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Abstract: In the continuous variable measurement-device-independent quantum key distribution
(CV-MDI-QKD) protocol, both Alice and Bob send quantum states to an untrusted third party, Charlie,
for detection through the quantum channel. In this paper, we mainly study the performance of the
CV-MDI-QKD system using the noiseless linear amplifier (NLA). The NLA is added to the output of
the detector at Charlie’s side. The research results show that NLA can increase the communication
distance and secret key rate of the CV-MDI-QKD protocol. Moreover, we find that the more powerful
the improvement of the performance with the longer gain of NLA and the optimum gain is given
under different conditions.

Keywords: CV-MDI-QKD; NLA; the performance

1. Introduction

With the development of photoelectric technology, many physical phenomena of quan-
tum theory [1] have been verified through observation, which attracts many researchers to
consider its application. Quantum key distribution (QKD) [2,3] is one of the applications,
in which two trusted communication parties (Alice and Bob) are allowed to exchange
the cryptographic key through a quantum channel at the existence of eavesdropping. Its
theoretical unconditional security is guaranteed by the laws of Heisenberg’s uncertainty
principle [4] and no-clone theory [5,6]. The QKD protocols are mainly divided into the
following two categories: the discrete variable quantum key distribution (DVQKD) [7–10]
and the continuous variable quantum key distribution (CVQKD) [11–15]. In theory, the
unconditional security of QKD has been proven [16–22].

However, the deviation between the theoretical assumption and the actual imple-
mentation will effect the performance and may lead to a loophole in the practical system
that could be used by Eve to intercept key information without being discovered. The
loopholes involve the the laser source [23–25], the local oscillator [26,27], the beam splitter
(BS) [28–30], the basis choice [31], and the detector [32–37]. Nowadays, researchers have
proposed the CV-MDI-QKD protocol [38–40], which can defend all detector side channels.
In the CV-MDI-QKD protocol, Alice and Bob each generate an Einstein–Podolsky–Rosen
(EPR) state, and both of them send one mode of the EPR state to an untrusted third party,
Charlie, for detection through the quantum channel. After the CV-MDI-QKD protocol was
put forward, it was well analyzed in theory and demonstrated in experiments. However,
the shortcomings of the communication distance and secret key rate of the CV-MDI-QKD
system are still a problem.

In this paper, facing the above problem, the NLA is induced to improve the perfor-
mance of the CV-MDI-QKD system. The amplification performance of the NLA is better
because it can mechanically amplify the amplitude of the coherent state while retaining the
excess noise at the initial level [41–43]. Thus, when only considering its successful runs,
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the NLA can compensate the effect of losses and could therefore be useful for quantum
communication [44]. So, in theory, the NLA can greatly improve the signal-to-noise ratio
of the transmission signal, so that the performance of the system can be improved. Here,
we consider that we can add two NLAs to the output ports of two homodyne detectors
on Charlie’s side. We find that the communication distance and secret key rate of the
NLA-based CV-MDI-QKD system have been improved.

The structure of this paper is as follows. In Section 2, we first introduce the CV-MDI-
QKD protocol, and then the CV-MDI-QKD protocol with NLA is investigated. Then, the
performance of the CV-MDI-QKD protocol with NLA is analyzed in Section 3. Finally, we
conclude the paper in Section 4.

2. The Scheme of CV-MDI-QKD with NLA

The equivalent entanglement-based (E&B) model of the CV-MDI-QKD protocol is
shown in Figure 1. Alice prepares an EPR state, keeps one of its mode A1, and sends the
other mode A2 to Charlie by channel A. Bob also prepares another EPR state and keeps the
mode B1, and the mode B2 is also sent to Charlie by channel B. Then, Charlie will obtain the
quadratures XC and PD via homodyne detectors after interfering with the received modes
A′2 and B′2 through a 50:50 BS. Then, XC and PD pass through their respective amplifiers.
After being amplified by NLA, we record the measurement results {X′C, P′D}, which will be
announced by Charlie.

