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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-
year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of
extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing
a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic
chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes
hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby
supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis
to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and
pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by
which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression.
Furthermore, we investigate how activated stellate cells and ECM influence immune cells and
promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target
the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to
mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor
ECM and immune cells may uncover novel treatment strategies that are desperately needed for this
devastating disease.

Keywords: pancreatic ductal adenocarcinoma; extracellular matrix; fibrosis; immune cell modulation;
neutrophils; neutrophil extracellular trap; macrophages

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies of
the gastrointestinal system, with a five-year survival rate of only 9% [1]. It is currently the
seventh-leading cause of deaths among cancers worldwide [2], and the incidence continues
to rise [1,3]. At the time of pancreatic cancer diagnosis, up to 80% of patients present with
metastatic or unresectable disease [4]. Pancreatic cancer is immensely difficult to treat,
largely due to the dense, fibrotic stroma that dominates much of the tumor microenviron-
ment (TME) [5]. A significant portion of the stroma is composed of extracellular matrix
(ECM) proteins deposited through a desmoplastic reaction [6]. Desmoplasia is a fibro-
inflammatory process of the stroma that consists of immune cells, proliferative fibroblasts,
and abundant deposition of ECM proteins such as collagens and fibronectin [7–10]. While
several therapeutic strategies for PDAC exist, the fibrotic stroma is a significant barrier
to drug efficacy. Recent investigations have implicated immune cells such as neutrophils
and macrophages in their contributions to the PDAC fibrotic stroma (Figure 1). In this
review, we outline how the PDAC TME is established and the significant contribution of
fibrosis to the pathogenesis, therapeutic resistance, metabolic adaptation, and immuno-
suppressive nature of PDAC. Moreover, we summarize the recent literature available on
neutrophils and macrophages promoting PDAC fibrosis. Lastly, because of the therapeutic
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challenges presented by desmoplasia, we discuss current therapeutic strategies that target
these immune cells with the aim of reducing PDAC fibrosis.
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Figure 1. Crosstalk between the fibrotic tumor microenvironment (TME) and neutrophils and macrophages in pancreatic
ductal adenocarcinoma. The fibrotic TME releases a variety of chemical mediators that recruit neutrophils and macrophages
into the TME. In turn, neutrophils and macrophages possess characteristics and/or release their own factors that increase
TME fibrosis. CSF1, colony stimulating factor 1; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth
factor-A; C5a, complement component C5a; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; CCL, chemokine
(C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; PI3Ky, phosphatidylinositol 3-kinase gamma; MMP-9, matrix
metalloproteinase 9; GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF-α, tumor necrosis factor-alpha;
NETosis, neutrophil extracellular trap release.

2. The Pancreatic Adenocarcinoma Tumor Microenvironment

The pancreatic TME consists of cellular and acellular components including ductal
epithelial cells, fibroblasts, myofibroblasts, activated pancreatic stellate cells (PSCs), and a
host of immune cells including regulatory T cells, myeloid-derived suppressor cells, tumor
associated macrophages (TAMs), and tumor associated neutrophils (TANs) [11,12].

Quiescent fibroblasts are cells that comprise most of the stroma in various tissues.
They are intimately involved in ECM modulation by secreting numerous ECM proteins
such as collagens, elastin, and fibronectin [13,14]. Fibroblasts are typically recruited to an
area of tissue insult by transforming growth factor-β (TGF-β), platelet-derived growth
factor (PDGF), and fibroblast growth factor 2 (FGF2). After their recruitment, the fibroblasts
are activated and promote the wound healing response through both cytoskeletal and
ECM remodeling. After resolution of the injury, fibroblast activation is reversible through
apoptosis. However, if the signals associated with tissue damage such as TGF-β, PDGF,
and FGF2 are incessant, as is the situation in malignancy, the activated fibroblasts become
hyper-proliferative and can become cancer-associated fibroblasts (CAFs) [15].

The PDAC stroma is imbued with a heterogeneous and plastic population of CAFs [6,11,16].
Fibroblasts inside the tumor mass differentiate into CAFs when exposed TGF-β, produced
by PDAC cells, stromal cells, and TAMs [17,18]. The conversion of fibroblasts into CAFs
is a positive feedback loop, as the formation of CAFs mechanically releases more TGF-β
from its binding protein, latency-associated peptide (LAP) [19]. The CAFs have an active
role in the TME, where they enable tumorigenic functions through the release of several
pro-inflammatory cytokines, such as TGF-β, granulocyte-macrophage colony-stimulating
factor (GM-CSF), colony stimulating factor 1 (CSF-1), and CCL2 [16,20,21]. Moreover, CAFs
secrete multiple growth factors such as vascular endothelial growth factor-A (VEGF-A),
hepatocyte growth factor (HGF), and platelet-derived growth factor (PDGF). These growth
factors facilitate recruitment of immune cells and endothelial cells into the TME [19].

An important fibroblast population known as pancreatic stellate cells (PSC) are qui-
escent, star-shaped cells that reside in the basolateral portions of pancreatic acinar cells.
Notable intracellular characteristics of PSCs include a large nucleus, limited mitochondria,
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and copious amounts of vitamin A- and albumin-containing fat droplets [22]. The role
of quiescent PSCs has not yet been fully elucidated, however, it is thought that they are
involved in structural support of the basement membrane by providing scaffolding [23].
During tumorigenesis, PSCs can become activated by the stimulating factors such as TGF-β,
Interleukin-10 (IL-10), and PDGF that are released from PDAC cells and stromal cells [24].
Once activated, PSCs represent the most common subpopulation of CAFs [6,25]. In contrast
to their quiescent counterparts, activated PSCs do not possess fat droplets. The mechanism
by which fat droplets disappear or the impact of their absence on PDAC progression has not
yet been answered [23,26]. The physiological hallmark of PSC activation is the expression
of α-smooth muscle actin (α-SMA), a type of cytoskeletal protein [27]. Activated PSCs are a
key contributor to the PDAC fibrotic stroma as they increasingly release ECM proteins such
as collagen, periostin, fibronectin, matrix metalloproteinases (MMPs), and tissue inhibitors
of matrix metalloproteinases (TIMPs) [25,28,29]. There have been conflicting results on the
association of MMP type with patient survival, but increased MMP-7 has more consistently
correlated with poor patient survival [30].

