 

Material combinations of the coaxial ‘core-shell’ molds and their two end pieces [1] . 

Abbreviation Tube Rod Holder 

ASA Aluminum 316 Stainless Steel Aluminum 

ASP Aluminum 316 Stainless Steel Epoxy (Plastic) 

SCA 316 Stainless Steel Copper Aluminum 

CSP Copper 316 Stainless Steel Epoxy (Plastic) 
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rams ( Figs. 2-8 ). Four material combinations were used for the manufacture of the coaxial

core-shell’ freeze-casting molds and the two end pieces that seal them; the materials are listed

n the sequence Tube-Rod-Holder [ 1 , 7–10 ]. The scanning electron micrographs of longitudinal

ections of highly porous freeze cast tubes shown in Fig. 1 were made with following Tube-Rod-

older combinations ( Table 1 ): SCA (316 Stainless Steel, Copper, Aluminum), ASP (Aluminum,

16 Stainless Steel, Epoxy (Plastic)), CSP (Copper, 316 Stainless Steel, Epoxy (Plastic)), ASA (Alu-

inum, 316 Stainless Steel, Aluminum) [1] . 

Figs. 2-8 show A) transverse and B) longitudinal sections through volume renderings of X-ray

omograms of freeze-cast ASA, ASP, CSP, and SCA tubes, and CSP tubes coated by brush freezing

BF), spray coating (SC), and spray freezing (SF) [1] . 
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Fig. 4. Transverse (left) and longitudinal (right) sections of a typical CSP tube. 

Fig. 5. Transverse (left) and longitudinal (right) sections of a typical SCA tube. 

Fig. 6. Transverse (left) and longitudinal (right) sections of a typical BF-CSP tube. 
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Fig. 7. Transverse (left) and longitudinal (right) sections of a typical SC-CSP tube. 

Fig. 8. Transverse (left) and longitudinal (right) sections of a typical SF-CSP tube. 
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.2. Volume Renderings of X-ray Microtomograms 

Shown in Videos 1-7 are 360 ° rotation loops of the volume renderings of X-ray microtomo-

rams of freeze-cast ASA, ASP, CSP, and SCA tubes, and BF-, SC-, and SF coated CSP tubes. 

. Experimental Design, Materials, and Methods 

.1. Chitosan Solution Preparation 

The chitosan solution for freeze casting and brush freezing was prepared by mixing 3.5%

/v chitosan (Chitoceuticals Chitosan 95/200, Heppe Medical Chitosan GmbH, Germany) in 1.5%

/v acetic acid (ACS grade, EMD Millipore, MA, USA) solution on the roller mixer (Wheaton,

J, USA) for 24 hours. The chitosan solution for spray coating and spray freezing was 1.2% w/v

n 1% v/v acetic acid, prepared by the same method. This composition was chosen because it is

articularly well suited for spray coating. Decreasing the concentration would cause the droplets

o freeze before reaching and attaching to the tube; increasing it would result in too viscous a

olution for the formation of a homogeneous mist, instead the solution would drip from the
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nozzle. The fluorescein stained chitosan was prepared by staining chitosan flakes in 0.05 mg/mL

fluorescein sodium salt (Sigma-Aldrich, MO, USA) and 0.05M 1-Ethyl-3-(3-dimethylaminopropyl-

carbodiimide) (EDC, Sigma-Aldrich, MO, USA) in phosphate buffered saline (PBS, VWR, PA, USA)

solution for 6 hours, and washing in DI water for 12 hours [8] . The stained chitosan solutions

(1.2% w/v and 3.5% w/v) were prepared using the same procedure, then stored in the dark. 

2.2. Freeze Casting of Tubular Scaffolds 

The mold for freeze casting was a coaxially fixed tube (3.0 mm inner diameter, 80 mm in

length), rod (2 mm in diameter, 100 mm in length), and space holder combination of differ-

ent materials ( Table 1 ). The chitosan solution was injected into the gap between the tube and

the rod, before the mold was placed in a -80 °C freezer (HF-5017W-PA, VWR, PA, USA) for 20

minutes. The frozen chitosan tubes were demolded and lyophilized at 0.008 mbar and a -85 °C
coil temperature in a lyophilizer (Freezone 6 Plus, Labconco, MO, USA) for 24 hours. The freeze-

dried chitosan tubes were neutralized by 15 minutes immersion in 0.4% w/v sodium hydrox-

ide (reagent grade, anhydrous, Sigma-Aldrich, MO, USA) in 95% ethanol (200 proof, Koptec, PA,

