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Abstract

Contemporary methods for visualizing phenotypic evolution, such as phylomorphospaces, often

reveal patterns which depart strongly from a naı̈ve expectation of consistently divergent branching

and expansion. Instead, branches regularly crisscross as convergence, reversals, or other forms of

homoplasy occur, forming patterns described as “birds’ nests”, “flies in vials”, or less elegantly,

“a mess”. In other words, the phenotypic tree of life often appears highly tangled. Various explana-

tions are given for this, such as differential degrees of developmental constraint, adaptation, or

lack of adaptation. However, null expectations for the magnitude of disorder or “tangling” have

never been established, so it is unclear which or even whether various evolutionary factors are

required to explain messy patterns of evolution. I simulated evolution along phylogenies under a

number of varying parameters (number of taxa and number of traits) and models (Brownian mo-

tion, Ornstein–Uhlenbeck (OU)-based, early burst, and character displacement (CD)] and quantified

disorder using 2 measures. All models produce substantial amounts of disorder. Disorder

increases with tree size and the number of phenotypic traits. OU models produced the largest

amounts of disorder—adaptive peaks influence lineages to evolve within restricted areas, with con-

comitant increases in crossing of branches and density of evolution. Large early changes in trait

values can be important in minimizing disorder. CD consistently produced trees with low (but not

absent) disorder. Overall, neither constraints nor a lack of adaptation is required to explain messy

phylomorphospaces—both stochastic and deterministic processes can act to produce the tantaliz-

ingly tangled phenotypic tree of life.
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Ever since the development of phylomorphospace visualization tech-

niques (Bookstein et al. 1985 ; Klingenberg and Ekau 1996),

researchers have explored patterns of phenotypic evolution by pro-

jecting phylogenies onto multivariate trait spaces. In many instances,

both formal (Figueirido et al. 2013; Goswami et al. 2014; Martı́n-

Serra et al. 2014; Felice et al. 2018) and informal researchers have

noted that the patterns of evolution thus visualized appear less

orderly than expected. In some cases, researchers have proposed

mechanisms to explain the perceived “messiness” of empirical phy-

lomorphospaces. Underlying all of these explanations is the idea

that the patterns observed with phylomorphospace techniques, ab-

sent some intervening factor, would be much more orderly than

what is actually seen in nature. Thus ultimately, although phylomor-

phospace plots are merely visualization tools, this mismatch is
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believed to contain some fundamental information about phenotyp-

ic evolution for the group in question.

However, null expectations for phylomorphospace patterns are

usually not provided in such studies for even a qualitative compari-

son with the actual data. Researchers can and do of course test

many aspects of their data sets against null models (for rates of evo-

lution, differences in disparity among groups, and so on), but the

features that make phylomorphospace patterns seem “messy”—the

presence of many overlapping or crossing branches within a limited

space—are not usually among them. To the best of my knowledge,

researchers have not quantified or measured such features, nor

studied the null expectations for such features under various scen-

arios. Even areas that might seem to lend themselves to such investi-

gations, such as the study of convergent evolution (Ingram and

Mahler 2013; Stayton 2008 2015) do not provide such data, and al-

though the seminal phylomorphospace analysis paper (Sidlauskas

2008) also developed the related topic of “lineage density”, null

expectations for that measure remain understudied.

Thus it is somewhat surprising that researchers should be so con-

sistent in noting that the phylomorphospace patterns seen in their

data do not match their expectations. What are these expectations,

and from what are they derived? I suspect that the expectations for

what a phylomorphospace “should” look like come from informal,

nonempirical diagrams which either demonstrate phylomorpho-

space concepts (e.g., Sidlauskas 2008, Figures 1 and 4 ), or which

can be interpreted as doing so. Perhaps one of the most popular and

certainly one of the oldest such diagrams is Darwin’s famous “I

think” diagram from his First Notebook on the Transmutation of

Species (Figure 1A). Darwin’s sketch is clearly not a phylomorpho-

space plot in the contemporary sense, and though it may or may not

reflect some implicit information about phenotypic differences

among taxa or lineages, the patterns in this or similar diagrams

could be interpreted by a casual reader as reflecting phenotypic evo-

lution. Similarly, schematic diagrams of multivariate evolution over

time may inform scholars’ expectations of how empirical phylomor-

phospaces will appear.