A recent proteomic analysis of the ECM in PDAC progression found that elevated
levels of fibronectin and periostin were significantly associated with worse patient out-
comes [31]. Increased deposition of collagen I and collagen IV correlate with reduced
patient survival, whereas collagen III levels do not have a statistically significant asso-
ciation with patient survival [32]. Further, it was found that high circulating levels of
collagen IV after PDAC resection correlated with reduced patient survival [33]. Interest-
ingly, high alignment of collagens in PDAC tumors is associated with poor patient survival
and correlates to stromal activation [34].

3. Contributions of Fibrosis in the TME to Pathogenesis of Pancreatic Cancer

There are multiple mechanisms through which the characteristic PDAC TME facilitates
PDAC progression by enhancing tumor growth and promoting metastases (Figure 2).

3.1. Therapeutic Resistance through Limiting Penetration of Cytotoxic Agents

The overabundance and imbalance of released ECM proteins establishes a high intersti-
tial pressure environment resulting in decreased perfusion of the tumor. This high pressure
and diminished perfusion prevent infiltration of cytotoxic agents into the TME [35,36].
Several treatment strategies that target the stroma, outlined below, have been designed
to enhance penetration of chemotherapy to the tumor, thereby increasing efficacy and
treatment response.

3.2. Promotion of Hypoxia in the TME

Deposition of ECM proteins amplifies tissue tension and intra-tumoral pressure.
These effects disrupt local blood circulation and oxygen diffusion in pancreatic tissue,
leading to hypoxia [37,38]. In response to the hypoxic environment, hypoxia-inducible
transcription factors (HIFs) are stabilized. The HIF-α/ARNT heterodimer, along with
transcriptional coactivators, bind to hypoxia response elements (HREs) in gene promoters
leading to transcription of genes in PDAC cells that facilitate glycolysis, tumorigenesis,
and metastasis [39]. PSC exposure to HIF-α also increases expression of type I collagen,
fibronectin, and periostin, thereby accentuating hypoxia secondary to ECM deposition and
increased TME fibrosis [24,28,39,40].

The hypoxic TME also poses a significant challenge for radiotherapy interventions.
Typically, radiation absorbed by the tissue requires oxygen to produce reactive oxygen
species (ROS) that cause DNA damage to cancer cells, thereby shrinking the tumor. In
the setting of hypoxia (under 10 mmHg), the efficacy of radiotherapy decreases and
requires significantly increased dosage to reach the desired therapeutic effect [41]. Different
strategies designed to alleviate hypoxia in the TME and improve radiotherapy penetration
such as radiosensitizer drugs have been proposed [42,43] but will need to be tested against
PDAC tumors.
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Figure 2. Contribution of extracellular matrix (ECM)/fibrosis to pancreatic ductal adenocarcinoma (PDAC) pathogenesis.
Activated pancreatic stellate cells (aPSC) release significant quantities of ECM components, including collagen, periostin,
fibronectin, and matrix metalloproteinases (MMPs) into the PDAC tumor microenvironment (TME) that contribute to
fibrosis. The fibrotic PDAC TME results in several pathogenic effects (noted in red text). The abundance of fibrotic material
in the PDAC TME can result in hypoxia and decreased tumor perfusion, which inhibit the therapeutic effects of radiotherapy
and chemotherapy, respectively. Moreover, fibrosis can lead to hypoglycemia and nutrient deprivation in the TME. In
response to nutrient deprivation, PDAC tumor cells metabolically adapt by stimulating autophagy in aPSCs, leading
to release of alanine from aPSCs, which is then used for fuel by the PDAC tumor cells. The aPSCs may also stimulate
autophagy in PDAC tumor cells. Immunosuppression in the TME is established in part by the release of galectin-1 and
CXCL12 by aPSCs, inhibiting CD3+ T cells and sequestering CD8+ T cells, respectively. Additionally, release of interleukin-6
(IL-6) by aPSCs results in conversion of immature myeloid cells to myeloid-derived suppressor cells (MDSCs), which then
inhibit infiltration by cytotoxic T cells and natural killer cells.

3.3. Altering Tumor Cell Metabolism

The reduction in perfusion associated with PDAC fibrosis also leads to nutrient
deprivation of the tumor. To overcome this obstacle, PDAC cells maintain adequate
nutrition by altering their metabolism to support tumor growth. The vast majority of
PDAC cells possess the oncogenic KRAS mutation, enabling them to utilize glutamine as
a nutritional source for cancer growth [44]. Aside from providing nutrition, glutamine is
also used to promote hyaluronan production via the hexosamine biosynthesis pathway.
A study done by Sherma et al. demonstrated that a small molecule glutamine analog
(6-diazo-5-oxo-l-norleucine (DON)) was able to reduce the ECM deposition surrounding
PDAC cells by inhibiting hexosamine biosynthesis [45]. KRAS mutant PDAC cells are also
able to sustain themselves through macro-autophagy, a metabolic cell-survival process
that relies on recycling of damaged organelles and proteins. Oncogenic KRAS positively
regulates PDAC autophagy by promoting expression of vacuole membrane protein 1
(VMP1), a critical element of autophagosome formation [46,47]. There is also evidence
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that PDAC cells and activated PSCs engage in metabolic cross talk. Under hypoglycemic
conditions, activated PSCs, induced into autophagy by PDAC cells, release alanine in the
TME. The alanine is then internalized by PDAC cells and converted to pyruvate, which
substitutes for glucose and glutamine in the tricarboxylic acid (TCA) cycle to maintain ATP
generation [48,49].

3.4. Immunomodulation

In addition to secreting ECM proteins that provide a physical barrier to cytotoxic
immune cells, activated PSCs release a variety of immunomodulatory factors that drive the
PDAC TME into an immunosuppressive environment. One example is interleukin-6 (IL-6),
which operates through the Janus kinase 2 (JAK2) and signal transducer and activator of
transcription 3 (STAT3) signaling cascade. The activation of the JAK2/STAT3 signaling
in immature myeloid cells results in their conversion to myeloid-derived suppressor cells
(MDSCs). The MDSCs then release a variety of their own modulatory factors that suppress
the actions of cytotoxic T cells and natural killer cells, thereby limiting the immune response
against the PDAC tumor [50]. Another protein released by activated PSCs is galectin-1,
which is a part of the β-galactoside-binding family. Galectin-1 is a contributor to tumor
invasion and metastasis [51]. This concept was further evaluated in a study done by Tang
et al. that examined the role of galectin-1 in PDAC. When co-culturing CD3+ T cells with
activated PSCs overexpressing galectin-1, the authors found that this led to significant
apoptosis in the CD3+ T cells. The authors also found that galectin-1-overexpressing
PSCs shifted the Th1/Th2 cytokine balance towards Th2 cytokine release, which facilitates
immune cell evasion [52,53]. Furthermore, secretion of C-X-C Motif Chemokine Ligand 12
(CXC12) by activated PSCs assists in sequestering CD8+ T cells in the stroma distant from
the tumor. The isolation of CD8+ T cells in this distant compartment significantly reduces
infiltration into the tumor, thereby establishing the immunosuppressive environment [54].

