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Abstract
Although simple social structures are more common in animal societies, some taxa (mainly

mammals) have complex, multi-level social systems, in which the levels reflect differential

association. We develop a simulation model to explore the conditions under which multi-

level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs

between foraging and social interaction, and explores the impact of alternative strategies for

distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk,

stress and access to food resources that reward social strategies differentially. The results

suggest that multi-level social structures characterised by a few strong relationships, more

medium ties and large numbers of weak ties emerge only in a small part of the overall fitness

landscape, namely where there are significant fitness benefits from wellbeing and alliance

formation and there are high levels of social interaction. In contrast, ‘favour-the-few’ strate-

gies are more competitive under a wide range of fitness conditions, including those produc-

ing homogeneous, single-level societies of the kind found in many birds and mammals. The

simulations suggest that the development of complex, multi-level social structures of the

kind found in many primates (including humans) depends on a capacity for high investment

in social time, preferential social interaction strategies, high mortality risk and/or differential

reproduction. These conditions are characteristic of only a few mammalian taxa.

Introduction
It has become increasingly clear that some (but by no means all) social species live in complex,
hierarchically-organised, multi-layer social systems [1–4]. In many cases, these multi-level
societies are founded on bonded relationships [5–8] and, at least in primates (including
humans), this ‘bondedness’ is responsible for the layering by differentiating close from weak
relationships (strong vs. weak ties in the sense of [9]). Bonded relationships of this kind com-
monly depend on the investment of considerable time in servicing relationships, and the long
term stability of such relationships is invariably fragile in the absence of such investment
[3,10–16]. Perhaps not surprisingly, these kinds of multi-level social systems are relatively rare:
most mammals and birds have simple, unstructured societies based on either relatively casual
relationships or small social groups (e.g. monogamous pairs or harems) and only a very small
number of taxa (mainly primates, elephantids, delphinids, equids) habitually exhibit multi-
level sociality [2,3,7,17].
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While the evolutionary origins of simple societies are well understood [18], there is no gen-
eral theory (aside from kin selection) to explain the evolution of multi-level social systems, and
even then none provides a principled explanation as to why these societies should be multi-lay-
ered. Why should a species invest a scarce commodity (time and/or emotional effort) into cre-
ating and maintaining a social system of such seemingly unnecessary complexity? Why do
these taxa not simply form loosely organised but flexible herds like many deer and bovids, espe-
cially given the costs that bonded relationships seem to incur in terms of time investment?

One plausible explanation is that the various layers provide different benefits [19], imposing
trade-offs that create sufficient viscosity to prevent individuals or sub-groups drifting
completely apart. The benefits derived from close social support [20–24], for example, might
promote the formation of small foraging groups or grooming cliques, while group-level bene-
fits that derive from cooperative hunting or information exchange [18], reducing predation
risk [25–28] or minimising the risks of raiding by conspecifics [4,29,30] might motivate the for-
mation of higher-level communities.

In this paper, we use computational modelling to ask what conditions lead to the emergence
of multi-level social structures in group-living species. We use humans as our test case because
they provide the most explicit and best understood (as well as by far the most complex) exam-
ple of a multi-level social system. Human societies are characterised by four hierarchically
inclusive grouping layers that have quite specific sizes (see [31–34]), and this provides us with
a quantitative benchmark for the model to match. In fact, these same layers occur in other
mammal taxa, such as primates and delphinids, that have complex multi-level societies, with
essentially the same numerical sizes [3]. Thus, in studying the more complex human case, not
only do we maximise the complexity we have to explain in a strong test of the model, but at the
same time we cover the less complex cases found in other mammalian taxa.

Human social networks and communities have been shown to consist of four separate layers
of relationship [31,32,35]. The innermost two layers have been identified as the support clique
with circa 5 members [36,37] and the sympathy group with 15 members [37,38], followed by
an affinity group of 50 and an active network of 150 individuals [19], with each layer being
inclusive of those within it. These layers represent natural disjunctions in both the level of inti-
macy between individuals and the frequency with which they interact, and are well established
in the human literature [9,11,19,35,39–44]. It seems that these layers reflect constraints
imposed by the fact that available social time is limited and so must be apportioned among
relationships of different quality in such a way as to optimise the benefits they yield relative to
the costs of maintaining relationships of the appropriate quality to provide those benefits [14–
16,19].

We will focus on the two innermost (5 and 15) and the outermost (150) layers. Note that
these layers are conventionally counted cumulatively [19]: successive layers consist of 5 strong
relationships, 10 medium relationships and 135 weak relationships. For present purposes, we
will overlook the intermediate 50 layer, since this would require us to add a further layer-spe-
cific functional benefit, and so add significantly to computational complexity on what is
already an unavoidably complex model. We define any strategy that yields this pattern as being
‘structure-compliant’, meaning that it correctly matches this pattern. We ask three questions.
First, given that multi-level structuring is rare in the natural world, are such social systems also
rare in the model, with unstructured or small group patterns being more common (i.e. easier to
evolve)? Second, what kinds of relationship strategies yield the layered distribution of exactly
these sizes? Our third question is: under what fitness regimes does this multi-level structuring
arise?
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Modelling the Emergence of Social Structure
The central assumption of our model is that different kinds of relationship provide different
kinds of benefits [19], and that it is the balance of the trade-offs between these different benefits
and the costs of servicing the relationships underpinning them that gives rise to structured
social groups, with these benefits being maximised by living in groupings of different size [19].
In effect, multi-level social systems allow individuals to live simultaneously in the several differ-
ent groupings that they need to maximise their fitness, whereas unstructured societies with a
single optimal grouping size are likely to emerge when one fitness function overrides all others.
For present purposes and for computational convenience, we will focus on just two kinds of
benefit: defensive alliances (that provide close social or emotional support as well as protection
against attack by conspecifics) and information exchange (essentially, foraging efficiency), both
of which are deemed to be important for animals as well as humans [9,45,46]. However, we
should emphasise that the specific benefits we use as our exemplars are less important than
their functional characteristics: what is important is not the benefits per se but how they relate
to relationship quality, the time costs of servicing them, and the impact they have on fitness. So
long as there are at least two benefits that differ in the way we define below, our model is
general.