And what are the patterns shown in such diagrams? Continual

divergence and radiation, perhaps with a trend, on many scales, and

little to no crossing of branches (even if the diagrams are intended to

illustrate convergent evolution!; Stayton 2008, 2015). Obviously,

this style makes for cleaner and easier-to-interpret diagrams, but its

suitability as an expectation for actual evolution, adaptive, or other-

wise, is uncertain. The expectations produced by such sketches may

be reinforced by the fact that some famous examples of evolution

used to illustrate phylomorphospace concepts (e.g., the morphology

of Anolis lizard ecomorphs, Figure 1B) also appear relatively order-

ly, though not completely without entanglement. Other empirical

phylomorphospace spots are occasionally well-ordered as well

(Figure 1C). However, it is still unknown whether these examples

are representative of the patterns expected under various evolution-

ary conditions.

The goals of this article are, first, to define ways to quantify the

qualitative impression of tangled disorder within phylogenies, and

second, to explore the effects that various evolutionary parameters

Figure 1. (A) Darwin’s “I think” diagram from his First Notebook on the Transmutation of Species (1837). (B) A relatively orderly and well-known phylomorpho-

space visualization of Anolis lizard ecomorph evolution; data from Revell (2012). (C) A relatively orderly phylomorphospace plot of pleurodire turtle shell shape;

from Wise and Stayton (2017).
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have on those measures. Besides exploring the effects of the number

of taxa or number of dimensions on disorder (the term used in this

article in lieu of more informal words such as “tangledness” or

“messiness”) in phylogenies, I also explore the effects of various evo-

lutionary models: the familiar Brownian motion (BM), Ornstein–

Uhlenbeck (OU), and early-burst (EB) models, as well as a model

which incorporates character displacement (CD) and a new model

that uses information on functional performance to simulate evolu-

tion on complex adaptive landscapes.

Why is this important? After all, a mismatch between scientists’

perceptions of the pattern of evolution and the actual pattern of evo-

lution might be of some sociological interest, but what is the salience

to an actual understanding of the history of life? First, perceptions

of patterns guide areas of inquiry, influence the questions which

researchers consider, determine the topics chosen for study, and

even influence the direction of grant funding. If, for example, high

levels of disorder are assumed to reflect strong limitations on evolu-

tion (Felice et al. 2018), then research may be directed toward stud-

ies of developmental constraint in systems that may or may not

manifest such constraints (at least not very strongly). Similarly, if

disorder is believed to reflect certain features of adaptive evolution

(Figueirido et al. 2013; Martı́n-Serra et al. 2014), then researchers

may disregard searches for constraints or other influences on seem-

ingly “messy” data.

Second, and more substantively, although phylomorphospace

plots are simply convenient abstractions, they do reflect underlying

patterns in data. Thus by studying these plots, and the often-

surprising amounts of disorder which they reveal, researchers also

study broader-scale patterns of evolutionary diversification. Such

patterns then inform perennial debates in evolutionary biology, such

as those on the relative amounts of divergence versus convergence

among taxa (see Stayton 2015), the relative roles of adaptation and

constraint in shaping diversification (Losos 2011), or the relative im-

portance of adaptive radiation in the history of life (Simpson 1953;

Harmon et al. 2010). This information, in turn, can then be used to

guide studies of all of the processes involved in biological diversifica-

tion. Darwin’s (en)tangled bank is an image of diversity and inter-

action, all produced by a common set of processes (Darwin 1859),

but which processes most tangle the tree of life?

Materials and Methods

Quantifying disorder
I used 2 measures to quantify the degree to which phenotypic evolu-

tion produces a “tangled” pattern when visualized using phylomor-

phospace techniques. The first method could only be used for 2-

dimensional data: each lineage on a phylogeny was compared with

all other lineages, and each time 2 lineages “cross” one another

(that is, each time there was an intersection between lineages) was

counted, providing a measure here called “crosses”. Code to calcu-

late this measure is provided as a Supplementary File. Second, lin-

eage density (as defined by Sidlauskas 2008) was quantified. The

total amount of phenotypic evolution that occurred on a phylogeny

(that is, the sum of all branch lengths in phenotypic space) was cal-

culated. This was then divided by the pth root, where p is the num-

ber of traits, of the total amount of shape space occupied by all of

the taxa on a phylogeny. I quantified morphospace occupation vol-

ume using a Gaussian kernel density estimate, which avoids prob-

lems of outliers or non-normally distributed data, using the

hypervolume_gaussian function in the R package “hypervolume”

(Blonder et al. 2014). Large amounts of evolution restricted to very

small areas necessarily produce large lineage densities as well as a

tangled appearance to phylomorphospace plots.