Interleukin-10 (IL-10) and TGF-β are potent immunosuppressive cytokines that are
released into the TME by PDAC cells and immune cells during tumorigenesis [55,56]. These
cytokines recruit regulatory T cells, which in turn also release IL-10 and TGF-β, inhibiting
effector T cells and maintaining immunosuppression [57–59]. The presence of IL-10 and
TGF-β in the PDAC TME also shift the Th1/Th2 cytokine balance towards Th2 cytokine
release, thereby further enhancing the immunosuppressive TME [59,60].

Intra-pancreatic γδ T cells indirectly support PDAC pathogenesis by inhibition of αβ
T cells using checkpoint receptor ligation [61]. Seifert et al. found that γδ T cells interacted
with PSCs and stimulated their production of IL-6, which leads to increasing amounts of
ECM deposition in the PDAC stroma. Therefore, the interaction of γδ T cells with PSCs
contributes to immunosuppression by fortifying the fibrotic barrier environment [62].

4. Strategies for Targeting Fibrosis in PDAC

Given the significant role for the ECM in pancreatic cancer progression, several differ-
ent strategies have been investigated that target the fibrotic TME. Approaches currently
under evaluation seek to either reduce stromal ECM deposition to improve the delivery of
cytotoxic agents, or target ECM proteins for direct delivery of therapeutics to the tumor,
thereby limiting off-target effects.

Delivery of cytotoxic agents such as gemcitabine has been improved with the use of
nab-paclitaxel [63,64]. Nab-paclitaxel/gemcitabine (AG) penetration was further improved
in a phase 2 trial using pegvorhyaluronidase alfa (PEGPH20), but no substantial improve-
ment was seen in a recent phase 3 clinical trial [65]. Treatment guidelines for borderline-
resectable and locally advanced pancreatic cancers have recently shifted towards neoad-
juvant therapy [66] and the use of combination therapies such as FOLFIRINOX [67,68].
Targeted delivery of FOLFIRINOX was improved using iontophoretic delivery [69]. Di-
rected chemotherapy measures tend to have less associated side effects than systemic
chemotherapy. Thus, these localized treatment strategies as a method to overcome ECM
deposition warrant further investigation.
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The literature describes a variety of strategies used to target CAFs in PDAC. In general,
these methods include conversion of CAFs to their quiescent phenotypes, inhibition of CAF
signaling cascades, depletion of CAFs, use of CAFs as a cellular vehicle for cyto-toxic agents,
and targeting of CAF-derived ECM proteins [70–72]. Some previous studies targeting CAFs
have unfortunately led to a more aggressive tumor [73] and/or severe side effects [74].
However, with the discovery of CAF heterogeneity, specific targeting of CAFs could lead to
improved therapeutic benefit [75,76]. Regarding clinical trials, several ongoing PDAC trials
are investigating therapeutics that disrupt CAF signaling or reprogram CAFs to quiescence
(Table 1). These clinical trials should be closely followed to determine if these stromal
interventions increase chemotherapy efficacy.

Table 1. Clinical Trials Targeting Fibroblasts in PDAC.

Strategy Therapeutic Trial Phase Trial Status NCT Number

Disrupt CAF
Signaling

Tocilizumab 1b/2 Recruiting NCT03193190

Tocilizumab 2 Recruiting NCT02767557

Tocilizumab 2 Active NCT04258150

Siltuximab 1,2 Recruiting NCT04191421

Canakinumab 1 Recruiting NCT04581343

Plerixafor 2 Recruiting NCT04177810

Plerixafor 1 Completed NCT02179970

BL-8040 2 Active NCT02826486

Reprogramming
to Quiescence

ATRA 1 1 Completed NCT03307148

ATRA 1 2 Not yet
recruiting NCT04241276

Vitamin D3 3 Recruiting NCT03472833

Paricalcitrol 2 Completed NCT03331562

Paricalcitrol 1 Recruiting NCT03519308

Paricalcitrol 2 Recruiting NCT04617067

Paricalcitrol 1 Active NCT03883919

Paricalcitrol 2 Recruiting NCT04524702

Source: Clinicaltrials.gov. 1 All-trans retinoic acid.

Activated PSCs have a prominent role in PDAC ECM deposition. As a result, sev-
eral investigations have been performed to elucidate therapeutic strategies against PSCs,
hypothesizing that inhibition of these fibroblasts would lead to reduced fibrosis and, there-
fore, enhanced cytotoxic efficacy. For example, epidermal growth factor receptor (EGFR)
can activate PSCs, and it was found that inhibition of EGFR reduced fibrosis [77]. PSCs
can also be activated to increase desmoplasia by the Sonic Hedgehog (SHH) protein as
part of the hedgehog pathway [78]. Studies impeding SHH signaling have led to mixed
results [36,79]. Targeting the renin-angiotensin system, which has been demonstrated to
activate PSCs [80], using olmesartan, an angiotensin II type-1 receptor blocker, decreased
collagen deposition of PSCs, in vitro [81]. More recent PSC-targeting strategies include the
use of phytochemicals such as curcumin, which can hinder the gene expression of type I
and III collagen, thereby decreasing fibrotic production [82]. Future PSC inhibition studies
will likely make use of more directed treatment strategies such as nanotechnology [83].
These strategies aim to reduce PSC activation to decrease ECM deposition and improve
efficacy of treatments that are limited by substantial fibrosis in the TME.

