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Visual Abstract

The search for therapeutic strategies to promote neuronal regeneration following injuries toward functional re-
covery is of great importance. Brief low-frequency electrical stimulation (ES) has been reported as a useful
method to improve neuronal regeneration in different animal models; however, the effect of ES on single neu-
ron behavior has not been shown. Here, we study the effect of brief ES on neuronal regeneration of the CNS
of adult medicinal leeches. Studying the regeneration of selected sets of identified neurons allow us to quantify

Significance Statement

Recent studies have demonstrated that brief electrical stimulation (ES) can improve neuronal regeneration.
However, the effect of ES on single neuron behavior has not been shown. In the current study, we use a rela-
tively simple nervous system, the adult medicinal leech, label identify neurons, and study the effects of ES
on their regeneration. We show that different neurons response differently to the same ES paradigm.
Following brief ES (20Hz, 30min), more neuronal branches of the Retzius cells traverse the injury site with
better directed growth. In addition, more microglial cells were detected in proximity to the stimulation site
compared with the non-stimulated nervous systems. We conclude that ES triggers efficient neuronal regen-
eration and this effect might be mediated through differential microglial distribution.
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the ES effect per cell type at the single-cell level. Chains of the CNS that were subjected to cut injury were ob-
served for 3 d, and the spontaneous regeneration was compared with the electrically stimulated injured chains.
We show that the ES improves the efficiency of regeneration of Retzius cells, as larger masses of the total
branching tree traverse the injury site with better directed growth with no effect on the average branching tree
length. No antero-posterior polarity was found along regeneration within the leech CNS. Moreover, the micro-
glial cell distribution was examined revealing more microglial cells in proximity to the stimulation site compared
with non-stimulated. Our results lay a foundation for future ES-based neuroregenerative therapies.
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Introduction
The central nervous system (CNS) neurons of adult mam-

mals fail to regenerate their lost axons following an injury. In
contrast, the peripheral nervous system (PNS) and nervous
systems of lower organisms have an intrinsic ability to
undergo substantial regeneration (Ferretti et al., 2003;
Becker and Becker, 2008; Huebner and Strittmatter, 2009;
Mladinic et al., 2009; Ferreira et al., 2012). The unique ability
of neuronal tissue to regenerate in some but not other spe-
cies and what leads nerve regeneration toward functional re-
covery are longstanding questions that have not yet been
solved. Neuronal regeneration has been intensively studied
and many efforts have been put into developing methods to
increase its effectiveness (Rodríguez et al., 2000; Siemionow
and Brzezicki, 2009; Giger et al., 2010; Ferguson and Son,
2011; Baldwin and Giger, 2015). Some of the findings have
demonstrated that directing the axonal outgrowth toward ap-
propriate targets by means of physical support, can signifi-
cantly improve the outcome (Kim et al., 2008; Ferrari et al.,
2011; Baranes et al., 2012a,b, 2016; Alon et al., 2014, 2015;
Antman-Passig and Shefi, 2016; Marcus et al., 2017). It was
also shown that directionality can be achieved by chemical
guidance (Dodd and Jessell, 1988; Miller et al., 2002; Rosoff
et al., 2004; Kennedy et al., 2006; von Philipsborn et al., 2006;
Li et al., 2008; Giger et al., 2010; Lee et al., 2014; Carballo-
Molina et al., 2016).
Natural bioelectricity has an important role in many fun-

damental cellular processes in all cell types (Hoff, 1936;
Geddes and Hoff, 1971; Piccolino, 1997; McCaig et al.,
2005, 2009; Fixler et al., 2012; Tasset et al., 2012; Podda
et al., 2014; Adler et al., 2016; McLean and Verge, 2016).
In neurons, ion transporters generate voltage gradients
and fluxes that lead to fast dynamic voltage changes,
e.g., action potentials, or steady and long-lasting voltage.