Preliminary study of the effect of tree size and number

of traits
I performed all simulations in R (R Core Team 2020). First, I con-

ducted a number of simulations of undirected evolution (BM model)

to assess the effect of tree size and dimensionality on phylomorpho-

space disorder. Trees with n¼32, 64, 128, 256, and 512 tips were

used. Data were simulated on p¼2, 3, 5, and 10 traits.

Computation time for hypervolumes made the use of larger numbers

of tips or traits impractical. A total of 1,000 random trees were gen-

erated for each combination of tip and trait numbers using the rtree

command in the R package “ape” (Paradis and Schliep 2018). I

simulated evolution under a BM model along each tree, for each

trait, using the fastBM command in the R package “phytools”

(Revell 2012), with r2 (the rate of evolution) set to 1, the ancestral

state set to 0 for all traits, and no correlation between evolution of

any traits. Uncorrelated traits were specifically chosen to determine

whether substantial amounts of disorder are suggestive of correla-

tions between traits which may result, among other things, from de-

velopmental constraints (Goswami et al. 2014; Felice et al. 2018).

After each simulation, ancestral states for each trait were recon-

structed using the fastAnc command in “phytools”. I then calculated

the number of crosses (for p¼2 only) and lineage density for each

tree. Note that, as these analyses are conducted on simulations, the

actual ancestral states were available. However, this would not typ-

ically be the case in empirical studies of evolution. Since the goal of

this study is to provide expectations for phylomorphospace messi-

ness against which empirical findings can be compared, the number

of crosses and lineage density were calculated from reconstructed

ancestors. This will necessarily change some measures away from

the “true” values—for the ancestral state methods used here, all

ancestors are reconstructed as weighted averages of descendants,

such that ancestors can never be reconstructed outside of the range

of their descendants even though some of the “real” ancestors may

have occurred outside of that range, with potential effects on

“crosses” and definite effects on lineage density—but it makes for

more useful null models against which real data can be assessed.

Note also that no dimensionality-reduction techniques (such as prin-

cipal components analysis) were used on any data sets—analyses

were conducted using all trait dimensions for all simulations.

Quantifying the effect of different modes of evolution
Next I conducted a series of simulations to determine the role that

different modes of evolution might play in generating disorder with-

in evolutionary phenotypic data. Here, trees with n¼32 or 256 tips

were used (to compare effects between relatively small and relatively

large trees), and p¼2, 5, or 10 traits (to compare effects between

relatively small and relatively large data sets).

I explored 4 different models of evolution (beyond BM). First, to

investigate the potential effect of adaptation on diversification and

disorder, evolution was simulated according to an OU process

(Butler and King 2004). In all cases, r2 was set to 1, a (the strength

of the restraining force in the OU model) was set to 1, the ancestral

state was set to 0, and there were no evolutionary correlations be-

tween traits. The number of peaks was set at one greater than the

dimensionality of the data (e.g., 6 peaks were simulated for the 5-di-

mensional data set) to ensure that the peaks did not constrain evolu-

tion to a lower-dimensional “slice” of phenotypic space—these
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numbers match reasonably with empirical studies which have found

strong support for anywhere from 2 to 15 peaks in multidimensional

data (Ingram and Mahler 2013; Mahler et al. 2013; Sheftel et al.

2013; Arbour and López-Fernández 2014; Grundler and Rabosky

2014; Ingram and Kai 2014; Shoval et al. 2012; Almécija et al.

2015; Tendler et al. 2015; Blom et al. 2016; Esquerré and Keogh

2016; Khabbazian et al. 2016; Moen et al. 2016; Davis and

Betancur-R 2017; Arbour et al. 2019; Slater and Friscia 2019).