Another strategy may resurrect the century old concept of therapeutic infection, as
introduced by the sarcoma surgeon Dr. William Coley with “Coley’s toxins” [84], using the
natural properties of infectious agents such as bacteria to target the TME and modulate

Clinicaltrials.gov
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anti-cancer immune responses. Group A Streptococcus Streptococcal collagen-like protein
1 (Scl1), is a major GAS adhesin, which exhibits selective binding to ECM proteins [85].
Scl1 binds to tumor-associated isoforms of cellular fibronectin (cFn) containing type IIII
repeats, extra domain A and/or B (EDA/EDB/cFn) also known as oncofetal Fn [86–88].
Binding to EDA and EDB is mediated through conserved structural determinants present
within the Scl1 globular V domain and facilitates GAS adherence and biofilm formation in
the host [89–91]. In vitro, Scl1 mediates biofilm formation on matrices deposited by cancer-
associated fibroblasts (CAFs) and osteosarcoma (Saos-2) cells containing EDA/EDB/cFn
isoforms [87,89]. Importantly, oncofetal cFn is expressed in many cancers [92], including
pancreatic tumors [93], suggesting a potential for bacterial targeting of tumors by Scl1 after
injection [94]. Indeed, EDB expression in pancreatic tumors has been leveraged to develop
imaging probes for EDB fibronectin to visualize pancreatic tumors [95,96].

While CAF-targeting and therapeutic infection are promising areas of continued
research, studies thus far have not yet fully revealed definitive clinical benefit. Therefore, it
is important to simultaneously explore other therapeutic options for a highly aggressive
malignancy such as PDAC. Another exciting field of treatment focuses on targeting immune
cells, especially neutrophils and macrophages, due to their significant pro-fibrotic effects in
the PDAC TME. Successful targeting of these immune cells has the potential to mitigate
both immunosuppression and fibrosis.

5. Immune Characterization of the TME and Impact on the ECM

As mentioned previously, the TME harbors a heterogenous population of immune
cells such as macrophages, neutrophils, dendritic cells, natural killer cells, effector T
lymphocytes, regulatory T lymphocytes, MDSCs, and B lymphocytes [97]. In general,
immune cells modulate the TME through direct interactions with the tumor or indirectly by
releasing a variety of chemical mediators. These cellular communications can both facilitate
and hinder the effectiveness of therapeutics in the TME [98]. Given the significant fibrotic
barrier in the PDAC TME that obstructs therapeutic delivery, it is important to explore
the contribution of immune cells to fibrosis. Specifically, neutrophils and macrophages
have been implicated for their role in ECM deposition. Neutrophils and macrophages
in physiologic settings contribute to the natural wound healing process in injured tissue
without fibrosis. However, pathological disruptions in this homeostatic mechanism can
result in a fibrotic phenotype [99]. Therefore, in this section we will examine both key
immune cells to elucidate their mechanisms of ECM modulation.

5.1. Neutrophils

Neutrophils, also known as polymorphonuclear leukocytes, are the most common
circulating leukocyte and play a key role in microbial defense [100,101]. Classic effector im-
mune responses of neutrophils include phagocytosis and secretion of hydrolytic enzymes,
granule-derived myeloperoxidase, and antimicrobial proteins/peptides. Additionally, neu-
trophils further participate in the immune response by releasing lipid mediators, cytokines,
chemokines, and extracellular vesicles [102].

Recruitment signals into the TME for neutrophils include the ligands that bind to
CXCR2, such as CXCL1 and CXCL2 [103]. It is also likely that tumor-derived GM-CSF
recruits neutrophils into the TME, as this mechanism has been implicated in other cancers
including gastric adenocarcinoma [104]. Like macrophages, neutrophils in the TME are
capable of polarizing into different phenotypes: N1 and N2. Although the N1/N2 ter-
minology facilitates discussion of these phenotypes, these cells function on a spectrum,
therefore, our preference is to describe them as N1-like and N2-like. Conversion into either
phenotype designates the neutrophil as a tumor-associated neutrophil (TAN). The N1-like
phenotype is considered anti-tumorigenic as it releases reactive oxygen species (ROS),
Fas, intercellular adhesion molecule (ICAM)-1, and tumor necrosis factor (TNF-α). These
products are cytotoxic towards the tumor and hinder immunosuppression of the TME.
The N2-like phenotype appears to promote tumorigenesis by remodeling the ECM and
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supporting angiogenesis of the tumor. This is accomplished through secretion of arginase,
MMP-9, VEGF, and a variety of chemokines [105,106]. ECM remodeling by MMP-9 fa-
cilitates release and subsequent activation of VEGF from the ECM, thereby increasing
vascularization of the tumor [107].

Neutrophils can also neutralize bacteria and other pathogens through formation of
neutrophil extracellular traps (NETs) [108]. In this process, neutrophils release decon-
densed DNA, histones, high mobility group box 1 protein (HMGB1), ROS, and granules
that ensnare and kill bacteria [108,109]. Typically, the expulsion of intracellular contents
is a slow process that occurs as the neutrophil is dying. However, an alternative NET
mechanism can occur that is independent of cell death and results in expedited degranula-
tion [110,111]. In the unstimulated neutrophil, the DNA is tightly wrapped around histones
and stored as heterochromatin. Upon exposure to the pathogen, the heterochromatin is
decondensed by peptidyl arginine deiminase 4 (PAD4), which catalyzes the citrullination
of histones [109,112]. Decondensation of histones is also facilitated from the interaction
between histones and neutrophil elastase (NE) after NE translocation into the cell nu-
cleus [110].

Although NETs are beneficial for protection against microbes, recent studies have
shown that they contribute to pathogenesis of sterile inflammatory diseases including
PDAC [113]. Neutrophils from PDAC are primed for NET formation and NETs are in-
creased in both the circulation and TME during PDAC progression [114–116]. NETs
promote the pathogenesis through multiple mechanisms including stimulating primary
pancreatic tumor growth [114], driving cancer-associated hypercoagulability [117–120],
promoting formation of metastatic disease [121–123], and supporting immunosuppres-
sion [124,125]. Several studies have also implicated NETs in activating PSCs to modulate
the TME. PSCs transform into the activated state upon binding extracellular DNA [126],
which is a predominant component of NETs. Indeed, interactions between the receptor for
advanced glycation end products (RAGE) on quiescent PSCs and the DNA released from
neutrophils during NETosis result in activation of PSCs [114]. As mentioned previously,
activated PSCs heavily contribute to the fibrotic stroma of PDAC through deposition of
ECM proteins, providing a mechanism through which neutrophils and NETs promote the
fibrotic TME.