Upon injury, these natural electrical signals change (Song
et al., 2004). Stimulating the electrical activity of the nerv-
ous tissue was found to affect neuronal growth (Patel and
Poo, 1982; Ming et al., 2001; Wood and Willits, 2006; Ou
et al., 2012) and has been suggested as a stimulating
mechanism for neuronal repair (Hoffman, 1952; Borgens
et al., 1981, 1990, 1999; Nix and Hopf, 1983; Pockett and
Gavin, 1985; Borgens, 1999; Song et al., 2004; English et
al., 2007; Messerli and Graham, 2011). Recent studies
have demonstrated a regenerative effect even when ap-
plying brief external electrical stimulation (ES). For exam-
ple, Al-Majed and colleagues have applied low frequency
ES (20Hz) for time periods ranging from 1 h to twoweeks
and showed that the ES dramatically accelerated the axo-
nal regrowth of motor neurons and that they were better
directed into the appropriate pathways. They have shown
that short- and long-term stimulation were equally effec-
tive (Al-Majed et al., 2000a). Subsequently, their group
and others have demonstrated an improved regeneration
for sensory neurons as well (Brushart et al., 2005;
Geremia et al., 2007; Singh et al., 2012; Wong et al.,
2015). Recently, Elzinga and colleagues have examined
the effects of the ES paradigm for delayed nerve repair
showing an effective repair as in the case of immediate
treatment (Elzinga et al., 2015). On the other hand, other
studies conducted in the CNS have shown that ES pro-
motes sprouting but not regeneration. Previous work
have shown that following pyramidotomy to the cortico-
spinal tract (CST), a daily application of ES to the motor
cortex (M1), for a period of 10d, caused robust sprouting
of CST axons in the impaired side (Brus-Ramer et al.,
2007; Carmel et al., 2010; Zareen et al., 2017). The dura-
tion of daily stimulation was depended on the type of
stimulation and could range from 6 h of multipulse stimu-
lation (MPS) to 30min of intermittent theta burst stimula-
tion (iTBS). The observed difference between sprouting
and regeneration following ES cannot be automatically at-
tributed to the difference between the CNS and the PNS,
nor to the difference between the types of the stimulation.
Although experimental results of the regeneration of pop-

ulations of axons are promising, the data regarding the pre-
cise effect of ES are still controversial and to date the effect
of ES on single neuron behavior has not been shown.
Moreover, due to neuronal heterogeneity, different cell types
with different functions and targets may respond differently
to the same ES protocol (Hathway et al., 2009). Previous
studies have showen that, intrinsically, different types of
neurons demonstrate different regeneration capabilities
(Duan et al., 2015; Hu et al., 2016; Jacobs et al., 1997; Wu et
al., 2007). Hence, observations of selected identified
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neurons may significantly reduce biological noise resulting
from population averaging, and may allow for detailed char-
acterization of the axon response to the ES.
Simple model systems such as that of invertebrates that

allow the analysis of identified cells within the intact arrange-
ment may be beneficial. Despite the differences in complex-
ity between the vertebrate and the invertebrate nervous
systems, the latter has been proven to be useful for under-
standing basic mechanisms related to neurophysiology, de-
velopment, and regenerative biology (Baylor and Nicholls,
1971; Brenner, 1974; Ready and Nicholls, 1979; Bellen et
al., 2010; Kandel, 2012). The CNS of the adult leech has
been a useful model for studying these topics over 50years
(Kuffler and Nicholls, 1966; Macagno, 1980; Kristan et al.,
2005; Firme et al., 2012; Tomina and Wagenaar, 2017; Puhl
et al., 2018). It is finite and relatively simply interconnected.
It is comprised of a head ganglion, 21 mid-body ganglia,
and a tail ganglion that are joined by two lateral connectives
and one smaller medial connective called Faivre’s nerve
(Coggeshall and Fawcett, 1964). Each mid-ganglion, except
#5 and #6, contains ;400 highly accessible neurons
(Macagno, 1980). The neurons of the adult leech CNS can
be unambiguously identified based on a typical size, spatial
location and electrical properties (Cohen et al., 2019).
Importantly, the leech CNS undergoes spontaneous and rel-
atively fast repair following injury (Macagno et al., 1985;
Chiquet and Nicholls, 1987; von Bernhardi andMuller, 1995;
Wang et al., 2005; Mladinic et al., 2009). Furthermore, the in-
volvement of microglial cells in the regeneration process fol-
lowing neuronal injury was first shown in this model (Sieger
and Peri, 2013), and it was used to elucidate the signaling
pathways that mediate their migration and crosstalk with
the damaged neurons (Morgese et al., 1983; McGlade-
McCulloh et al., 1989; Chen et al., 2000; Duan et al., 2003,
2009; Ngu et al., 2007; Schikorski et al., 2008; Salzet and
Macagno, 2009; Croq et al., 2010; Samuels et al., 2010;
Tahtouh et al., 2012; Arafah et al., 2013; Le Marrec-Croq et
al., 2013; Drago et al., 2014).
In this study, we examined the promoting impact of

brief ES on the regeneration of the leech CNS. We

specifically focused on one type of identified neurons, the
Retzius cells. These are neuromodulatory neurons, the
largest within each ganglion, sending their axonal projec-
tions to adjacent ganglia through the connectives. They
are involved in various leech behaviors including swim-
ming, crawling and local bending (Tomina and Wagenaar,
2017). As a comparison, we examined the P cells that are
mechanosensory neurons, responding to moderate pres-
sure to the leech ventral (Pv) or dorsal (Pd) skin by specific
spiking patterns that encode different spatial and tempo-
ral features of the stimuli (Nicholls and Baylor, 1968;
Pirschel and Kretzberg, 2016). We examined the morphol-
ogy and activity of both types (Retzius and Pd cells), with-
in the intact adult leech CNS, following an injury inflicted
by a partial cut of the ganglia chain ex vivo. The identified
neurons were labeled and their regeneration was as-
sessed over 72 h, with and without ES. In addition, we an-
alyzed the ES-induced response of microglial cells within
the injured connectives.