Peaks were located at equal distances from one another, slightly

inside the average range of tip values seen in corresponding BM sim-

ulations, in order to generate approximately equal variance between

the OU and BM simulations. Lineages were modeled as experiencing

transitions between adaptive regimes (i.e., between “peaks” to

which they are responding) according to a stochastic model. The

transition matrix for each tree size was chosen to provide approxi-

mately 5 transitions within a 32-taxon tree, and 40 transitions with-

in a 256-taxon tree, matching observed numbers of transitions from

empirical studies (Blom et al. 2016; Almécija et al. 2015; Arbour

and López-Fernández 2014; Arbour et al. 2019; Davis and

Betancur-R 2017; Slater and Friscia 2019; Khabbazian et al. 2016;

Esquerré and Keogh 2016; Ingram and Kai 2014; Evans et al. 2017;

Zelditch et al. 2017; Mahler et al. 2013; Grundler and Rabosky

2014; Moen et al. 2016).

I modeled transitions between regimes separately for each tree

using the sim.history command in “phytools”. Once all parameters

were set, OU evolution was simulated using the mvSIM command in

the R package “mvMORPH” (Clavel et al 2015). After each simula-

tion, the number of crosses (for p¼2) and lineage density were cal-

culated for each tree. Unfortunately, a realistic number of

transitions per tree meant that smaller trees (n¼ 32) usually did not

produce situations where all adaptive peaks were visited, and thus

where the dimensionality explored by evolving clades was less than

that of the full data set, skewing calculations of occupied hypervo-

lume. For this reason, simulations with 32 tips and 5 or 10 traits

were not used in subsequent analyses.

In addition I developed a new method to simulate evolution on a

more complex and potentially more realistic adaptive landscape.

This method also utilizes OU concepts and mathematics, but applies

them to a much wider set of empirically-derived, continuous peaks

rather than the few discrete peaks usually employed in OU

modeling.

This method thus represents an extension of a set of techniques

(Tseng 2013; Polly et al. 2016; Stayton 2019a, 2019b) inspired by

Pareto front concepts (Shoval et al. 2012; Sheftel et al. 2013; see

also references in Niklas 1999; McGhee 2006 for earlier applica-

tions). Specifically, the techniques start with a set of validated per-

formance landscapes for multiple functions of a given structure

(Tendler et al. 2015; Stayton 2019a, 2019b). Performance land-

scapes are multivariate representations of the relationship between

phenotype and functional performance (see Arnold 1983, 2003;

Arnold et al. 2001), inspired by the adaptive landscape concepts fre-

quently evoked in evolutionary biology (Wright 1931; Gavrilets

2004; Kaplan 2008; Ghokale et al. 2009), and are often used to gen-

erated predictions regarding diversification (Alfaro et al. 2004,

2005). In the newer techniques, these performance landscapes are

assigned relative weights (ranging from 0 to 1 for each function, and

always summing to 1 for all functions), reflecting their relative se-

lective importance for a given species, and then combined to deter-

mine the optimal shape for that combination of weights. This is

repeated for every combination of relative weights to derive a set of

“optima”—that is, the set of predicted phenotypes that should

evolve under any set of selective regimes on the functions under in-

vestigation. Here, the optima derived for turtle shells under 3 func-

tions (Stayton 2019a) were used as a representative set of peaks.

For the new evolutionary modeling method developed here,

these optima are used as the basis for simulations. Once the optima

are available and a tree has been generated, the simulations pro-

ceeded as follows: first, the relative weights associated with each of

the 3 functions are evolved according to a BM model, using the

fastBM command in the R package “phytools” (Revell 2012), with

r2 (the rate of evolution) set to 1 and the ancestral states set to 0.33

(i.e., starting with equal importance for all functions). Ancestral

states are then calculated from the tip values using the fastAnc com-

mand in “phytools”. Values were rescaled to keep the relative

weights of all functions, but so that all weights summed to 1 for

each node.

After the evolution of relative weights had been reconstructed,

each ancestral node was assigned an adaptive regime according to

an OU model, with the “peak” being the optimum which corre-

sponds to the set of weights for each ancestor, and r2 and a set to 1.

Essentially this models evolution on a landscape with many peaks

and with smooth transitions between adjacent peaks. Evolution of

the 2 phenotypic traits was then simulated on the tree using the

OUwie.sim command in the R package “OUwie” (Beaulieu et al.