The proximity of those who can be trusted to come to one’s aid should reduce stress by their
reassuring presence and the implicit promise of intervention in conflicts, as has been docu-
mented in primates [20,21,47]. Among humans, there are striking effects of close friendships
on wellbeing. Fowler and Christakis, for example, have shown how the happiness of friends
and friends-of-friends can influence an individual’s happiness, and that this effect extends to
various fitness-related conditions such as illness, obesity and even mortality risk [48–50]. Simi-
larly, among baboons, females who are better embedded within their social networks live lon-
ger and have more surviving offspring [22–24].

Even though large support groups will always be more effective than smaller ones, size may
be constrained for three reasons. First, only so many individuals may be able to provide the
benefit at any one time (a too-many-cooks-spoil-the-broth effect). Research in the social psy-
chology of group work confirms that benefits are asymptotic: larger groups commonly fail to
perform in proportion to their size [51] for a number of reasons, including freeriding and loss
of motivation [52]. Second, close relationships are usually reciprocal [44], so while each rela-
tionship accumulates potential benefit to an individual, it does so at the cost of exposing that
individual to the risk of being called upon to reciprocate commitments to all of those from
whom it receives the benefit. Third, the underlying basis of the trade-off is that, if the quality of
a relationship (and hence its reliability) is a function of the time invested in it [11,19], there will
be investment costs to creating and, in particular, maintaining such relationships. A cost/bene-
fit trade-off will typically favour limiting investment in a small subset of individuals (‘special
friends’ sensu [5]) rather than spreading one’s available social time budget more thinly among
many individuals (see also [53]).

By the same token, the ecological benefits that derive from group-living (whatever these may
be) will likewise be subject to diminishing returns as the costs incurred by living in ever larger
groups increase. In this case, the trade-off will be due to the ecological costs incurred by main-
taining a large group (mainly increased day journey lengths, direct foraging competition and/or
disrupted time budgets: [54]) as well as the difficulty of investing enough time in these (weak tie)
relationships to make them work and, importantly, to maintain group coordination [55].

Our model is thus based on two key assumptions: (i) Relationship strength is directly pro-
portional to the frequency of social interactions, although the incremental increase in relation-
ship strength is subject to a law of diminishing returns; and (ii) Relationship strength wanes
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over time. This core model is justified by the empirical observation that emotional closeness in
relationships increases as a function of rate of interaction and then declines more gradually
unless maintained by frequent social contact [11,56]. Sutcliffe and Wang [57] demonstrated
that, in agents with different social preference strategies, the trust:interaction frequency model
produces a law of diminishing returns only with a logarithmic increase and linear decrease
function. This model of reciprocal social interaction leading to the emergence of social relation-
ships was robust across a range of waning and reject (non-cooperative behaviour) rates. We
here extend this analysis by using the same model to investigate whether structural layering
composed of the inner intimacy layers (5,15) and the outermost layer emerge naturally with a
wider range of objective functions, population size, agent strategies and initial conditions.

Social Simulation Model
The simulation reused the Sutcliffe and Wang [57] trust model as the agent interaction/trust
mechanism, together with the agent strategies introduced by Sutcliffe et al. [19] (for details, see
S1 File, design is summarised in Fig B in S1 File).

We modelled the competing demands between time spent feeding (to maintain survival)
and time spent socialising (to ensure the benefits of social cooperation). For computational
simplicity, we restricted the model to a simple trade-off between social and foraging/feeding
time. We used an agent-based model in which, on each round, agents faced the choice between
socialising and foraging, and then, when socialising, which agent to interact with. Agents ini-
tially meet randomly, but remember whom they have met, so that in subsequent rounds they
apply preferential strategies to constrain whom they socialise with. Each interaction was associ-
ated with two key process variables: a reject risk (the probability that a given interactee will not
cooperate) and a waning rate (the decrease in relationship strength as a result of a previous fail-
ure to interact with a given agent). Interaction frequencies between all agent dyads were
recorded as a relationship strength which was divided into terciles, allowing us to categorise
relationships produced during each generation as strong, medium or weak. Strategies were
modelled stochastically, so an agent who preferred interacting with upper tercile agents (i.e.
strong relationships based on high interaction frequencies) might select relationships in the
upper tercile on most, but not every, interaction. Each agent in the population interacted once
in each cycle, and, after 2,000 cycles, fitness selection was applied to produce a new generation.
In a typical simulation, the model was run for 50 fitness selection events (generations). There
was no inheritance of relationships across generations. Details of the algorithm and variables
are given in S1 File (Appendix).