Materials and Methods
Animals and dissection
Ganglia chains were isolated from the CNS of adult me-

dicinal leeches Hirudo medicinalis (Fig. 1A). All leeches
are hermaphrodites. Leeches were anesthetized on ice for
30min before dissection and were pinned, dorsal side up,
to a layer of Sylgard on the bottom of the dissection
chamber. Dissection was made according to an estab-
lished procedure (Titlow et al., 2013). Briefly, a longitudi-
nal cut was made through skin and muscle layers along
the dorsal midline of the leech to expose the nerve cord
and segmental ganglia. Short segments of CNS chains
comprised of two adjacent ganglia joined by connective
tissue, were then dissected and moved to a Sylgard-148
Petri dish containing 4 ml of room temperature enriched
Leibovitz medium (L15 medium supplemented with 6mg/
ml glucose, 0.1mg/ml gentamycin, 2 mM/ml glutamine,
and 2% fetal bovine serum). Next, ganglia chains were
pinned on the Sylgard layer, ventral aspect up. After

Figure 1. Schematic overview of the experimental procedure. A, Leech dissection was performed for the isolation of ganglia chain
(enlarged insert). An identified neuron was fluorescently labeled by microinjection (orange) and a partial cut was made to one of the
two connectives. B, Ganglia chains were left to recover either spontaneously, or following a brief ES applied 24 h after injury. Newly
formed axonal branches were traced at the injury site 72 h after injury (blue dashed square).
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pinning the chains, we specifically labeled the anterior
right side Retzius cells in accordance with a description
below. For the P cell experiments, we labeled the Pd cell
on the injured side. The chain orientation was kept the
same for all chains. Partial axotomy was then performed
by cutting one of the two connective tissues (i.e., the con-
nective that includes the axonal projection of the labeled
cell) with fine scissors. Finally, the L15-enriched medium
was replaced with fresh medium, and the injured ganglia
chains were left to recover in the 25°C incubator up to the
ES part.

Neuronal labeling by intracellular injection
Sharp injection micropipettes were pulled from borosili-

cate glass capillaries of 1-mm external diameter and
0.75-mm internal diameter using a p-1000 micropipette
puller (Sutter instruments). A resistance of 15–25 MX was
obtained by filling the micropipettes with 3 M potassium
acetate. To visualize a single regenerating axon within the
CNS, we examined different fluorescent dyes based on
previous reports of the leech nervous system and other in-
vertebrate neurons that have shown effective tracing of
fine neuronal structure (Fan et al., 2005; Shefi et al., 2006).
Dextran amine conjugated dyes (Alexa Fluor and Fluro-
Ruby) were found to be ideal for our purpose. Hence, for
labeling, micropipettes were filled with either 3–5% Alexa
Fluor 488/568 (catalog #D-22910/D-22912) or 3–5%
Fluoro-Ruby (catalog #AG335). Since the Retzius cells are
the largest pair of cells situated on the mid-ventral surface
of each segmental ganglion and are characterized by a
typical spontaneous electrical activity, they were highly
accessible and very easily identifiable. P cells, on the other
hand, may be confused with other cells in their environment,
and their electrical activity must be monitored for unambigu-
ous identification. By using a micromanipulator, we posi-
tioned the filled micropipette in the desired cell, impaled it,
and injected the dye iontophoretically with a positive current
of 15–35 nA for 30 s to 1min (Movie 1). This short-time injec-
tion was found to be sufficient to label the desired cell for

further analysis. Using the samemicropipette, we monitored
the neuronal activity of the cell before and after dye injection
to verify cell viability along the procedure. Signals were am-
plified (molecular devices multi clamp 700B), filtered and
digitized by an analog-to-digital board Digidata 1400A
(Axon Instruments).

ES
Twenty-four hours after injury (day 1), a single ES was

applied to the experimental chains (Fig. 1B). The control
chains received sham ES. In order to precisely control the
electrode progression toward the stimulation location, we
designed and constructed a generic light aluminum elec-
trode holder that allowed the coupling of the platinum irid-
ium parallel bipolar hook electrodes (FHC - PBAA08100)
with a three-axis motorized micromanipulator. We used
the micromanipulator to place the electrodes next to the
ganglia chain near the ganglion. Specifically, cathode and
anode were placed at opposed sides of the ganglion. The
electrodes were connected to a function generator and an
ES of continuous 20-Hz square wave, positive polarity,
and amplitude of 500mV/mm, 1 V/mm, or 3 V/mm was
generated for 30min. Subsequently, the electrodes were
removed and the medium was replaced with a fresh sterile
medium. The ganglia chains were allowed to recover in a
25°C incubator for additional 48 h.