2012). As with more conventional OU models, the locations of the

optima were scaled so that the simulations produced data with ap-

proximately the same variance and range as did BM simulations on

trees with the same numbers of tips. These procedures were con-

ducted 1,000 times, and crosses and lineage densities were calcu-

lated for all iterations.

Next I used an EB model (Blomberg et al. 2003; Harmon et al.

2010) to explore the ways in which adaptive radiation of taxa might

produce disparity and disorder. A total of 1,000 trees were gener-

ated for each combination of tip and trait numbers, and branch

lengths were then transformed using the rescale.phylo command in

the R package “geiger” (Pennell et al. 2014), with a¼�0.75.

Evolution was then simulated according to a BM model with r2¼1

and all ancestral states¼0. This transformation effectively moves

most phenotypic change to early branches, potentially generating

multiple clusters of species close to one another but far from other

species in different clusters. The number of crosses (for P¼2) and

lineage densities were calculated for each iteration.

Finally, I studied a model incorporating CD using a method

developed by Drury et al. (2016, 2018) that imposes a tendency on

lineages to evolve greater phenotypic distance from one another.

This mode of evolution was implemented using the sim.divergence.-

geo command in the R package RPANDA (Morlon et al. 2016). To

maximize the potential impact of this mode of evolution, all taxa

were modeled as interacting with all others. r was set to 1�10�6

and m (the strength of the tendency for taxa to evolve greater pheno-

typic distance) was set at 0.02. These parameters were chosen be-

cause they approximate values found in empirical data and because

they ultimately produce the same variance of tip data seen in

equally-sized trees under a BM model. Again, 1,000 simulations

were run for each combination of tree size and trait number and the

number of crosses (p¼2) and lineage densities were calculated for

each simulation.

Analysis of results
I first explored the relationships between the measures of disorder,

tree size, and number of dimensions using simple linear regression.

However, since larger trees have more branches and thus more
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opportunities for crossing, it was necessary to scale the “crosses”

measure before regression. It was not possible to derive an analytical

maximum to the number of crosses which could occur in a tree for a

given size. Therefore, 2 separate scalings were used: one with the

“crosses” scaled to the number of tips on the tree, and with the

“crosses” scaled to the maximum observed across all simulations.

No rescaling was necessary for lineage density. Variables were log-

transformed before analysis.

I also used analysis of variance( ANOVA) to assess the joint

effects of tree size and number of traits on disorder. However, this

was only possible with lineage density (because only this measure

can be applied to data sets with P<2). Lineage density was the re-

sponse variable and tree size and the number of traits were factors.

Next I explored the relationships between the measures of dis-

order and different modes of evolution using ANOVA. First, I per-

formed a set of “naı̈ve” ANOVA with either number of crosses or

lineage density as the response variable and mode of evolution as a

factor for each combination of tree size and number of traits. I also

conducted ANOVA with either number of crosses or lineage density

as the response variable and with mode of evolution, tree size, and

(for lineage density) number of traits as factors.

Next, a new set of ANOVA was conducted which attempted to

control for the different amounts of variation observed from differ-

ent modes of evolution. Here, “crosses” and lineage density were

still the response variables and mode of evolution and the average

variance across all variables were factors. I conducted ANOVA sep-

arately for all combinations of tree sizes and number of traits. All

ANOVA were conducted using the aov command in R. Post hoc

tests were used to investigate pairwise differences between individ-

ual modes of evolution.

Results

Tree size and number of traits
Larger trees produce greater amounts of disorder under a BM model

of evolution (Figure 2 andTables 1, 2). This holds with disorder

measured as the number of “crosses” even if the numbers are

rescaled (Table 1), and with lineage density (Table 2). ANOVA indi-

cated that increases in both tree size and number of traits result in

increased lineage density (P<2.00�10�16 for both factors;

Figure 2B). There was a significant interaction as well—the relation-

ship between lineage density and tree size is steeper for higher num-

bers of traits (P<8.54�10�14, Figure 2B).