In each run, we considered a population of 300 agents, equally divided between four differ-
ent social strategies based on their preference for relationships of a particular strength. Rela-
tionship strength was defined as a function of the frequency of interaction, with four different
social strategies defined in terms of this preference: Favour-the-Few (FtF) prefer to prioritise
relationships in the upper tercile of the strength distribution, Favour-the-Weak (FtW) favour
those in the lower tercile, and Favour-the-Medium (FtM) those in the middle tercile, while the
fourth strategy (Staged) begins by adopting FtF but then progressively favours FtW as it builds
relationships. An agent inherited its parent’s strategy (with breeding from the top 20% of
agents ranked by fitness).

To investigate how well each strategy performed, we defined five criteria (or objective func-
tions) that contributed to an agent’s overall fitness: three (wellbeing, alliance formation and
resource acquisition) made positive contributions, while two (risk and stress) had negative
effects and so functioned as costs additional to those incurred by the need to invest time in rela-
tionships. We can think of these are, respectively, the benefits and costs of forming social
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relationships. The detailed definitions are given in S1 File (Appendix), but broadly speaking
wellbeing (WB) is a positive function of the average strength of an agent’s relationships, modu-
lated by the attention it receives from others; the benefit from alliances (AL) is a positive func-
tion of the average strength of the agent’s relationships, modulated by the number of
relationships it has; resource acquisition (RS) is a positive function of the number of foraging
turns it takes; risk (R) indexes the agent’s risk exposure as a negative function of the number of
social interactions it engages in (the more interactions, the higher the risk–that, for example, it
will be called upon for active support when an ally is attacked); and stress (ST) is a negative
function of the number of relationships the agent has [20], reflecting the beneficial effect that
being in larger groups has. In different runs of the model, we varied the relative weightings of
these five objective functions of a scale of low (1) to high (5).

We determined each agent’s fitness after a lifetime of 2,000 interaction cycles by, first, nor-
malising its scores on each criterion by ranking them across the population, then modulating
these ranks by the weightings selected for each simulation run, and finally summing these to
create an aggregate fitness, defined as Fitness = (R +WB + AL)–(RS + ST). We then adopted
the simple (but widely used) strategy of eliminating the weakest 20% of the population, ranked
by fitness value, at the end of each round. Breeding replaced these by allowing individuals from
the top 20% to replicate, thus maintaining population size at N = 300. Though high, the mor-
tality rate we use is a reasonable approximation based on estimated death rates among hunter-
gatherer communities [58]. Simulations were run for 50 generations to produce outputs show-
ing the populations of agent strategies across generations, with average relationship strength
divided into strong-, medium- and weak-tie ranges.

Experimental Design
Our experimental design was intended to evaluate two questions: first, are there consistent pat-
terns generated by the model in the total number of ties an agent has and their distribution
between the different tie categories (strong, medium and weak) and, second, how do any such
patterns map onto the fitness landscape (indexed by objective function settings). First a total of
3,125 simulations were run to investigate all permutations between the objective functions by
systematically varying the weighting for each function from 1 to 5 (the minimum and maxi-
mum values) in integer steps so as to map the entire fitness landscape. Each run returned the
frequency of ties, split by tie strength (weak/medium/strong) averaged for all the agents in the
population (300). We then used cluster analysis [59] to aggregate runs by similarity in the
number of the different categories of tie (strong, medium and weak). We used k-means analysis
to determine the optimal separation of clusters; k-means clustering finds the best fit to the data
by finding the k means that best describe the data (i.e. that minimise the variance). For present
analyses, we varied k across the range 1–7 to find the optimal number of clusters. This allowed
us to explore both the robusticity of the different patterns and identify the fitness criteria
weightings required to yield each pattern. Next, we ran a second series of simulations in which
alternative social strategies competed directly against each other, with a focus on the FtF strat-
egy that had emerged as a key influence on social structure in the first series of simulations.
Finally, we ran a series of sensitivity analyses to check whether there were confounds due to the
use of a particular population size and selection regime.

Results

Model outcomes and their characteristics
In the initial run, the parameters of the model were varied systematically across each objective
function parameter space in order to determine the distribution of the various outcomes and
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the parameter weightings that characterise them. A two-level k-means clustering algorithm
was used to find the optimal number of clusters with the smallest standard deviation for each
cluster. Five clusters were identified as optimal (Table 1). These varied mainly in the frequen-
cies of strong and medium ties and by total network size; only one of these sets mapped at all
closely to the target distribution of tie types (i.e. were structure-compliant). Fig 1 illustrates the
evolution of two of these (the dominant, or most common, pattern and the structure-compliant
pattern) across generations in the simulation.

The most frequent pattern (80% of total runs) was a ‘small core’ network with ~1 strong
and ~7 medium ties, and an overall network of around 112 members. The second most fre-
quent pattern (accounting for 14% of all runs) had no layers, and an average network size of
~120 members, nearly all of which were weak ties. We refer to these as the ‘small-core’ and
‘no-layers’ patterns. The third most frequent pattern (‘large-core’ pattern) had a large core with
~8 strong ties, ~21 medium ties and an overall network of ~160 individuals, but these were rare
by comparison (5% of all runs). Finally, structure-compliant networks which mapped closest
to the predictions of SBH [19,36] had an average of 5 strong ties, 9 medium ties and a network
size of 147, but were extremely rare (1% of all simulations).