Morphometric analysis
Newly formed axons were detected at the injury site 72

h after connective partial cut. For each ganglia chain,
Z-stack images from the injury site were acquired with a
fluorescence microscope (Leica Z16-APO) equipped with
the LAS Montage Module for acquiring a series of
Z-Stack images and with the appropriate filters of FITC
and TRIRC. We measured the morphometric parame-
ters of the newly formed branches with or without ES.
These included total branching tree length and the per-
centage of nerve processes succeeding in crossing the
injury site for each regenerating neuron. To measure
neural length in the 3D tissue, we used the simple neu-
rite tracer plugin of the Fiji ImageJ software (National
Institutes of Health; Meijering et al., 2004), which ena-
bles semiautomatic neurite tracing and length measure-
ments for the fluorescently labeled regenerating axons.
To measure the percentage of nerve processes which
crossed the injury site, we set the point at which the
axon had been cut as a reference point and calculated
the proportion of the total branches length that crossed
this point out of the total branching tree length of the
entire regenerated axon.

Microglia distribution analysis
Ganglia chains were isolated, pinned on the Sylgard

layer, and were subjected to a partial cut injury as de-
scribed earlier (see also Fig. 1A). Injured ganglia chains,
experimental and control, were placed in the 25°C incu-
bator to allow microglial cell migration toward the injury
site, as described previously. Twenty-four hours after in-
jury, an ES at 20Hz for 30min was provided only for the

Movie 1. Retzius labeling by intracellular injection. Injection
electrode was filled with 5% Fluoro-Ruby and positioned to-
ward the Retzius neuron. The neuron identified according to its
typical location and size. Following cell penetration, we applied
positive current of 15 nA to move the dye out of the electrode
into the cell. [View online]
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experimental ES group, whereas the control group under-
went sham stimulation. L15 medium was then replaced,
and chains were returned to the incubator for additional
24 h. Next, 48 h after injury, cell nuclei were stained
with SybrGreen fluorescent dye, to observe cell distri-
bution along the chains. To note, some of the nuclei, a
minority of the entire population, were those of the peri-
neurial sheath cells and another one nucleus belonging
to the single glial cell related to the connective. Since
perineurial sheath cells do not move following injury, a
change in the number of cells is mainly caused by a
change in the microglial cell population (as noted by
McGlade-McCulloh et al., 1989). A series of fluorescent
Z-stack images were acquired from two regions of the
connective: by the ES site and by the injury site. Cells
were counted manually by using Fiji ImageJ software,
and the total number of cells for each condition was ob-
tained and compared.

Experimental design and statistical analyses
Measurements of the investigated parameters are sum-

marized in bar plots. Values were expressed as a mean 6
SE. The unpaired two-tailed and one-tailed (when direc-
tion of outcome is predictable) Student’s t test were used
to determine statistical significance; p, 0.05 was consid-
ered statistically significant. The number of samples and
the statistical analysis for each panel, including specific p
values, are indicated when appropriate in each figure
legend in the results section.

Results
Regeneration of single cells within ex vivo ganglia
chain following a cut model
Illustration of the model system and the experimental

procedure can be seen in Figure 1. The two steps of the

Figure 2. Tracing newly regenerated axonal branches of an identified neuron within the recovering leech CNS. A, Spontaneous re-
generation process of the connective tissue following partial axotomy of one of the connectives. B–D, Microinjection of a single neu-
ron with Fluoro-Ruby for a period of up to 1min. Time lapse images demonstrate the procedure. E, Retzius cell (upper panel) and P
cell (lower panel) identified according to their typical location, size, and characteristic electrical activity pattern. The dye-filled re-
cording electrode can be seen in bright orange in both images. F, Fluorescent dye demonstrates the elaborated trajectory of the
newly regenerated axonal branches of the Retzius neuron following an injury. Scale bar = 200 mm (A–F).
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Figure 3. Antero-posterior polarity during CNS spontaneous regeneration. A–C, Fluorescence images of a single labeled Retzius
neuron’s newly formed branches at time points 24, 48, and 72 h after injury, respectively. D, E, Morphologic measurements method.
Neurite tracing of the newly formed branches (pink) was performed by the semi-automated simple neurite tracer plugin. F, FIJI
drawing representing an example of typical newly formed axonal branches. The drawing shows the relative portion of mass that
crosses the injury site out of the total newly branching tree. G, Illustration of antero-posterior polarity examination. Retzius cells
were microinjected either at the anterior (n=16) or the posterior (n=19) ganglion. Cells that exhibited successful regeneration after
72 h (i.e., cells with .150 mm newly regenerated axonal branches) were further analyzed. H, Averaged total lengths of the newly
formed axonal branches (no significant difference). I, Percentage of axonal branches crossing successfully the injury site (no signifi-
cant difference). N=15 per group, two-tailed unpaired t test. Scale bar = 200 mm.
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preparation include the ganglia chain isolation and injury
(Fig. 1A), and the regeneration following brief ES (Fig. 1B).
The spontaneous regeneration of the injured ganglia