5.2. Factors Promoting Neutrophil Extracellular Traps in PDAC

Given the expansive role for NETs in pancreatic pathogenesis, identifying the signals
that trigger NETosis is critical to targeting this cancer-promoting phenomenon. Numerous
potential targets have been identified. NET formation is dependent on RAGE, as mice
with RAGE knockout resulted in significantly decreased extracellular DNA [115]. A
recent study done by Zhang et al. explored the role of IL-17 in PDAC tumorigenesis and
immunosuppression. Using an in vitro NET formation assay, the authors discovered that
when KPC cells from spontaneous PDAC mice preconditioned with IL-17 were used as
conditioned media for neutrophils, NET formation was significantly higher than control
neutrophils exposed to IL-17 alone. The authors also found a similar significant result
for TNFα [124]. Thus, it is likely that IL-17 and TNFα are crucial factors involved in the
recruitment of TANs and NETs.

A recent study reported that amyloid fibrils, insoluble fibers resistant to degradation,
can trigger neutrophils into NET activation [127]. To determine if amyloid fibrils con-
tributed to NET activation in the pancreatic tumor microenvironment, Munir et al. used
mass spectrometry to investigate the presence of amyloid proteins. They found that the
Amyloid β A4 protein (APP) was highly expressed in CAFs. Interestingly, they found
that APP mRNA was also found in PSCs, though to a lesser extent. The authors showed
that CAFs induce NET formation, but by inhibiting secretion of APP, found that CAFs
were unable to stimulate NETs. Moreover, through blocking the potential APP receptor,
CD11b, the authors noted that neutrophils were no longer stimulated into NETosis [128],
implicating several potential targets for NET formation in PDAC.



Biomolecules 2021, 11, 901 9 of 25

Research into the stimuli for NETs in PDAC is relatively new, so it is also important to
explore how NETs are promoted in other forms of cancer. A recent study done by Li et al.
examined the function of Sciellin (SCEL), a precursor to the cornified envelope, which
is a protective barrier in the upper epidermis [129], in gallbladder cancer progression.
Using a co-culture experiment, the authors found that SCEL induced expression of NETs
and citrullinated-histone 3, which is a critical marker of NET formation [130]. Similar to
gallbladder cancer, SCEL is markedly elevated in pancreatic cancer [131]. Therefore, it
would be integral for future studies to examine if SCEL participates in neutrophil/NET
recruitment in PDAC.

5.3. Therapeutic Strategies for Targeting Neutrophils and NETs

Research over the past few years has investigated potential therapeutic strategies for
NETs (Figure 3). In addition to promoting inflammation, NETs can also lead to coagulation
as the expelled intracellular contents create a scaffold for thrombus formation [132]. A
recent study done by Kajioka et al. found that NETs can capture PDAC cells and influence
their migration and invasion capabilities. The authors also explored the possibility of
targeting NETs in pancreatic cancer cells using recombinant thrombomodulin (rTM), a
type of endothelial cell surface protein. The authors found that, when treating pancreatic
cancer cells with rTM, HMGB1 released from NETs was degraded. As a result, the cap-
ture/migration of PDAC tumor cells controlled by NETs was inhibited thereby reducing
metastasis to the liver [121]. TM has also been tested against NETs in situations other
than pancreatic cancer. For example, it was determined that rTM reduced histone-induced
NET release via citrullinated histone 3 staining in kidney sections of rTM-treated rats [133].
Another study examined the impact of rTM treatment on NETs in septic shock rat models
as this condition leads to intravascular coagulation. The authors discovered that rTM
treatment reduced systemic NETs in septic shock rat models compared to control, as deter-
mined by examining levels of citrullinated histone H3 and DNA, or NE and DNA [134].
The reduction in NETs seen in these studies show promising results for rTM, and this
treatment strategy should continue to be thoroughly evaluated in additional pancreatic
cancer studies.

A second therapeutic strategy for NETs is targeting the DNA that is expelled from
neutrophils during this process. Deoxyribonuclease I (DNAse I) treatment of murine
acute lung injury models induces degradation of NETs structure [135]. In another study
related to lung injury, when methicillin-resistant Staphylococcus aureus (MRSA)-infected
mice were treated with DNase I, it was found that neutrophil elastase-DNA (NE-DNA)
ELISA measurements were reduced in bronchoalveolar lavage blood [136]. As of this
writing, the severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019
(SARS-CoV-2/COVID-19) pandemic is still ongoing. SARS-CoV-2 has been associated with
excessive NETs and coagulation [137]. A study done by Park et al. treated severe SARS-CoV-
2 patients with either free DNase I or DNase-I-coated melanin-like nanospheres (DNase-I
pMNSs). With both treatments, the authors noted significant decreases in extracellular
DNA, NET percentage, myeloperoxidase activity, and NE, along with a significant increase
in relative plasma DNase activity. Interestingly, treatment with DNase-I pMNSs was more
effective than free DNase I at reducing cytokine secretion from neutrophils such as NF-κβ
and TNF-α [138]. As a result of these beneficial effects, it is worth exploring the use of
DNase-I nanotechnology in the setting of PDAC NETs. Although many DNase I studies
have focused on lung injury, a study done by Xia et al. examined the impact of DNase I in
the setting of colorectal cancer metastasis to the liver. Due to the short biological half-life of
DNase I, the investigators used adeno-associated virus (AAV) as the vector for long-term
expression of the enzyme in the liver. The authors found decreased levels of citrullinated
histone H3 and NETs in the tumors of mice treated with AAV-DNase I, as compared to the
tumors in mice that were treated with AAV-null [139].
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Figure 3. Proposed neutrophil extracellular trap (NET) targeting strategies. Peptidyl arginine deiminase 4 (PAD4) inhibitors
block PAD4-mediated citrullination of histones, thereby preventing heterochromatin decondensation and subsequent NET
release. Recombinant thrombomodulin (rTM) can inhibit high mobility group box 1 protein (HMGB1), reducing capture and
migration of tumor cells by NETs. DNAse I and chloroquine (CQ) degrade and decrease secretion of decondensed DNA,
respectively, thereby reducing interactions of decondensed DNA with the receptor for advanced glycation end products
(RAGE), preventing pancreatic stellate cell (PSC) activation and subsequent extracellular matrix (ECM) deposition. ROS,
reactive oxygen species; MMPs, matrix metalloproteinases.