USA), followed by 6 hours of washing in deionized water. The chitosan tubes were stained with

0.01% w/v direct red 23 (Sigma-Aldrich, MO, USA) in PBS solution for 12 hours in the dark, then

washed three times in deionized water [16] . The stained and unstained tubes were either flash

frozen and lyophilized for spray coating and mechanical testing, or stored in the wet state for

spray freezing and brush freezing. 

2.3. Spray Coating 

The dry tubes were attached coaxially and horizontally to a spinning motor on the bed of

a 3-axis stage. An atomizer nozzle (NS60K, Sonaer Inc., NY, USA) was attached to the moving

head of the stage. The chitosan solution (1.2% w/v) was fed into the nozzle by a syringe pump

(NE-300, New Era Pump Systems Inc., NY, USA) at a pumping rate of 10 mL/hour, and atomized

at 60 kHz, 95% power. Spray coating of the 8 mm long tube was conducted by spinning the tube

at 60 rpm, and nozzle motion rate of 1 mm/s along the axial direction of the tube for two round

trips at a vertical distance of 10 mm from the tube. Finally, filtered air was blown onto the tube

to ease the drying of the coating. 

2.4. Spray Freezing 

For spray freezing, a stainless-steel dwell pin (1.8 mm diameter) was gently drilled into the

lumen of the frozen CSP tube replacing the ice core. The pin was attached to the same spraying

system with a 15 mm thick layer of dry ice at 15 mm below the spinning axis. Chitosan solution

(1.2% w/v) was fed at a rate of 40 mL/hour into the nozzle. Spray freezing was conducted at a

spinning rate of 120 rpm, and nozzle motion rate of 1 mm/s for one round trip. The tubes were

first acclimatized in the -80 °C freezer, then lyophilized. 

2.5. Brush Coating Followed by Freezing 

A nylon artistic brush (size #0, Bomega) was attached to the stage instead of the atomizer

nozzle. The brush was wet by the 3.5% w/v chitosan solution, and 0.25 mL chitosan solution

was added onto both sides of the brush. Brush coating was conducted by spinning the tube at

120 rpm with a brush motion rate of 1 mm/s for two round trips. The tip of the brush was just

in contact with the tube. Finally, the resulting tubes were transferred into a -80 °C freezer and

removed only once completely frozen, then lyophilized. 
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.6. Structural Analysis Scanning Electron Microscopy 

The tubes were sliced with a razor blade, mounted onto the sample stub, and sputter coated

ith roughly 10 nm gold (Hummer 6.2, Anatech, CA, USA), then imaged using a Vega 3 (Tescan,

rno, Czech Republic). 

.7. X-Ray Microtomography and Analysis 

The microtomographic analysis of all scaffolds was conducted using a high-resolution 3D X-

ay microscope (Bruker Skyscan 1272, Kontich, Belgium) with a pixel resolution of 1.5 μm, image

imensions of 2452 pixels × 1640 pixels, imaging the samples in a 360 ° scan with a rotation step

ize of 0.6 °, a source voltage of 50 kV without filter, a source current of 200 μA, frame image

veraging over 3 frames, and a random movement correction of 10. Data reconstruction was car-

ied out using the NRecon software (Version 1.6.10.1, Skyscan, Kontich, Belgium) with smoothing

et to 3 (using a Gaussian smoothing kernel of 2), and ring artefact and beam hardening cor-

ections applied. The reconstructed data was visualized in Avizo (Version 9.1, Thermo Fisher, OR,

SA). 

.8. Bending Tests 

For guided, static three-point bending tests an apparatus was designed according to ASTM

tandard D790-17 (ASTM International, 2017) with a span of L = 45 mm. The radius of the upper

nd the lower loading noses was R = 5 mm. The samples were compressed using the Instron and

ioPuls Bath system (33% r.h.) with 5 N load cell and at a strain rate of 0.01 min 

−1 (displacement

ate 1.2 mm/min) until a maximum flexural strain of εf = 5% ( δ = 6 mm) was reached. 
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