BS

Charlie

Alice Bob

EPR EPR

Channel A Channel B

Displacement 

Heterodyne
Detection

Homodyne
Detection1  

Homodyne
Detection2

XC PD

A1 A2 B1B2

TB;ƐB TA;ƐA 

Heterodyne
Detection

Figure 1. The EB scheme of the CV-MDI-QKD system with the noiseless linear amplifier. TA and εA are the transmittance
and excess noise of channel A, respectively. TB and εB are the transmittance and excess noise of channel B, respectively. BS
is the beam splitter with the splitting ratio 50:50.

After Alice and Bob receive the measurement results announced by Charlie, Bob
performs the displacement operation D(θ′) on the mode B1 and obtains the mode B′1,
where θ′ = k(X′C + iP′D) and k is the gain coefficient of the displacement operation. Then,
Alice and Bob measure states A1 and B′1, respectively, via heterodyne detector. Finally, they
obtain the data {X′A, P′A}, {X′B, P′B}. If we assume that Bob’s EPR state preparation and
displacement operation are untrusted, then the protocol could be seen as the well-known
one-way CVQKD protocol using coherent states and heterodyne detection [45].

Moreover, due to the presence of Charlie in the CV-MDI-QKD system, there are two
situations. Firstly, the symmetrical situation is that the distance LAC between Alice and
Charlie is equal to the distance LBC between Bob and Charlie, i.e., LAC = LBC. In this
case, the secure communication distance is relatively short due to the excess noise in the
channel. Secondly, the asymmetrical case is that the third-party is infinitely close to Bob,
that is, LBC = 0. In this case, the communication distance is significantly higher than the
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symmetrical case. Therefore, in this paper, we only consider the secret key rate in the
asymmetric case.

Assuming that there is such an equivalent in Figure 2, i.e., the modulation variance
of the CV-MDI-QKD system without NLA is V(λ) = 1+λ2

1−λ2 , the channel transmittance
is T, and the channel excess noise ε can be equivalent to the modulation variance of the

NLA-based CV-MDI-QKD system, which is V(λd) =
1+λ2

d
1−λ2

d
, and the channel transmittance

and excess noise are Td and εd, respectively. Considering a thermal state ρ̂th(λch) =

(1 − λ2
ch)∑ ∞

n=0λ2n
ch |n〉〈n| with variance 1+λ2

ch
1−λ2

ch
and the displacement β = βx + iβy, the

displaced input thermal state can be given by:

ρ̂ = D̂(β)ρ̂th(λch)D̂(−β) (1)

When the input thermal state is amplified successfully by NLA, the thermal state ρ̂
will be transformed into:

ρ̂′ = D̂(g′β)ρ̂th(gλch)D̂(−g′β) (2)

where the variance is 1+g2λ2
ch

1−g2λ2
ch

. Here, g′ is g 1−λ2
ch

1−(gλch)2 , we set the parameter g to satisfy

gλch < 1, λch is the compressibility of the incident thermal state, and the displacement of
the thermal state is g′β after the amplification of NLA. The related parameters are given by:

λd = λ

√
(g2 − 1)(ε− 2)T − 2

(g2 − 1)εT − 2

Td =
g2T

(g2 − 1)T[ 1
4 (g2 − 1)(ε− 2)εT − ε + 1]

εd = ε− 1
2
(g2 − 1)(ε− 2)εT (3)

where g is the amplification gain of NLA. The amplification effect of NLA on the system is
essential to amplify the quantum state transmitted in the channel. As we all know, when
the coherent state transmits in the channel, it will be interfered by the excess noise of the
channel. Then, it will be regarded as a displacement thermal state. The NLA’s effect on this
displaced thermal state can be described by Equation (3) when it is successfully amplified.
However, the above equation only considers the amplification effect of the quantum state
transmitted in the channel when the NLA amplification is successfully amplified. The
successful amplification of NLA is actually probabilistic. Therefore, we must also consider
the impact of NLA probabilistic amplification on the EPR state [45].