Another therapeutic approach to NET inhibition involves the use of chloroquine (CQ).
In a study examining the potential effect of NETs on high density lipoprotein (HDL) in
systemic lupus erythematosus (SLE), Smith et al. found that CQ hindered NET formation
in both the control neutrophils and in a type of peripheral blood lupus neutrophils called
low-density granulocytes [140]. Treatment with chloroquine resulted in a decrease in
serum DNA in the Kras pancreatic cancer mouse model. Moreover, of 15 PDAC patients
who were treated with neoadjuvant gemcitabine plus hydroxychloroquine, 12 patients
had a significant reduction in circulating DNA levels [115]. Inhibition of NETs by CQ
also reverses the hypercoagulable state seen in PDAC [119]. It is also important to note
that PAD4 deficiency has been shown to reduce NET formation, and, therefore, PAD4
inhibitor treatments should also be thoroughly investigated as a potential therapeutic
target [119,141].

There are a few clinical trials relevant to the treatment of NETs, although they are
outside the context of PDAC. Table 2 delineates current NET targeting strategies in clinical
trials. One clinical trial (NCT03250689) examined the effect of Danirixin, a selective CXCR2
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antagonist, on NETs in chronic obstructive pulmonary disease (COPD) patients. The study
was eventually terminated due to changes in the benefit risk profile of Danirixin that was
determined in another clinical trial (NCT03034967). A clinical trial at McGill University
Health Center, DISCONNECT-1 (NCT04409925) is currently recruiting to evaluate the safety
of inhaled rhDNase I and its impact on NETs in severe SARS-CoV-2 patients. Another
clinical trial (NCT03368092) at University Hospital in Strasbourg, France, is also evaluating
the effect of inhaled rhDNase I on NET-induced lung injury.

Table 2. Clinical Trials Targeting NETs in Various Diseases.

Therapeutic Trial Phase Trail Status Context Trial ID

rhDNAse I 1 Recruiting Severe SARS
CoV-2 1 NCT04409925

3 Recruiting Moderate to
Severe ARDS 2 NCT03368092

Danirixin 2 Terminated COPD 3 NCT03250689

NucleoCapture
Device N/A Recruiting SA-AKI 4 NCT04749238

Source: Clinicaltrials.gov. 1 Severe Acute Respiratory Syndrome Coronavirus 2. 2 Acute Respiratory Distress
Syndrome. 3 Chronic Obstructive Pulmonary Disease. 4 Sepsis-Associated Acute Kidney Injury.

5.4. Tumor Associated Macrophages

Macrophages are a group of immune cells that possess heterogenous function and
serve as the first line of immune protection in nearly every tissue [142]. An over-simplified
view of macrophage differentiation is that macrophages undergo polarization into different
phenotypes depending on the cytokine exposure. The classical activation pathway, in
the presence of Th1-derived cytokines such as IFN-γ, colony stimulating factor 2 (CSF2),
or toll-like receptor (TLR) activation, gives rise to the M1-like macrophage phenotype
considered more protective against cancer cells. The alternatively activated pathway, in
the presence of Th2-derived cytokines such as IL-4, IL-10, IL-13, TGF-β, prostaglandin E2,
or colony stimulating factor 1 (CSF1), gives rise to the M2-like macrophage phenotype,
which typically facilitates tumor progression [143,144]. However, it is now understood
that macrophage polarization extends beyond the dichotomy of M1/M2 phenotypes and
is better defined as a spectrum [145,146]. Tumor-associated macrophages (TAMs) are
considered to have an M1-like phenotype during the early process of tumorigenesis, and
then eventually switch to an M2-like phenotype [147]. In the TME, TAMs contribute
to PDAC pathogenesis through their promotion of inflammation, tumor angiogenesis,
metastasis, immune evasion, and ECM modulation [148]. In this section, we will focus on
the various mechanisms by which TAMs alter the ECM.

5.5. Effect of TAMs on ECM

There are several investigations in the literature that implicate TAMs for their role in
enhancing the ECM deposition in PDAC. Co-culturing quiescent pancreatic stellate cells
with macrophage cell lines in the presence of Heparin-binding EGF (HB-EGF) activates
stellate cells and promotes α-SMA expression [149,150]. Activation of these pancreatic
stellate cells likely lead to increased deposition of ECM proteins in the tumor stroma. When
comparing human pancreatic tissue samples possessing both PDAC lesions and adjacent
unaffected tissue, Zhu et al. found a positive correlation between amount of tissue fibrosis
and number of macrophages. This group also found, through analysis of gene ontology,
that embryonically-derived macrophages expressed higher levels of ECM remodeling genes
as compared to monocyte-derived macrophages. For example, qPCR demonstrated higher
expression levels of the ECM-producing enzymes hyaluronan synthases 2 and 3 [151].
Activated M2-like macrophages participate in ECM remodeling by secreting MMPs, which
exert digestive effects on the ECM [152]. A recent study done by Tekin et al. analyzed

Clinicaltrials.gov
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mRNA expression of various proteases by quiescent macrophages in the TME. The authors
found that MMP9 was significantly produced and led to cleavage of protease-activated
receptor-1 (PAR1), a G protein-coupled receptor linked to tumor growth [153]. Because
MMPs participate in ECM remodeling, they play a significant role in the levels of fibrosis
in the TME.

Tissue resident macrophages, the predominate macrophage subsets in the pancreatic
TME, express the prolactin receptor [154] and prolactin has been reported to contribute to
the fibrosis of the TME. One of the downstream effectors of prolactin receptor signaling is
focal adhesion kinase 1 (FAK1). Treatment with a FAK1 inhibitor significantly decreases
fibrosis in transgenic models of murine pancreatic cancer. Therefore, activation of tissue-
resident macrophages by prolactin could regulate collagen deposition in the TME.

Incubation of murine fibroblasts with macrophages containing the lipid kinase PI3Ky
increased collagen mRNA in those fibroblasts as compared to murine fibroblasts incubated
with PI3Ky-deficient macrophages. Additionally, it was found that pancreata from both
PI3Ky-deficient KPC mice and KPC mice treated with a PI3Ky inhibitor displayed signifi-
cantly less fibrosis as compared to controls. Reduced collagen protein and gene expression
was also observed in orthotopic LMP tumors treated with a PI3Ky inhibitor [155]. As
these PI3Ky-macrophages are present in PDAC, their pro-fibrotic effects and potential as
therapeutic targets necessitate further investigation.