chain can be seen in Figure 2A. A recovery of the connec-
tive tissue could be detected already 24 h after injury.
Figure 2B shows a recording electrode (bright orange) im-
paling the soma of a large Retzius cell before labeling.
After impaling the cell, dye was injected iontophoretically
(Fig. 2B–D). To verify neuronal viability following the injury
and the labeling procedure, we monitored the spontane-
ous spike activity of the injected Retzius neurons or
evoked potentials in the injected P cells before and after
dye injection (Fig. 2E). All neurons retained their typical
spike activity following the procedure. Figure 2F demon-
strates the newly regenerated axonal branches of the
Retzius neuron 72 h after injury, revealing an elaborated
growth at the injury site with a complex branching tree
pattern.

Comparison between anterior and posterior cell
spontaneous regeneration shows no CNS polarity
To characterize the spontaneous regeneration process

of neurons that have not received ES, we stained the neu-
rons, traced the regenerating trajectories and followed the
recovery up to 72 h after the cut. Figure 3 shows a typical
regeneration process in a single neuron as imaged 24, 48,
and 72 h after injury. A dynamic axonal regeneration can
be seen, indicating that the neuron remained viable. To
evaluate functional regeneration, we calculated the pro-
portion length of the branches that crossed the injury site
(traversing branches) out of the total branching tree of the

regenerated axon (Fig. 3F). Next, we examined whether
there is a distinguishable antero-posterior polarity within
the leech CNS that may affect the spontaneous injury site
traversing. We obtained axonal tracing of regenerating
Retzius neurons from both anterior and posterior ganglia
(relative to cut location; Fig. 3G). No significant difference
between the two groups was found in the average
branching tree length (4876 75 vs 389670 mm, respec-
tively; Fig. 3H) nor in the percentage of axonal branches
mass succeeding in crossing the injury site (2067 vs
376 10, respectively; Fig. 3I). The results indicate that
there is no CNS polarity that may affect the spontaneous
injury site crossing with respect to Retzius spontaneous
regeneration.

Typical spontaneous regeneration patterns for
identified sets of neurons
To evaluate whether different types of neurons may ex-

hibit different regeneration features following injury, we
compared Retzius to P cells spontaneous regeneration. P
cells from both anterior and posterior ganglia (n=18) were
compared with the Retzius neurons, also taken from ante-
rior and posterior ganglia (n=29). The different types of
cells demonstrated different basal behavior. The results
indicate that P cells were able to significantly regenerate
larger branching tree compared with the regenerating
Retzius neurons (7646 96 vs 4366 51 mm, respectively;
Fig. 4B). In addition, P cells demonstrated a relatively
higher rate of injury site crossing compared with the
Retzius neurons (4768 vs 296 6, respectively; Fig. 4C).
However, this effect was not statistically significant.

Figure 4. Different types of neurons demonstrate different spontaneous regeneration. A, Illustration of the single Retzius and P cell
tracing. B, Total branching length of spontaneously regenerated Retzius and P cells. Two-tailed unpaired t test; pp = 0.0019. C,
Injury site traversing of spontaneously regenerated Retzius and P cells.
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Figure 5. Morphologic analyses for Retzius and P cells regeneration with and without ES. A, Fluorescence image of the ganglion
stimulation. The bipolar hook electrode was positioned in the desired location so that the ganglion was situated in the center. The
pattern of the ES is displayed at upper right corner. B, Fluorescence images of the Retzius cell’s newly formed branches at 72 h,
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These data clearly show that different types of cells may
present different responses and that by exploring single
neurons this information becomes visible.