Different modes of evolution
The different modes of evolution are associated with significantly

different levels of disorder. This holds across different tree sizes and

numbers of dimensions, whether disorder is measured by the num-

ber of “crosses” of branches (ANOVA, 32-taxon trees: F¼1668,

P<2�10�16, 256-taxon trees: F¼4315, P<2�10�16; Figure 3)

or by lineage density (Table 3 and Figure 4). Evolution according to

the CD model produces the lowest amount of disorder, then the EB

mode, then BM. The OU-based models produced the highest

amounts of disorder (Figure 4). Post hoc tests indicated that all

modes of evolution produced significantly different amounts of dis-

order (all pairwise tests produced P<0.005 for all tree sizes, num-

bers of dimensions, or measures of disorder). These relationships

also hold if variation in the data (measured as the average variance

of the tips across all axes) is accounted for (Table 4; all post hoc tests

of pairwise differences produced P<0.001).

Figure 2. (A) Average number of crosses among branches versus tree size, for data simulated according to a BM model (1,000 simulations per point). (B) Average

lineage density versus tree size, for different numbers of traits, for data simulated according to a BM model (1,000 simulations per point).

Table 1. Linear regression of “crosses”, as well as “crosses” scaled

using 2 different methods, against tree size for 2-dimensional data

Measure r2 P <

“Crosses” 0.968 2.46� 10�2

“Crosses”/number of taxa 0.992 2.83� 10�4

“Crosses”/maximum observed “Crosses” 0.918 1.02� 10�2

Table 2. Linear regression of lineage density against tree size for

various numbers of traits

Number of traits r2 P<

2 0.847 5.06� 10�11

3 0.875 2.48� 10�10

5 0.964 9.74� 10�6

10 0.996 1.83� 10�8
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Discussion

Substantial amounts of disorder, as visualized by phylomorphospace

plots and quantified by crossing branches or lineage density, can be

generated in comparative data even in the absence of adaptation,

constraint, or other influences on evolution beyond random drift

(Figure 2). For an easily-conceptualized example: for a tree of 256

taxa and with 2-dimensional data, each branch in the

phylomorphospace plot is expected to cross 3 other branches on

average even if evolution proceeds according to a BM model with

no constraints.

Disorder in comparative data consistently increases as tree size

and the number of traits increase when evolution is simulated

according to a BM model (Figure 2; Tables 1 and 2). The results for

crossing branches seem to follow an exponential trend, which raised

concerns that the counts are simply the result of larger opportunities

for crossing branches in larger trees, but the pattern holds even if the

higher number of branches on larger trees is accounted for

(Table 1). This by itself is an interesting result—all else being equal,

researchers should expect phylomorphospace plots of larger data

sets to be more disordered than smaller ones. The reason for this

pattern seems to be that larger trees simply present proportionally

more extensive opportunities for the phenomena which produce dis-

order (such as convergence, reversal, and so on) to manifest—evolu-

tion on a 4-taxon tree will by necessity almost always appear

divergent, for example, although a single early reversion to an area

of phenotypic space close to the ancestral states will result in large

amounts of disorder in a larger tree even if subsequent evolution is

mostly divergent. Similar arguments apply for the increasing dis-

order seen with increasing numbers of traits. The lineage density

equation accounts for the number of dimensions, so stochastically

perhaps there is a greater probability that convergence or reversal

will occur along at least some dimensions in a high-dimensionality

data set, with subsequent effects on lineage density as a whole.

Of greater importance are the effects of different modes of evolu-

tion on disorder. In some cases, these results are intuitive: the model

involving CD consistently showed much lower levels of disorder

than all other modes of evolution, for example. By promoting the

evolution of greater distance among taxa, divergence is facilitated

and reversal, parallelism, and convergence are inhibited. As such it

is unsurprising that this model produces low lineage densities and

few crossing branches (and predictable evolution, if the low levels of

variance of results are any indication). This model could perhaps be

taken as a baseline for the minimal amount of disorder that can be

expected in an evolutionary data set. However, it should be noted

that the parameters used here, which include interaction and dis-

placement among all species, may not be realistic for many clades (it

Figure 3. Differences in the disorder of phylomorphospace plots, measured as the number of crossing branches generated by BM, EB, CD, OU, and landscape-

based OU (OUL) models, shown in violin plots. Each plot shows the results of 1,000 simulations for each model. (A) 32-tip phylogeny. (B) 256-tip phylogeny.