Macrophages are also involved in establishing a pre-metastatic niche that promotes
PDAC metastasis to the liver, suggesting a role for macrophages modulating fibrosis in the
TME. In a study done by Nielsen et al., it was determined that, after exposure to a variety of
cancer cell derived factors, M2-like macrophages and metastasis-associated macrophages
release granulin. Not only does the secretion of granulin itself likely contribute to the
fibrotic stroma, it also activates resident hepatic stellate cells promoting their differentiation
into myofibroblasts. These myofibroblasts then release a number of proteins related to
ECM remodeling. In particular, the myofibroblasts release high levels of periostin, which
contribute to the fibrotic stroma in the TME and facilitate pancreatic tumor growth and
invasion into the liver [156].

In addition to PDAC, macrophages are known to contribute to fibrosis in other disease
models. For example, it has been recently shown that macrophages expressing the AP-
1 transcription factor Fra-2 contributes to the ECM deposition in idiopathic pulmonary
fibrosis by releasing type VI collagen. It is unclear if there are Fra-2-expressing macrophages
present in the PDAC TME. Therefore, an interesting future investigation would be to search
for the existence of these specific macrophages in the PDAC TME as it would be another
factor leading to the desmoplastic reaction [157].

Tunica Interna endothelial cell kinase (Tie2)-expressing macrophages (TEMs) are a
distinct subtype of macrophages considered to be highly pro-angiogenic and immunosup-
pressive in the TME [158–160]. Tie-2 expressing macrophages have been associated with
poor survival in gastric cancer patients [161] and in PDAC patients when M2-like TAMs are
also present [162]. Tie2 is a receptor tyrosine kinase that binds to angiopoietin 1 (ANG-1)
and angiopoietin 2 (ANG-2). In circulation, TEMs highly express the pro-angiogenic genes
MMP-9, VEGFA, COX-2, and WNT5A. In the TME, ANG-2 is secreted by endothelial cells
and sometimes tumor cells. ANG-2 levels are typically higher than ANG-1 in the TME.
Binding of ANG-2 in the TME leads to upregulation of two other pro-angiogenic genes
cathepsin-B (CTSB) and thymidine phosphorylase (TP) as well as the highly immuno-
suppressive IL-10 [163]. To our knowledge, there are currently no studies available on
TEM-mediated fibrosis in the TME. Given the substantial modulatory functions of TEMs
on TME angiogenesis and immunosuppression, an analysis of their potential role in PDAC
fibrosis would further contribute to their recent growing importance as a therapeutic target.

5.6. Recruitment of Macrophages

Various chemokines and cytokines released by the tumor promote macrophage re-
cruitment into the TME. IL-4, IL-10, IL-13, IL-34, TGF-β, and complement component
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C5a all have been implicated in this macrophage recruitment. Colony-stimulating fac-
tor (CSF)-1 leads to myeloid progenitor differentiation into monocytes and macrophages.
Moreover, it has been demonstrated that CSF-1 is involved in generating the M2-like
phenotype of macrophages [164–166]. As pancreatic tumorigenesis proceeds, C-C motif
chemokine ligand 2 (CCL2) is released by the tumor cells, leading to substantial attraction
of circulating monocytes to the TME. Further, the imbalanced release of various chemical
mediators such as CCL5, CCL7, CXCL8, CXCL12, and VEGF also serve as chemoattractants
for macrophages and facilitate conversion into the M2-like phenotype [152]. Additionally,
a recent study done by Tekin et al. demonstrates a positive correlation between number of
macrophages in the TME and PAR1 expression in pancreatic tumor tissues [153].

Pancreatic acinar cells with KRAS mutation express intercellular adhesion molecule-1
(ICAM-1), which can recruit macrophages to the TME. The infiltration of macrophages
facilitates the conversion of acinar to ductal phenotype, which is an integral early compo-
nent of pancreas carcinogenesis [149]. Two subsets of macrophages are present within the
pancreatic inter-acinar stroma. One population is derived from primitive hematopoiesis,
whereas the other population is derived from definitive hematopoiesis and substitutions
with circulating myeloid cells [151,167].

5.7. Strategies to Target Macrophages

There are several different therapeutic strategies described in the literature that seek
to reduce the impact of TAMs in the TME (Figure 4). In general, these therapeutic op-
tions target different properties of TAMs such as their survival, polarization, recruitment,
phagocytosis, and angiogenesis [168]. Different pharmacological techniques for TAMs such
as targeting chemokine-chemokine receptors and tyrosine kinases, as well as the use of
bisphosphonates and nanotechnology have been evaluated [169]. Table 3 lists the clinical
trials of therapeutics being tested against TAMs in pancreatic cancer. In this section, we
will discuss some of the more recent and novel pharmacological approaches to attenuate
the influences of TAMs on ECM production.

Table 3. Clinical Trials Targeting Tumor-Associated Macrophages in Pancreatic Cancer.

Target Therapeutic Trial Phase Trial Status Additional Interventions Trial ID

CSF1-R IMC-CS4 (LY3022855) 1 Recruiting Cyclophosphamide,
GVAX, Pembrolizumab NCT03153410

Cabiralizumab
(FPA008) 1a/1b Completed Nivolumab NCT02526017

Cabiralizumab
(FPA008) 2 Completed Nivolumab +/−

Chemotherapy NCT03336216

Pexidartinib 1 Completed Durvalumab NCT02777710

CSF1 MCS110 1b/2 Completed PDR001 NCT02807844

CCR2 PF-04136309 1 Completed FOLFIRINOX NCT01413022

PF-04136309 1b Completed nab-paclitaxel and
gemcitabine NCT02732938

CCX872-B 1 Active FOLFIRINOX NCT02345408

CXCR4 BL-8040 2b Active Pembrolizumab NCT02907099

Source: Clinicaltrials.gov.

Clinicaltrials.gov
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Figure 4. Potential tumor associated macrophage (TAM) targeting strategies. Strategies have been developed that target
macrophages in the peripheral blood (top panel) and the PDAC TME (bottom panel). Inhibition of the chemokine receptor
may decrease recruitment of inflammatory monocytes into the tissue, where they can polarize into M2-like TAMs. Treatment
with a CD40 agonist monoclonal antibody (mAb) can increase systemic levels of interferon-γ (IFN-γ), thereby polarizing
the inflammatory monocyte into an anti-fibrotic phenotype. The binding of CCL2 then recruits the inflammatory monocyte
into the tissue, where it releases various matrix metalloproteinases (MMPs) that can degrade the abundant extracellular
matrix (ECM) of the pancreatic ductal adenocarcinoma tumor microenvironment (PDAC TME), improving chemotherapy
efficacy. In general, M1-like macrophages tend to release TH1-supportive cytokines, which are considered more protective
against cancer cells. M2-like TAMs usually release TH2-supportive cytokines, which tend to support cancer progression.
The literature describes a variety of methods (noted in red text) to target M2-like TAMs. Inhibition of the tyrosine kinase
receptor may reduce survival and proliferation of M2-like TAMs. Both iron oxides and targeting of the dectin-1 receptor by
galectin-9 small interfering RNA (siRNA) can repolarize M2-like TAMs into the M1-like phenotype. Trabectedin operates
through the TNF-related apoptosis-inducing ligand (TRAIL) receptor, thereby leading to apoptosis of the M2-like TAM
or switching their secretion profile to that of an inflammatory phenotype. Gene delivery of relaxin (RLN) can upregulate
MMP9 and MMP13 genes, thereby leading to increased release of MMPs into the PDAC TME that can degrade fibrosis and
improve chemotherapy efficacy.