Injury site traversing by regenerative axons
significantly increased following brief ES for Retzius
neurons
To examine the effects of ES on the regeneration we ap-

plied a brief ES (20Hz, 1 V/mm) to the ganglia chain 24 h
after injury (Fig. 5A) and quantitatively analyzed the mor-
phology of the labeled neurons after another 48 h. This in-
tensity was chosen according to an earlier study that
demonstrated positive effect of ES on neurite outgrowth
of goldfish retinal explants (Ou et al., 2012). Based on pre-
vious studies showing improved regeneration following
ES in comparison to spontaneous regeneration (Borgens
et al., 1981; Nix and Hopf, 1983; Borgens, 1999; Al-Majed
et al., 2000a; Brushart et al., 2005; Gordon et al., 2009;
Carmel et al., 2010; Ou et al., 2012; Singh et al., 2012;
Elzinga et al., 2015; Wong et al., 2015; Gordon, 2016;
Zareen et al., 2017; MacEwan et al., 2019), we compared
the ES-treated versus non-treated cells (using one-tailed t
test) in analyzing the ES effect. Examples of typical regen-
eration patterns of Retzius cells with and without ES are
shown in Figure 5B. Axonal tracing drawings of newly
formed branches demonstrate that larger mass of
branches crossed the injury site and were directed toward
their original target, the distal ganglion, following an ES as
compared with spontaneous regeneration of the unstimu-
lated group (Fig. 5C).
Comparison between the average branching tree length

of regenerating Retzius neurons with and without applica-
tion of ES showed that there is no significant difference be-
tween the groups (593690 vs 4366 51 mm, respectively;
Fig. 5D). However, a comparison between branches’ direc-
tionality of regenerating Retzius neurons with and without
application of ES showed a significant increase in percent-
age of axonal branches (length) which successfully crossed
the injury site. For stimulated Retzius cells, the regenerating
branches mass that crossed the injury site increased signifi-
cantly to an average percentage of 516 11%, whereas the
unstimulated Retzius cells showed an average percentage
of only 296 6% (Fig. 5E). This result reflects an almost two-
fold increase, similar to the increase reported for popula-
tions of rat sensory and motoneurons (Elzinga et al., 2015).
To examine the effect of the ES amplitude on the ability of
axons to cross the injury site, we repeated the procedure
with higher (3 V/mm) and lower (500mV/mm) amplitudes.
Application of ES with lower amplitude of 500mV/mm (n=6)
led to similar statistics as for the amplitude of 1 V/mm
(616 10% vs 516 11%, respectively). However, the

application of higher ES amplitude of 3 V/mm resulted in an
immediate observable damage to the ganglion, reflected in
a distortion of its shape. In an attempt to clarify the nature of
the axons outgrowth with and without ES, we analyzed the
number of branches for each condition. The average num-
ber of branches was similar for cells with and without the
electrically stimulation (7.661.0 vs 6.36 0.7 branches, re-
spectively). This result suggests that the ES affect the out-
growth directionality without changing the level of axon
sprouting.
The analysis of P cells morphology led to different

growth behavior than the Retzius cells. Application of ES
had no effect of the rate of injury site crossing that was
close to 50% even without the ES stimulation (486 11 vs
476 8, for stimulated and non-stimulated, respectively;
Fig. 5E). In addition, there was no significant difference in
P cells branching tree length with or without the brief ES
(6146154 vs 7646 96, respectively; Fig. 5D).

Injured ganglia chains present different microglial cell
distribution following brief ES
To examine whether brief ES alters the microglial cell

response during leech CNS recovery, we labeled the cell
nuclei along the connective 48 h after injury and com-
pared the number of cells with that found in the untreated
chains. As it has been shown that the nuclei in the con-
nective are mostly those of microglial cells, and that there
are no other migrating cells along the connectives other
than microglia (McGlade-McCulloh et al., 1989; Samuels
et al., 2010), a change in the number of nuclei along the
connective can be attributed mainly to a change in the mi-
croglial cells population. For each condition we analyzed
two regions in the connective: near the ES site, i.e., the
anterior region, and close to the injury site (Fig. 6A). Figure
6B demonstrates a preferential accumulation of glial cells at
the injury site, as differential fluorescence intensity with higher
values can be seen in the injured chains in comparison to a
lower and relatively homogeneous fluorescence intensity ob-
served in the non-injured chains. As for the anterior region of
the chain, close to the ES site, a higher number of cells was
detected in the electrically stimulated injured chains com-
pared with the non-treated ones. As shown in Figure 6C,D,
there was a significant difference in the total number of cells
counted at the anterior region between the two groups
(3806 40 vs 2506 20, respectively).