Table 2 maps the weightings for each strategy cluster on the five fitness criteria (resources,
wellbeing, alliances, risk and stress). The small-core pattern had an even distribution of weight-
ings in the range 2.87–3.16 for all five fitness criteria; while the no-layers pattern had similar
resource and stress, it had much lower wellbeing and alliance (<2) and much higher risk (4.3).
The function weightings of the structure-compliant and large-core patterns were generally sim-
ilar to each other, with low resource and stress and high wellbeing and alliance.

These results indicate that multi-level social structures of the kind found in primates, and
especially humans (i.e. structure-compliant patterns), are extremely rare. The default pattern
involves social systems with a relatively small number of weakly structured or undifferentiated
relationships. Compliant and near-compliant patterns, by comparison, are extremely rare,
accounting for barely 6% of all outcomes. The fact that there is significant clustering of out-
comes indicates that structure-compliant patterns are not simply the extremes of a random dis-
tribution. Rather, they seem to occur only under a limited range of conditions (when the
benefits of wellbeing and alliances is high, and the resource benefit is low). If these conditions
do not hold, animals seemingly gain no fitness benefits from structure-compliant social organi-
sations and are better off with looser, weakly structured social arrangements.

To explore this pattern further, cluster analysis was applied to those runs that produced a
structure-compliant pattern in order to investigate possible groupings of the fitness criteria
that give rise to this pattern. The average weights for the criteria in each cluster of the struc-
ture-compliant runs are shown in Table 3. In cluster 1, alliance and wellbeing as well as stress
were high; cluster 2 showed high alliance with modest resources but low wellbeing; while clus-
ter 3 had high wellbeing and alliance weights. Overall, a structure-compliant social structure

Table 1. Mean number of agents in each layer in the four different final social patterns identified by cluster analysis.

Average agents (standard deviation)

Pattern Frequency Strong Medium Weak Total

Small core 2504 1.02(0.14) 6.91(0.40) 104.66(0.87) 112.59(0.99)

No-layers 437 0.02(0.23) 0.10(0.91) 120.61(1.03) 120.73(1.00)

Large core 155 7.90(0.59) 20.83(1.12) 134.29(1.80) 163.03(3.36)

Structure-compliant* 29 5.42(0.96) 15.98(1.84) 125.88(3.24 147.28(5.94)

* with layers of 5 strong, 15 medium, and 135 weak relationships, as found in humans.

doi:10.1371/journal.pone.0158605.t001
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emerged when either alliances or wellbeing contributed strongly to overall fitness, and the
influence of risk and resources was moderate or low. The alliance criterion appears to be

Fig 1. Sample results showing the mean frequency of ties/agent for the whole population over 50
generations for (a) one of the less frequent patterns and (b) the most common pattern. The plotted examples
are the outputs at the end (generation 50) of two individual runs.

doi:10.1371/journal.pone.0158605.g001
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slightly more influential than wellbeing in determining structure-compliant patterns, showing
a high average weighting in three of the four clusters. These results are summarised in Fig 2.
Structure-compliant and large-core patterns occupied a relatively small part of the overall fit-
ness space where the wellbeing and alliance criteria are favoured and other criteria have low
weights. The rest of the space was occupied by the small-core and no-layer patterns.

Competiveness of alternative social strategies
To investigate the competitiveness of the different social strategies, we ran further simulations
with a population of 300 agents each characterised by three key traits, each with four variants:

• Social preference strategy: FtF vs FtM vs FtW preferences, plus a staged strategy as defined
previously;

• Social time predisposition, indexed as forage:social ratio with four settings: 8:1, 5:1, 4:1, 1:1;

A cooperate:reject ratio with four settings, representing 1, 2.5, 5 and 7.5% of agents to simu-
late an increasing propensity to reject a social interaction.

Twenty simulations were run with a range of weightings for the fitness criteria that had pro-
duced either the small-core, structure-compliant or large-core patterns in the previous results,
selected to sample the range of fitness settings reported in Table 2. The seed population
(N = 300 agents) had a hierarchical structure, containing an equal proportion of agents by
strategy and then within each strategy an equal number of individuals for each forage:social
variant, and finally within each of these variants an equal number of individuals for each coop-
erate:reject variant. As before, the lowest 20% of the population was eliminated at the end of
each round and the top 20% were allowed to reproduce.

Fifty simulations were run and the proportions of surviving agents after 50 generations are
shown in Table 4. In the structure-compliant and the large- and small-core patterns, the staged
and FtF strategies dominated, while FtM and FtW strategies dominated only in the no-layers
pattern. The dominance of the FtF and staged strategies in simulations which produced struc-
ture-compliant patterns with few strong and medium ties, and many weak ties, suggests that
the social strategy of favouring the few competes successfully even in the face of rejection:

Table 2. Mean fitness weightings for each social structure pattern in the first experiment with an initial equal distribution of agent strategies.