Alice

EPR λ

Heterodyne
Detection

A1 Quantum Channel

T;Ɛ 

Bob

Heterodyne
Detection

Alice

EPR λd

Heterodyne
Detection

A1 Quantum Channel

Td;Ɛd 

Bob

Heterodyne
Detection

Figure 2. The equivalent method is used to analyze the CV-MDI-QKD system with NLA.
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In general, the thermal state ρ can be regarded as the superposition of countless
coherent states and can be expressed ρ̂ =

∫
P(α)|α〉〈α|dα. The equation can be used in the

EB model, and P(α) represents the probability of the coherent state |α〉 being transmitted
to Bob through the channel. If we selectively amplify the coherent state |α〉 in the channel
and only retain the successfully amplified state, that is, the non-uniform shielding of the
EPR state, we will obtain a new thermal state finally. The corresponding entanglement
parameter λd is given as follows:

λd =
λ√

1− Tλ2(g2 − 1)
(4)

Furthermore, only considering the case when the coherent state is successfully am-
plified by NLA, the other two equivalent parameters Td and εd will be recalculated. The
EPR state is always prepared by Alice, and Alice obtains the result of the heterodyne
detection αA in one mode |λ〉 of the EPR state, the amplitude of which is proportional to
λαA. This coherent state is sent to Bob through a quantum channel with a transmittance T,
which transforms its amplitude to ∝

√
TλαA. The displacement thermal state β can thus be

taken as:
β =
√

TλαA (5)

After being amplified by the NLA, the displacement thermal state β becomes:

√
TλαA → g

1− λ2
ch

1 + (gλch)2

√
TλαA (6)

When the modulation variance on Alice’s side VA = 0, the variance of the thermal state
will be equal to the variance at Bob’s side, where ε is the excess noise of the CV-MDI-QKD
system channel. That is:

1 + λ2
ch

1− λ2
ch

= 1 + Tε⇒ λ2
ch =

Tε

Tε + 2
(7)

After the NLA’s amplification, the parameter λch will be changed to gλch and then:

λ2
ch =

Tε

Tε + 2
→ λ′2ch = g2 Tε

Tε + 2
(8)

Finally, we consider the action of the NLA when Bob does not have any knowledge
of Alice’s measurement result. In this case, Bob’s state is regarded as a thermal state
ρ̂(λd) = (1− λ2

d)∑ ∞
n=0λ2n

d |n〉〈n|, where the variance is:

V(λd) =
1 + λ2

d
1− λ2

d
= TVA + Tε + 1 (9)

According to Equation (9) and based on the analysis above, we know that the parameter
λd will change to gλd after NLA, and the following equation will be obtained:

λ2
d =

λ2T(2− ε) + Tε

2− 2λ2(1− T) + Tε(1− λ2)
→ λ′2d = g2 λ2T(2− ε) + Tε

2− 2λ2(1− T) + Tε(1− λ2)
(10)

By Equations (8) and (10), we can obtain:

Td =
4Tg2

[Tε(1− g2) + 2]2

εd = ε− 1
2

T(g2 − 1)ε2 (11)
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When the parameters of the CV-MDI-QKD system λ, T, and ε are replaced by the
improved channel equivalent parameter λd, Td, and εd, we can find that the signal-to-noise
ratio of system will be improved. There are also some limitations we should pay attention
to in the developed method provided above. When we calculate the secret key rate after
the equivalent channel, the equivalent parameters must satisfy the following relationship:
0 <λd < 1, 0 ≤ Td < 1, εd≥ 0. We put this restriction into Equation (11). Then, we can
obtain the following restriction:

gmax(λ, T, ε) = Min(

√
1 +

1− λ

Tλ2 ,
−1 +

√
4 + 4ε(2 + Tε)√

Tε
) (12)

According to Equation (12), we can obtain an upper bound of the parameter g of the
NLA. As shown in Figure 3, the maximum value gmax of NLA with channel loss is plotted
under different values of the entanglement coefficient, i.e., λ = 0.7, 0.8, 0.9. The result
shows that the gain g of the NLA is limited to a small rang at the short communication
distance, but when the communication distance is long, the gain of the NLA will increase
quickly. In addition, the smaller the entanglement coefficient is, the greater the gain will be
under the same communication distance.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 00

2

4
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8

1 0

1 2

1 4

1 6

1 8

g m
ax

L o s s  ( d B )

 λ=0.7
 λ=0.8
 λ=0.9

Figure 3. The maximum value gmax of NLA gain is a function of channel loss (dB). The curve from
top to bottom is λ = 0.7, 0.8, 0.9. The excess noise is εA = εB = 0.001.