Discussion
Simple model systems of invertebrates are beneficial

for studying the basic principles of nervous system regen-
eration (Baylor and Nicholls, 1971; Ready and Nicholls,
1979; Yanik et al., 2004; Yan et al., 2009). One such

continued
with and without ES (green and orange, respectively). C, Representative examples of three ganglia chains from a single leech for
each condition. Upper panel, Chains with no ES treatment. Lower panel, Chains treated with ES. The axonal tracing drawings of the
newly formed branches were placed on an artificial line that illustrates the relative position of the injury site (green dotted line). The
original axon is marked by the orange dotted line and the newly formed branches are in black. The portion of the axonal tree located
under the green dotted line is the mass that crossed the injury site. D, Total branching length of Retzius and P neurons in non-stimu-
lated (left bar) and stimulated (right bar) chains. E, Percentage of injury site crossing of Retzius and P neurons in non-stimulated (left
bar) and stimulated (right bar) chains. One-tailed unpaired t test; pp = 0.041; n = 40 (Retzius cells) and 26 (P cells).

Research Article: New Research 9 of 15

May/June 2020, 7(3) ENEURO.0030-19.2020 eNeuro.org



Figure 6. Electrical effect on leech microglia. A, Illustration of the experimental procedure demonstrating cell nuclei staining with
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preparation is the CNS of the medicinal leech, H. medici-
nalis, in which spontaneous regeneration that leads to
functional recovery can occur. Using a cut injury model of
the nervous system of the medicinal leech, we were able
to analyze the regeneration process of identified neurons
at the single cell level with and without ES. For each gan-
glia chain, we anterogradely labeled single cell body. We
analyzed specific cells, the Retzius neurons, which are
paired serotonergic neurons with the largest somas in the
ganglion, and traced the branching morphology at the in-
jury site for up to 3 d. Our results show that Retzius neu-
rons exhibit successful spontaneous regeneration within
this period; however, the vast majority of the regenerating
branches fail to regrow across the lesion site and most of
them turn backwards. To examine the advantage of label-
ing specific type of neurons, we tested the spontaneous
regeneration behavior of a second type of neurons, the P
cells. We found a distinct growth pattern for each cell type
with higher level of efficient injury site crossing for the P
cells. Previous studies already demonstrated different re-
generation capabilities to different neuronal subtypes.
Duan et al. (2015), for example, showed that following an
injury to the mouse optic nerve, and subsequent treat-
ment that elicits regeneration, only one specific subtype
of the retinal ganglion cells (RGCs) out of 11 subtypes, the
aRGCs, was accounted for nearly all the observed regen-
eration. In the Caenorhabditis elegans several mechano-
sensory neurons such as the PLM, ALM, and AVM show
robust regeneration (Wu et al., 2007), while other sensory
neurons, such as the AFD and AWC, show no regenera-
tion following axotomy (Chung et al., 2006; Gabel et al.,
2008). In the sea lamprey, following an hemisection of its
spinal cord, some neurons, such as the Mauthner, I1, B1,
and B3 neurons, display poor regenerative capacity, while
others, such as the M4, I3-I6, B2, and B6, show high re-
generative capacity (Jacobs et al., 1997). The differences
in the regeneration capabilities are attributed to intrinsic
differences between neuron types (Jacobs et al., 1997;
Shifman and Selzer, 2007; Chen et al., 2016; Chen and
Shifman, 2019), which may also mediate different regen-
erative responses to the same ES.
Previously, using different models has shown that axonal

regeneration and preferential re-innervation following brief
ES is accelerated (Al-Majed et al., 2000a; Gordon et al.,
2009; Singh et al., 2012; Elzinga et al., 2015).
Analyzing neurons that can be unambiguously identified

allowed us to quantify the effect of the ES per cell type.
Following ES, in contrast to the backward regrowth typi-
cally exhibited along the Retzius spontaneous regenera-
tion, the regenerated axonal branches of the Retzius cells

changed their directionality without changing the total
branching tree length. We found that brief ES affected the
typical tree directionality and promoted its ability to cross
the injury site. Branches that succeeded in crossing the
injury site were able to keep growing toward the adjacent
target ganglion. This approach revealed a way to over-
come the limited regeneration following a cut-induced
injury, which acts as a more rigid barrier for axons to
cross as compared with other injuries such as crushes
(Macagno et al., 1985). Indeed, Macagno et al. (1985)
have demonstrated an extremely poor ability of T cells
(mechanosensory neurons) to cross the injury site follow-
ing a cut compared with crushing the connective. In addi-
tion, they found that the T cells in a cut model typically
reverse the regrowth direction toward the original gan-
glion, as we have noticed in our experiments for the Rz
neurons. However, this phenomenon is not the same for
all neurons. We examined another set of mechanosensory
neurons (P cells) and found that half of the axonal tree
could cross spontaneously the injury site. These results
show a typical regrowth pattern and are in accordance
with pervious results of another model system, the sea
lamprey, that showed the tendency of some axons to re-
generate across the lesion, rather than loop backward
(Mackler et al., 1986; Lurie and Selzer, 1991). The limited
improvement of injury site crossing of P cells with ES ap-
plication may represent a ceiling effect, raising an inter-
esting question for future study. Thus, the effect of ES, as
we showed here, may contribute to an efficient and func-
tional regeneration pattern for cells that otherwise tend to
turn backward at the injury site, improving the natural ef-
fectiveness of regeneration.
To rule out an immanent anterio-posterior polarity with-