Mean weighting (Standard deviation)

Pattern % total runs Res WB AL Risk Stress

Small core 80.13 3.07(1.40) 3.16(1.38) 3.13(1.36) 2.87(1.37) 3.13(1.40)

No-layers 13.95 3.22(1.40) 1.79(0.93) 1.69(0.86) 4.31(0.85) 2.77(1.40)

Large core 4.96 1.52(0.72) 3.68(1.32) 4.41(0.80) 1.68(0.92) 1.68(0.88)

Structure-compliant 0.93 1.90(1.05) 3.72(1.25) 4.24(1.09) 1.83(0.97) 2.14(1.22)

Res = resources, WB = wellbeing, AL = alliance formation.

doi:10.1371/journal.pone.0158605.t002

Table 3. Average weights of fitness criteria for clusters producing the layered pattern found in humans.

Cluster Resource Wellbeing Alliance Risk Stress Percentage

1 1.0 3.0 4.6 1.0 3.9 15

2 2.4 1.8 4.3 1.4 1.0 25

3 1.6 4.3 4.8 2.5 2.0 30

4 1.6 4.8 3.1 1.1 1.3 30

doi:10.1371/journal.pone.0158605.t003
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Fig 2. Locus of the layer-compliant and large core patterns in the space of fitness criteria weights. Dark shading indicates the
layer-compliant pattern, lighter shading the many strong ties pattern. All = Alliance, WB =Wellbeing fitness criteria. Weights increase
towards the circumference of the circle.

doi:10.1371/journal.pone.0158605.g002
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indeed, rejection decreased to nearly zero despite rejecting agents being rewarded with extra
foraging turns and resources. The forage:social time budget ratio also changed to favour more
social turns.

Forage:social ratios stabilised at 0.26 and 0.15 in the structure-compliant and large-core pat-
terns respectively, whereas in the two more frequent small-core and no-layers patterns the
ratio stabilised around 0.49, or an even ratio of turns. Strategies which formed stronger ties
were favoured even when the criteria did not reward them (as in the fitness setting which pro-
duced the small-core pattern). However, selection on the forage:social criterion modified the
survival of stronger relationships. The small-core pattern produced few stronger ties because
each agent had proportionately fewer social turns compared with agents in structure-compliant
populations; hence, the strong ties that did develop waned as a consequence of less frequent
social interaction.

Sensitivity analysis: initial conditions
Since the FtF and staged strategies were competitive over a wide range of fitness criteria, we
tested their ability to spread in populations (N = 200) initially dominated by FtW agents.
When populations were seeded with 1% strong or 1% staged agents in a population of weak-tie
agents with forage:social and cooperate:reject settings assigned at random using a roulette algo-
rithm, both FtF and staged strategies spread rapidly to dominate the population within 10–20
generations. The model outputs (Fig 3) were the same as in populations that started with an
equal distribution of strategies, with structure-compliant patterns being produced under a
range of previously observed fitness criteria weightings. As before, the forage:social ratio stabi-
lised at 0.25 while the cooperate:reject ratio was driven down towards the minimal setting with
an average 0.05. The same result was produced with 0.5% seed populations of staged and FtF
agents, and was robust across population size, so it appears these strategies have a strong com-
petitive advantage over a wide range of fitness criteria.

We then tested the emergence of strategies and patterns when agents had no prior prefer-
ence, i.e. their choice preference was randomised from all strong FtF to no favouritism. For
N = 300 populations, two structure-compliant patterns emerged from the cluster analysis
(Table 5). One cluster had the appropriate average number of strong ties (5.56) with slightly
more medium ties than expected (18.94), while the second cluster, labelled ‘close to compliant’
had slightly more strong (6.92) and medium ties (19.21). (Note, however, that these results are
both within the statistical variation of tie frequencies observed in human populations [19,35].)
The best-fit run within the structure-compliant cluster had 4.32 strong ties, 15.74 (medium)
and 127.65 weak ties, with objective function settings of Res = 1, WB = 1, All = 5, Risk = 4 and
Stress = 2. The distribution of ties in the other cluster patterns (no-layers, small-core, large-
core) were similar to those observed in the stratified initial population.

In the structure-compliant, close-to-compliant and large-core patterns, the majority of the
surviving agents had parameter settings that matched the FtF strategy (93–99%), while the

Table 4. Average (standard deviation) number of agents by strategy for each of the four social pattern outcomes in 50 simulations.

Staged FtF FtM FtW FS

Small core 149.39 (1.91) 149.58 (0.97) 0.63 (0.02) 0.40 (0.1) 0.498 (0.07)

No-layers 2.18 (0.06) 1.62 (0.01) 273.62 (2.45) 22.58 (1.32) 0.499 (0.05)

Large core 138.38 (1.65) 161.55 (1.56) 0.03 (0.00) 0.05 (0.00) 0.152 (0.01)

Structure-compliant 134.34 (1.89) 165.66 (2.11) 0.00 (0.00) 0.00 (0.00) 0.266 (0.03)

FS = final forage:socialise ratio for each social pattern.

doi:10.1371/journal.pone.0158605.t004
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converse was true for the no-layers pattern (90% FtM). The structure-compliant pattern was
considerably more frequent (38.6%) than in the previous stratified simulation (0.93%), while
objective function settings for the cluster had higher resource, risk and stress but lower wellbe-
ing and alliance weightings than in the stratified population simulation (see Table 6). The
close-to-compliant cluster had similar average objective function weights as the structure-com-
pliant result. The distribution of objective function weights in the other patterns was similar to
the stratified population simulations, although values varied. Across the simulations, the for-
age:social ratio stabilised at a slightly higher value, 0.35, while the cooperate:reject ratio was
driven down towards the minimal setting with an average 0.05.