Table 3. ANOVA results for differences in the amounts of disorder,

measured by lineage density, produced by different modes of evo-

lution, for different tree sizes and different numbers of dimensions

Number of tips Number of

dimensions

F P <

32 2 31,508 2� 10�16

32 5 23,115 2� 10�16

32 10 25,391 2� 10�16

256 2 50,519 2� 10�16

256 5 35,827 2� 10�16

256 10 90,999 2� 10�16

Table 4. ANOVA results for differences in the amounts of disorder,

measured by lineage density, produced by different modes of evo-

lution, for different tree sizes, and different numbers of dimen-

sions, and controlled for tip disparity (measured as the mean

variance across all dimensions)

Number of tips Number of

dimensions

F P <

32 2 62,154 2� 10�16

32 5 41,466 2� 10�16

32 10 46,957 2� 10�16

256 2 1,33,790 2� 10�16

256 5 67,557 2� 10�16

256 10 3,54,324 2� 10�16
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is probably unlikely that all taxa would co-occur and interact). In

addition, it is important that some disorder does still occur even in

this “best-case” scenario for orderly phylomorphospaces.

The EB model also produced relatively low levels of disorder.

Here, rapid rates of evolution early in a clade’s history make a

“starburst” pattern (or a nested series of “starbursts”) of disparity

more likely—the major clades in a phylogeny rapidly evolve toward

usually-separate areas of phenotypic space, and then diversify.

Although this does not have a great effect on the number of crossing

branches (after all, there are still plenty of opportunities for

branches to cross within clusters; Figure 3), the effect on lineage

density is substantial (Figure 4) because this model produces a dis-

proportionate number of taxa in clusters close to the periphery of

the occupied area of phenotypic space (Figure 5B). Empirical exam-

ples of such distributions are rare, perhaps because they are difficult

to see unless to centroid of the distribution remains empty, but they

do occur (Wise and Stayton 2017; Burns and Sidlauskas 2019) and

even if the pattern itself is visually unobserved, a surprisingly low

lineage density for a clade might serve as a motivation to investigate

the possibility of an adaptive radiation within.

Notably, it was the EB and CD models, and not the OU models

(see below), whose phylomorphospace plots corresponded most

closely to the intuitive exemplar images of orderly, divergent evolu-

tion (compare Figure 5B,C with Figure 1). Could it be that biologists

implicitly assume a greater degree of early divergence or competitive

exclusion than is usually found in evolving clades (EB evolution at

least may be rare—see Harmon et al. 2010—although more multi-

variate studies are needed; e.g., Arbour and López-Fernández

2013)?

Along those lines, intuitions that adaptive evolution should pro-

duce well-ordered data seem to be incorrect, as both OU-based mod-

els produced significantly higher levels of disorder than did

evolution according to any other model. Why? An investigation of

representative phylomorphospace plots (Figure 5) and a comparison

with the EB results provides some hints. Both OU and EB tend to

produce “clumpy” or clustered distributions of taxa, with evolution

approximating a BM model within clusters. In OU models, these

clusters occur around peaks and the restraining force of selection

may tend to slightly increase homoplasy and hence crossing of

branches within those regions. More importantly, however, lineages

can move between clusters in the OU model. Not only does this pro-

mote more crossing of branches when lineages switch peaks (espe-

cially as there are a limited number of paths between peaks), but it

also greatly increases the amount of evolution that occurs within the

space defined by the peaks, increasing lineage density. Unless the

number of transitions is very low (and again, the parameters used in

this study produced biologically-reasonable frequencies of transi-

tions—on average 4.7 for the 32-taxon trees and 44.3 for the 256-

taxon trees) evolution among a set of discrete peaks will

produce much the same effect as that proposed for constraints

Figure 4. Differences in the disorder of phylomorphospace plots, measured as lineage density generated by BM, EB, CD, OU, and landscape-based OU models.

Individual plots show results on trees with different numbers of tips and with data simulated for different numbers of traits. Each plot shows the results of 1,000

simulations for each model. Lineage density is plotted against the mean variance of tip data for standardized comparisons, because different modes of evolution

produce different amounts of variation across tips in the phylogeny, and because lineage density clearly varies with mean variance for at least some models.
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(Goswami et al. 2014; Felice et al. 2018)—plenty of evolution in a

small space with concomitant increases in disorder. These results

strongly indicate that researchers should not take the presence of

high levels of disorder as indicative of a lack of selection, nor neces-

sarily of constraints on evolution.