3. The Secret Key Rate of the CV-MDI-QKD System with NLA

In the previous chapter, we introduced the amplification performance of NLA in
detail, the equivalent parameters of channel transmittance and excess noise of the CV-MDI-
QKD system with NLA are obtained. Then, we will calculate the secret key rate of the
CV-MDI-QKD system with NLA, and the performance of the system will be simulated.

Assuming that the quantum channel parameters transmittance between Alice (Bob)
and Charlie are TA = 10−aLAC/10 (TB = 10−aLBC/10), here, the quantum channel losses are
a = 0.2 dB/km. The excess noise is εA(εB) correspondingly. After performing the quantum
channel equivalent, the covariance matrix of ρNLA

A1B′1
has the following form:

γA1B′1
=

[
aII2 cσz
cσz bII2

]
=

[
V(λd)II2

√
Td[(V(λd)]2 − 1)σz√

Td[(V(λd)]2 − 1)σz Td(V(λd) + χtot)II2

]
(13)
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where II2 is the 2×2 identity matrix and σz is the Pauli matrix σz =

[
1 0
0 −1

]
. χtot

represents the total noise at the input of the channel, χtot = χline +
2χhom

T , χhom represents
the noise of the homodyne detector, χhom = 1+vel

η − 1, χline represents the noise of the

quantum channel, and χline =
1
T − 1− ε′. Here, ε′ refers to the equivalent excess noise of

the equivalent one-way protocol, which can be calculated by:

ε′ = 1 + χA +
TB(χB − 1)

TA
+

1
TA

(

√
2

k

√
VB − 1−

√
TB
√

VB + 1)2 (14)

where χA = εA− 1+ 1
TA

, χB = εB− 1+ 1
TB

and when we set k =
√

2(VB−1)
TB(VB+1) , we will obtain:

ε′ = εA +
1

TA
[2 + TB(εB − 2)] (15)

Considering collective attack,the secret key rate of the CV-MDI-QKD protocol with
NLA under finite-size effect can be defined as follows [46]:

K f inite = Pnla[
n
N
(βIAB − χBE − ∆(n))] (16)

where Pnla is the probability of successful amplification of the NLA and Pnla = 1/g2, N is
the length of valid data collected, n is the data length used for the final key rate generation,
m = N − n is the data length for parameter estimation, β is the efficiency of reverse

reconciliation, ∆(n) is a function related to privacy enhancement, and ∆(n) = 7
√

log2(2/ε̄)
n ,

where ε̄ means the smoothing parameter.
Moreover, IAB is the Shannon mutual information between Alice and Bob, which can

be written as:
IAB = 2× 1

2
log2

VA
VA|B

= log2
a + 1

a + 1− c2/(b + 1)
(17)

where V = VA + 1. From Equation (9), we can obtain the modulation variance VA =
V(λ)−1−Tε

T , where λ is substituted with the equivalent λd.
In addition, the maximum information χBE that Eve can eavesdrop from Bob is limited

by the Holevo quantity:

χBE = S(ρE)−
∫

dmB p(mB)S(ρ
mB
E ) (18)

where mB represents Bob’s measurement results, p(mB) represents the measured probabil-
ity density, ρmB

E represents Eve’s state under Bob’s measurement, and S(ρ) represents the
von Neumann entropy of the quantum state ρ. Since Eve can purify the system ρA1B′1

, we
can obtain S(ρE) = S(ρA1B′1

). Therefore, χBE can be expressed as:

χBE = S(ρA1B′1
)− S(ρ

mB′1
A1

) (19)

where ρA1B′1
and ρ

mB′1
A1

are the covariance matrices of γA1B′1
and γ

mB′1
A1

, respectively. S(ρA1B′1
)

is the function of the symplectic eigenvalues λ1,2 of γA1B′1
, which can be expressed as:

S(ρA1B′1
) = G(

λ1 − 1
2

) + G(
λ2 − 1

2
) (20)

where G(x) = (x + 1) log2(x + 1)− x log2 x and the symplectic eigenvalues λ1,2 is:

λ2
1,2 =

1
2
[A±

√
A2 − 4B] (21)
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and

A = a2 + b2 − 2c2

B = (ab− c2)2 (22)

Moreover, S(ρ
mB′1
A1

) is the function of the symplectic eigenvalues λ3 of γ
mB′1
A1

, which will
be given by:

S(ρ
mB′1
A1

) = G(
λ3 − 1

2
) (23)

the symplectic eigenvalues λ3 is

λ3 = a− c2

b + 1
(24)

To demonstrate the influence of the NLA on the secret key rate of the CV-MDI-QKD
system, we simulate the relationship between the secret key rate of the system and the
communication distance under different NLA gains in Figure 4. Here, we choose the
optimal entanglement coefficient λ = 0.7 and consider that Charlie’s detectors are perfect,
that is, χtot = χline. Among all curves, the black curve with gain g = 1 represents the secret
key rate of the original CV-MDI-QKD protocol. We can see that its performance is worse
than the CV-MDI-QKD protocol with NLA in the same communication distance. Moreover,
the result shows that after adding NLA to the CV-MDI-QKD system, the communication
distance is longer than that of the original protocol. Furthermore, the communication
distance and the secret key rate of the system will increase significantly with the increase
in the NLA’ s gain.

Moreover, the effect of the reverse reconciliation efficiency on the system is shown
in Figure 5. We plot the relationship between the secret key rate and the communication
distance with different reverse reconciliation efficiency and the NLA’s gain. The result
shows that the influence of the reverse reconciliation efficiency on the communication
distance is relatively small when the gain of the NLA becomes larger. In short-distance com-
munication, the greater the gain of NLA, the smaller the impact of the reverse reconciliation
efficiency on the secret key rate.

Finally, to investigate the best gain to maximize the secret key rate of the CV-MDI-
QKD system with NLA, we simulate the maximized secret key rate as a function of the gain
of NLA. Assuming that the secure communication distance of the CV-MDI-QKD system is
60 km, we can see that the secret key rate of the system does not increase with the increase
in the NLA’s gain but has a maximum in Figure 6. The reason for this is that there is a
successful amplification probability of NLA is Pnla = 1/g2. With the increase in the NLA’s
gain, the secret key rate will reach the optimal value with a certain gain, and then the secret
key rate will drop rapidly. The best gain under different modulation variances is also given
by Figure 6, and it can be seen that the smaller the modulation variance, the greater the
optimal gain required.
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Figure 4. The secret key rate as a function of the communication distance. The entanglement
coefficient λ = 0.7 and g is the gain of NLA. The other parameters are εA = εB = 0.002, vel = 0, η = 1,
and β = 0.98.
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Figure 5. The secret key rate is a function of communication distance under different the efficiencies
of reverse reconciliation and the gain of NLA. In the NLA-based CV-MDI-QKD protocol, when g = 4,
the reverse reconciliation efficiency has little effect on the secret key rate of the system. The other
parameters are λ = 0.7, εA = εB = 0.002, and vel = 0, η = 1.
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Figure 6. Maximized secret key rate as a function of the gain of NLA, with a probability of success
Pnla = 1/g2. The black dotted curve represent the secret key rate of the NLA-based CV-MDI-
QKD protocol with λ = 0.7, and the red curve represents the secret key rate of the NLA-based
CV-MDI-QKD protocol with λ = 0.71.

4. Conclusions

In this paper, we induced an NLA into the traditional CV-MDI-QKD protocol to
improve the communication distance and the secret key rate of the system. The NLA
is added to the output of the detector at Charlie’s side first, and then, to investigate the
performance of the system with NLA, we equate the E-B model of the CV-MDI-QKD
system with NLA to the one-way CV-QKD protocol for which both Alice and Bob use
heterodyne detectors and perform some related simulations. The research results show
that NLA can increase the communication distance and secret key rate of the CV-MDI-QKD
protocol. However, the secret key rate will reach the optimal value with a certain gain, and
then the secret key rate will drop rapidly with the increase in the NLA’s gain since there is
a successful amplification probability of NLA. Moreover, we find that the influence of the
reverse reconciliation efficiency on the communication distance is relatively small when
the gain of the NLA becomes larger.
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