In sum, the agent parameter settings were similar to those previously obtained, indicating
that our findings are robust to variation in initial conditions. More importantly, it appears that,
under the appropriate conditions, the FtF strategy is competitive and produces structure-com-
pliant patterns across a range of objective functions; indeed, if anything, a random initial set-
ting is more favourable for the emergence of structure-compliant patterns.

Sensitivity analysis: population size and selection rate
When we varied population size in the previous section’s simulations, we used the same pro-
cess mechanism values (trust-formation smoothing ratio and waning rate) for all populations,
irrespective of size. For a smaller population, N = 200, the results for emergence of the FtF
strategy and compliant patterns were similar. Since a larger population will result in a
decreased frequency of inter-agent interaction, we ran a further set of simulations with popula-
tions of N = 500, increasing the strength of the trust-formation smoothing ratio (CR) to 20 and
a proportional increase in the waning rate to 0.18. As before, the results were dominated by the
no-layers and small-core patterns. However, in contrast to the N = 300 populations, the larger
population simulations did not produce any structure-compliant or large-core patterns. This
result was also observed for the random initial population. Since the decreased probability of
socialising may have reduced the persistence of strong relationships, additional simulations
were run extending the parameter range for the fitness criteria from<1. . .5> to<1. . .10>.
Increasing the fitness criteria range produced structure-compliant and large-core patterns with
similar clusters to those observed in the N = 300 population, but with increased wellbeing and
alliance weights at 7–8, and low resource, risk and stress weights. The random agent preference
condition produced similar results but with a lower proportion of structure-compliant runs.

Fig 3. Model outputs with 1% seed populations of FtF and staged agents, (a) average ties/agent, (b)
surviving agents by strategy, (c) Forage–Social ratio and defect rates for layer compliant pattern with
weightings R:WB:AL:Risk:Stress of 1:5:4:1:2.

doi:10.1371/journal.pone.0158605.g003

Table 5. Mean number of agents in each layer for the five different final social patterns identified by cluster analysis in the random initial
condition.

Average number of agents (standard deviation)

Pattern Strong Medium Weak Total

Small-core 2.14(0.34) 13.84(0.70) 156.72(0.88) 172.71(1.99)

No-layers 0.00(0.03) 0.02(0.01) 186.66(2.03) 186.82(1.00)

Large-core 16.08(0.99) 31.1(1.16) 142.43(2.1) 185.59(3.36)

Close-to-compliant 6.62(1,2) 19.21(1.45) 133.14(1.89) 156.98(2.98)

Structure-compliant* 5.56(0.96) 18.94(1.84) 136.62(3.24) 161.14(2.94)

doi:10.1371/journal.pone.0158605.t005
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This suggests that the model outcome scales to population size, given appropriate adjust-
ment of parameters to reflect the fact that less frequent interactions are inevitable within larger
populations. However, a population of 500 individuals is, even by human standards, large for
an individual to have any kind of regular contact with or knowledge of, and the fact that struc-
turing does not evolve so easily in larger populations has important implications for the evolu-
tion of sociality within the human lineage. It seems that when large populations occur,
structuring can occur only when either the trust intensity or the fitness benefits, or both, are
proportionately higher, reinforcing the initial conclusion that multi-level structuring occurs
only within quite a limited range in the parameter state space.

Since selection at 20% represents a severe ‘mortality’ rate, simulations were also run with
selection rates of 5% and 10%. These reduced the number of structure-compliant patterns in
the same fitness space, with only one structure-compliant result being produced at 10% mortal-
ity (weightings of 2-3-5-1-3 for RS/WB/AL/R/ST, respectively) and none at all at 5%. Instead,
populations were dominated by no-layers and small-core patterns with a forage:social ratio
close to 0.50. High mortality thus seems to be an important precondition for the evolution of
structure-compliant social systems.

In sum, between them these simulations suggest that emergence of structure-compliant
social structures, such as those found in many primates and in humans, are influenced by both
the selection rate and population size, with modest population size, high mortality and skewed
reproduction being especially critical.

Discussion
Within the assumptions of our model, selection favours two patterns in a wide variety of envi-
ronmental contexts. The most frequent, the small-core pattern, is produced by the persistence
of strong ties and staged-strategy agents with the tendency to FtF appearing in nearly half
(45%) of the simulations. Such a pattern might describe the kinds of social system found
among species that live in monogamous pairs or small cohesive groups (e.g. the social hunters
and many of the harem-forming species among the ungulates and NewWorld primates). The
second most frequent pattern (no-layers, perhaps the category into which most herd-forming
mammals fall) is driven by a mixed population of agents with medium and weak tie social pref-
erences. The first thus favours small groups (pairs or small harems), while the second favours
weak-tie social goupings without layers (e.g. large diffuse aggregations).