All of the preceding arguments apply to the landscape-based OU

model as well, with some modifications. Here, evolution takes place

among a greater number of less widely-spaced peaks, and with

many more transitions between peaks. Numerous crosses still occur

as lineages evolve toward nearby peaks, although the absence of

peaks in certain regions of phenotypic space still ensures that evolu-

tion will occur within a limited range. Moreover, the greater number

of peaks, as well as the far greater number of paths between peaks,

probably facilitate increased crossing of branches relative to the

traditional OU model. The greater number of closely-packed peaks

probably produces a less clustered distribution of tips than do the

Figure 5. Representative phylomorphospace plots of data generated on a 128-tip tree by: (A) A BM model. (B) An EB model. (C) A CD model (following Drury

et al. 2016, 2018). (D) A 3-peak OU model with the locations of peaks indicated by large grey circles (following Ingram and Mahler 2013). (E) A landscape-based

OU model with the locations of optima indicated by grey crosses.
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traditional OU models. However, this also means that a lower per-

centage of available peaks are likely to be “discovered”, and thus

that a smaller proportion of adaptive phenotypic space will be

explored, producing higher lineage densities (see Figure 5E). Indeed,

only rarely did lineages end up evolving in response to optima

located throughout phenotypic space, even in runs using trees with

256 tips. These landscape-based models were intended to provide a

more realistic and grounded view of evolution, and have been shown

to predict species distributions quite well (and better than more trad-

itional OU models; Stayton 2019a). However, they have seen only

limited use so far—future studies will be needed to establish their

more general applicability and to determine if empirical data and

disorder fit these models better than more traditional OU models.

From a biological standpoint, then, this study supports a number

of general conclusions. First, substantial amounts of disorder, suffi-

cient to produce phylomorphospace plots with “messy” appearan-

ces, can be produced through many different modes of evolution

(Figure 5). Second, selection per se is neither necessary nor sufficient

to produce particularly high or low levels of disorder. For example,

both the CD and OU models involve selection (explicitly for the OU

models and implicitly for the CD model) but produce widely differ-

ent amount of disorder. The nature of selection seems important

here—adaptation in response to a static adaptive landscape may

promote disorder, although selection in response to (potentially

closely-related) competitors might inhibit it. Additionally, the EB

model, which includes no selection at all, also produced well-order

phylomorphospaces and low levels of disorder. Third, neither correl-

ation among characters nor limits to evolution (as might be pro-

duced by developmental constraints) were modeled here, indicating

that neither of these factors is necessary to produce highly disor-

dered phylomorphospace plots, although they might certainly ex-

acerbate disorder when present. Future studies could benefit from

additional exploration of various evolutionary parameters (correla-

tions between or limits to character evolution, changes in evolution-

ary rates, different modes of speciation, and different sources of

selective factors) on disorder—clearly our intuitive expectations of

what a phylomorphospace “should” look like can obtain, but only

in specific and sometimes nonintuitive circumstances.

Practically, the disorder measures described here may be used to

generate expected distributions for various models against which to

compare empirical data and thus investigate potential modes of evo-

lution. For example, a data set of turtle shell shape (Stayton et al.

2018) with 280 taxa produced 3117 crosses and a lineage density of

65.9 when the first 2 PCs were examined. These are high values, and

consistent only with an OU model, likely one with many peaks

(which is satisfying, because this is the data set that inspired the

landscape-based OU model), suggesting strong selection but a lack

of competitive CD among the lineages. Studies with similarly messy

phylomorphospaces might also find evidence for this mode of selec-

tion among their data.

More broadly, if authors of future studies wish to draw conclu-

sions from the appearance of phylomorphospace plots (or, more im-

portantly, from signal in the underlying data), they should first

compare their observations to null models to ensure that their con-

clusions match expectations for their favored mode of evolution, or

even whether any explanation for the pattern is warranted at all.

Evolution, it seems, can be complicated enough without the influ-

ence of processes like adaptation and constraint. Relatively ordered

data which produce clean and intuitive phylomorphospace plots

(Figure 1B) may be the exception rather than the rule among life.

When Darwin wrote of a “entangled bank” (specifically, his second,

more famous, and more metaphorical reference to such a bank from

The Origin of Species (1859); this is the one appearing in the final

paragraph of that book), he was referring to a vast array of highly

diverse and interacting species; this study suggests that individual

clades, even absent interaction with other taxa, can produce trees

that are tangled enough on their own.
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