in the adult ganglia chain, which may lead to the back-
ward regeneration trend, we examined the spontaneous
regeneration pattern for both anterior and posterior
Retzius neurons (relative to the injury site). No significant
difference was detected regardless of whether the neuron
was regenerating from the anterior ganglion to the poste-
rior or vice versa. This shows that the tendency to loop
back is not affected by the position of injured neuron and
this behavior is a result of the regeneration after injury.
This result strengthens our conclusion that the spontane-
ous recovery, after a partial cut injury, has a backward-re-
generation trend and that the brief ES interferes with this
pattern to some extent, leading to a more efficient pattern
of regrowth.
Previous studies suggested that action potentials gen-

erated by the ES are transmitted back to the soma of the
neurons, potentially promotes upregulation of BDNF and

continued
SYBR Green in the vicinity of the location of ES and at the region of interest for analysis (blue dotted rectangles). B, Measurement
of SYBR Green intensity profiles in cells within the leech connective. The fluorescence intensity (y-axes) measured from left to right
along the rectangular regions (x-axes) were plotted. Cell distribution intensity profile shows accumulation of cells at the injury site
and increased values for the side that matches the injury area as compared with relatively uniform values in the uninjured chain. The
images show the cells after pseudo-color processing. Blue and green represents high intensity, red represents low intensity. C,
Visualization of SYBR Green-labeled microglia distribution and accumulation following partial cut with and without ES. Fluorescence
images show increased number of cells at the anterior region only for the ES group. D, Average number of cells at the two regions
of interest with and without ES. Asterisk indicates that the cell number near the ES site (anterior) was significantly increased under
brief ES; pp=0.048, n=3–4 CNS ganglia chains per group, two-tailed unpaired t test. Scale bar =200 mm (A–C).
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other neurotrophic factors and their receptors and are es-
sential for enhancing axonal growth following stimulation
(Al-Majed et al., 2000a,b, 2004; English et al., 2007;
Geremia et al., 2007; Elzinga et al., 2015; Gordon, 2016).
The blockade of the retrograde transmission of these ac-
tion potentials by TTX prevented the positive effect of the
ES on the axonal outgrowth. So far, none of the canonical
neurotrophic factors (NGF, BDNF, CD3/4, and GDNF li-
gands) have been found in the invertebrate nervous sys-
tem (Palgi et al., 2009). Therefore, we seek for other
evolutionary conserved mechanisms that can be involved
in mediating the ES effect. Different models, including
mammalian nervous systems, revealed that glial cells are
activated following nerve injury (Schwartz, 2003; Davalos
et al., 2005; David and Kroner, 2011). In addition, in di-
verse models including mice and rats, it has been shown
that microglial cells respond rapidly to any minor neuro-
pathological change (Kreutzberg, 1996; Hanisch and
Kettenmann, 2007). In the leech, microglial cells recruit-
ment at the injury site is known to be involved in the re-
generation process. Previous studies have suggested
that, within the leech CNS, cells start moving toward the
injury site within minutes after injury, reaching peak level
within 24 h and then decline slowly for weeks after injury
(Morgese et al., 1983; McGlade-McCulloh et al., 1989; Le
Marrec-Croq et al., 2013). We, therefore, also analyzed
the migration and distribution of microglial cells in injured
ganglia chains, electrically stimulated and non-stimulated.
Following the injury, we observed greater accumulation of
microglial cell close to the stimulating area (between the
anterior ganglion and the injury site) in ganglia chains that
received ES. At the injury site, a considerable accumula-
tion of cells was observed for both cases, but no signifi-
cant ES-induced difference was detected between those
groups. Our findings that brief ES increased the axonal
crossing of the injury site and affected microglial cells’mi-
gration lead to the conclusion that the modifications in
axonal growth direction following a brief ES might be
mediated by ES through differential microglial cells distri-
bution. Activating microglial subpopulations by different
factors has been reported previously in the leech (Croq et
al., 2010; Tahtouh et al., 2012) and also in mammals
(Hanisch and Kettenmann, 2007), leading to neuroprotec-
tive or neurotoxic effects. Our findings of amended
growth pattern and, most importantly, efficient neuronal
regeneration triggered electrically are intriguing with high
potential for promoting neuronal repair. Moreover, the ob-
served brief ES-induced supported functional regrowth,
which was able to overcome the physical obstacle formed
by a scar, opens new possibilities for future therapeutics.
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