By contrast, a structure-compliant (i.e. multi-level) pattern–the pattern peculiar to a rela-
tively small number of mammal taxa–emerges only under a limited range of conditions when
the benefits of alliances and wellbeing are high, and resource competition is low. The first two
patterns show a strong tendency to increase foraging time at the expense of social interaction,
with the forage:social ratio migrating towards 1:1, whereas the last shows a reverse tendency to

Table 6. Mean fitness weightings for each social structure pattern in the random initial condition (N = 300 populations).

Mean weighting

Pattern % total runs Res WB AL Risk Stress

Small-core 12.7 3.16 3.11 2.34 3.73 2.92

No-layers 19.5 3.38 2.23 1.8 4.26 2.53

Large-core 20.0 2.15 3.63 4.05 1.93 2.38

Close-to-compliant 9.1 3.09 3.0 3.41 2.47 3.50

Structure-compliant 38.6 3.15 3.02 3.17 2.79 3.46

Res = resources, WB = wellbeing, AL = alliance formation.

doi:10.1371/journal.pone.0158605.t006
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favour social interaction over foraging. There seem to be two conflicting trends here, one pro-
moting stronger ties by FtF in social interactions with less foraging (compliant, large core),
while the other favours foraging time at the expense of social interaction and a smaller social
core (small core, many weak ties).

This polarisation reflects the competing rewards that arise from maximising individual fit-
ness by devoting more time to foraging versus those that derive from improved survival accru-
ing via social benefits. Exposure to high levels of risk and/or stress appears to prevent stronger
ties from forming. The weak ties pattern therefore dominates for most fitness criteria combina-
tions, i.e. for all runs except where wellbeing and alliance are high (4–5) and other fitness crite-
ria are low (1–2), suggesting that social structures with many weak ties will emerge under a
wide range of fitness conditions–as seems to be the case among birds and mammals generally.

The structure compliant pattern was more common in populations with an initial random
distribution in social preference, and infrequent when initial agent populations had separate
strategies. Mutation and selection on the continuous strategy population appears to promote
survivorship of agents biased towards FtF. This suggests that, within a gene pool with an initial
random social bias, evolution will favour the FtF allele and structure compliant patterns,
whereas when other social strategy biases (FtM, FtW) are present in the initial population these
may provide more effective competition. A few FtF genotypes also spread in majority FtW pop-
ulations, so this allele appears to have selective advantage over a wide range of OF conditions.
Although our model does not account for other possible explanations for the emergence of
social structure, e.g. power gender asymmetry in harem groups, we note that a parsimonious
model based on the single social affinity tendency we modelled did account for the emergence
of a range of social structures including harem groups (small core pattern).

Theoretical models of social behaviour among unrelated individuals have focused on the
evolution of cooperative behaviour and altruism [59–61], where reciprocal rewards accruing
from social relationships outweigh the costs of social interaction, thereby providing the incen-
tive to invest in cooperation. Cooperative behaviour spreads rapidly when there is a pay-off
from repeated encounters with individuals within a population, as demonstrated in many mod-
els based on the repeated prisoner’s dilemma (RPD) paradigm [62]. Cooperative strategies
with strong reciprocity compete effectively with non-social defectors in social dilemma games
across a wide range of models and frameworks [63], so it appears that reciprocity, which is a
key attribute of trust in human social relationships [64], underpins cooperative behaviour.
While cooperation spreads when there is memory of previous encounters with specific individ-
uals, it can also spread when memory of an individual’s reputation for previous cooperative
acts is visible as an ‘image score’ [59]. Reciprocity in our model was reflected in social strategies
(in particular FtF) which progressively restrict social interaction to a few favoured individuals;
strong ties therefore encouraged reciprocal responses. The effect of trust in promoting the
development of social relationships was demonstrated by Nowak and Sigmund’s [59,60] stud-
ies on reputation (‘image scoring’) in a coalitional version of the prisoner’s dilemma game:
they showed that cooperation and altruism are likely to be widely adopted in populations
where reputations are publicly visible. Hardy and van Vugt [65] also proposed that reputation
systems are a necessary prerequisite of evolutionarily stable cooperation in large groups. Fur-
thermore, Roberts and Renwick [61] demonstrated, in both experimental studies and computer
simulations, that individual reputation based on histories of collaboration leads to the forma-
tion of social relationships.

These models may well explain patterns of cooperation among animals in general, but they
do not of themselves predict the evolution of structured populations. Yet these are a class of
societies that, while rare, are nonetheless conspicuous in some orders of mammals. Our model
suggests the structure-compliant and the large-core patterns will indeed be rare, appearing
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only in a small fraction of the settings (8%) in the overall fitness space, implying that they
evolve only under very specific conditions, namely when social rewards are high (notably in
terms of wellbeing and the value of alliances) and social costs (risk and stress) are low. If social
interaction with many individuals is not beneficial for agent survival, the Favour-the-Few (FtF)
social strategy may still be competitive, but it gives rise to small group societies such as pair-
bonded monogamy or harem-like groups (the small-core pattern). Our model is a strictly func-
tional model. This does not, of course, exclude a variety of other relevant explanations for
particular relationships, including social forces such as romantic love and power asymmetry as
explanations of pair bonds and harem relationships. However, Tinbergen’s Four Why’s [66]
remind us that it is important to keep explanations of different logical status strictly separated,
since they are complementary rather than competing explanations. Explanations in terms of
romantic love and power asymmetries are mechanism-level explanations, whereas our model
offers a functional level explanation that will naturally be exemplified in some kind of mecha-
nistic process. Our model is concerned with the organisation of relationships (the emergent
effect of their number, quality and structure), not with the physiological or psychological
mechanisms that underpin these relationships.

Wittemyer et al.’s [67] elephant study shares with our model the assumption that time spent
in social interaction influences relationship strength, but they adapted Heider’s [68] balance
theory’s constraint that having too many connected friends increases the risk of conflict. As a
result, in their model a few intense relationships emerged at the expense of more weak ties–
albeit with optima similar to our findings (N = 5 strong ties). Our model also demonstrates
that social preferences (i.e. FtF) can emerge when the benefits of alliances balance the risks
inherent in cooperation, but adds the additional finding that further layers can emerge when
other functions are being optimised at the same time.

Our findings also extend previous models by demonstrating that social network structures
emerge when there is a preference for trustworthy individuals (i.e. ‘cliquers’: [69]). Hruschka
and Henrich [69] used a modelling approach to show that social structures and preferential
social relationships emerge when agents possess strategies favouring known collaborators. In
these cases, social preference strategies (‘cliquers’) spread through populations across a range
of cost/benefit ratios and defect rates. However, their model depended on a memory constraint,
so only a limited number (10) of stronger relationships could be developed. Our model sug-
gests that in the absence of such a memory constraint (or, rather, where memory capacity is
greater than they assume), more complex structures can emerge.

The FtF social strategy emerged in different evolutionary contexts, although social interac-
tion time being favoured over foraging was a common factor whenever this happened. This
indicates that structured sociality emerges when the benefits of social interaction are more
intense, and the impact of foraging time on survival is less critical. Such a pattern may be exem-
plified by the contrast between the relatively asocial folivorous monkeys that live in small social
groups (N< 15) who are obliged to have a high feed:social time ratio by the demands of leaf
fermentation (e.g. the NewWorld alouattines and Old World colobines) and the more
intensely social frugivorous monkeys that live in larger groups (N> 20) and can afford to have
a low feed:social ratio (e.g. the cercopithecines) [26].

The emergence of stratified social structures that are structure-compliant is influenced by
both the selection rate and population size, with high mortality (from all sources), skewed
reproduction and small population size (or low density) being critical. This fits well with the
fact that, at least among primates, predation risk increases as species become more terrestrial
in habit [27,28,68] with the extreme case on both counts being represented by humans. This
increase in risk of mortality maps well on to species’ differences in social complexity, in partic-
ular the extent to which they have structured (i.e. layered) social systems. Primates also suffer,

Modelling Social Evolution

PLOS ONE | DOI:10.1371/journal.pone.0158605 July 18, 2016 15 / 20



uniquely, from unusually high risks of infanticide [70–72], which is likely to significantly exac-
erbate the impact of the mortality factor, and may help to account for the otherwise unex-
plained fact that structured social systems are unusually common in this order.

The clustering of fitness criteria observed for structure-compliant simulation runs gives sup-
port to our hypothesis that relationships at different levels of intimacy could emerge through
different cost/benefit trade-offs. The two clusters that emerged had high alliance with relatively
low wellbeing balanced against high stress in one cluster and a mix of stress and risk in a sec-
ond. This pattern was also observed, albeit with less strong wellbeing and higher stress and risk
levels, for the two structure-compliant clusters in the random agent condition. The details as to
which particular values are critical for these parameters is not, of course, the issue here: the
point is that mortality levels simply need to be relatively high compared to the norms for a
given taxonomic group.

The emergence of social structure appears to be especially sensitive to both population size
and the intensity of selection. Increasing population size makes the emergence and persistence
of strong social relationships more difficult. Forming strongly structured social networks from
within large herd-like groupings may therefore be difficult to achieve, which accords with the
trajectory for the emergence of social structure from smaller rather than larger groups in most
intensely social species (primates: [73]). Relatively high mortality or selection rates also seem
to be important for the emergence of structured populations. Some of this will be due to preda-
tion risk (note that this reflects the risk of predation before the animals have managed to effect
any anti-predator strategies, and not to the residual rate of predation: see [74]), but the risk of
intra-species mortality (e.g. fighting) as well as infanticide [75] and simple failure to reproduce
due to poor competitive ability (and low rank: [20,76–78]) will be contributory. Under such
circumstances, effective social alliances may be an important component in overall survival,
buffering the individual against both external sources of predation and internal sources of con-
flict. In such cases, multi-level structuring will emerge so long as the costs are not too high.

In short, the evolution of structure may critically hinge on whether it is foraging or preda-
tion-driven mortality that has the more intrusive influence on fitness, since the first will often
be solved through individual trial-and-error learning whereas the second commonly requires
social cooperation (especially in terrestrial diurnal species: see [27]). With increased coopera-
tion, social species may be able to reduce their dependency on foraging time, thereby favouring
an increased social time budget and hence higher frequencies of social interaction. Which
trend bootstraps which, however, remains an open question.

In sum, the fact that population size and high mortality levels may be critical for the evolu-
tion of highly structured societies may explain (a) why these are relatively rare among mam-
mals and (b) why they are especially characteristic only of primates (including humans).
Indeed, most of those species of non-primate mammals that have multi-level social systems
also seem live in predator-risky, terrestrial (or oceanic), open-country habitats.
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