Targeting chemokine-chemokine signaling represents a promising strategy to limit
macrophage infiltration. Targeting the CCL2/CCR2 axis in recruitment of CCR2+ inflam-
matory monocytes to the PDAC TME, where they can differentiate into macrophages, is
one strategy that has been examined. The small molecule CCR2 inhibitor, PF-04136309,
decreases levels of circulating inflammatory monocytes in tumor bearing mice, effectively
blocking TAM recruitment to the PDAC TME [170]. The safety and efficacy of PF-04136309
along with FOLFIRINOX on TAMs in PDAC was tested in a recent phase Ib clinical trial



Biomolecules 2021, 11, 901 15 of 25

(NCT01413022). Of 47 enrolled patients, 39 received the combination therapy, whereas
eight patients received FOLFIRINOX alone. Using flow cytometry on six post combination
therapy treatment tumor biopsies, the authors found a mean reduction in TAMs from
9.0% to 2.4%. Further, they found a significant decrease in peripheral blood CCR2+ mono-
cytes with the combination therapy as compared to FOLFIRINOX alone, which indicates
blockage of TAM recruitment by the PDAC TME [171].

Another strategy in treating TAMs involves the targeting of tyrosine kinases. As
mentioned previously, CSF-1 is a cytokine involved in the polarization of macrophages into
a tumor-supportive phenotype. In general, efforts to target the CSF-1/CSF-1R interaction
are CSF-1/CSF-1R antibodies and CSF-1R kinase inhibitors. A randomized phase 2b
clinical trial (NCT03336216) tested the efficacy of cabiralizumab, an antibody that blocks
CSF-1R, in combination with nivolumab, with or without chemotherapy, in patients with
advanced pancreatic cancer. Unfortunately, the clinical trial sponsor reported that the
combination therapy with and without chemotherapy was not beneficial compared to
standard chemotherapy [172]. A recent phase 1b trial (NCT02713529) was completed
that tested the safety and efficacy of AMG 820, an anti-CSF1R monoclonal antibody, in
combination with anti-PD-1 antibody pembrolizumab in adults with advanced pancreatic
cancer, colorectal cancer (CRC), or non-small cell lung cancer (NSCLC). Although AMG 820
plus pembrolizumab was shown to have an adequate safety profile, none of the pancreatic
cancer patients met the pre-determined threshold for efficacy. There were two CRC patients
and one NSCLC patient who achieved a response of immune-related partial response [173].
Blocking tyrosine kinases is also being evaluated for several other types of gastrointestinal
cancers, hopefully leading to more progress in this therapeutic strategy.

A third strategy recently evaluated for targeting macrophage polarization is the use
of nanotechnology. Several types of nanoparticles that are used to target TAMs have
been evaluated [174]. Iron oxides have been demonstrated to switch the polarization of
M2-like macrophages into the M1-like phenotype. Additionally, iron oxides increase ROS
production and induce apoptosis in cancer cells [175]. In a study done by Zhao et al., the
authors developed a tumor-derived antigenic microparticle (T-MP) that contained nano-
iron oxide. The surface of the T-MP was tethered with adjuvant CPG oligodeoxynucleotides-
loaded liposomes. Once this combination vaccine was delivered into the TME, it was
determined that repolarization of M2-like macrophages to M1-like had occurred [176].
Interference with the galectin-9/dectin axis, which has been previously implicated in the
conversion of macrophages to the M2-like phenotype, is another strategy targeting the
polarization of macrophages in the PDAC TME. A nanoscale delivery system composed
of bone marrow mesenchymal stem cell exosomes that were electropermeabilization-
loaded with galectin-9 siRNA has been evaluated [177]. Additionally, these exosomes
contained oxaliplatin to induce death in tumor cells. After co-delivery of the siRNA and
oxaliplatin into orthotopic pancreatic tumor-bearing C57BL/6J mice, the authors found
significant re-polarization of TAMs into the M1-like phenotype via flow cytometry and
immunofluorescence staining of tumor sections, using CD206 as a marker for M2-like
macrophages and CD 16/32 for the M1-like phenotype [177]. Given the many potential
benefits of nanotechnology, such as increased stability and decreased side effects [178],
they are certainly worth continued exploration for application in targeting TAMs in the
PDAC TME.

Macrophage polarization has also been targeted using trabectedin, an isoquinoline
cytotoxic agent that was initially isolated from a Caribbean tunicate [179]. Trabectedin can
operate through the monocyte specific TNF-related apoptosis-inducing ligand (TRAIL)
receptors 1 and 2, resulting in the extrinsic apoptotic pathway through activation of
caspase-8 [180]. A study using a patient-derived orthotopic mouse model of gemcitabine-
resistant PDAC reported that treatment with trabectedin inhibited but did not regress
PDAC tumor growth [181]. In a PDAC mouse model, it was shown that depletion of
TAMs by trabectedin significantly increased infiltration of CD4 and CD8 T cells into
the TME. Notably, in trabectedin treated mice, both infiltrating CD4 and CD8 T cells
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produced lower levels of the immunosuppressive cytokine IL-10. CD4 T cells also produced
increased levels of IFN-γ. Lastly, it was demonstrated there was higher levels of TAM
secretion of inflammatory mediators such as IL2, IL12, IL17, and TNFα, suggesting a
switch to the inflammatory M1-like phenotype of TAMs [182]. It has not yet been explored
whether this possible re-polarization by trabectedin could lead to reduced fibrosis in the
PDAC TME. Trabectedin was approved in 2015 by the Food and Drug Administration for
treatment of liposarcomas and leiomyosarcomas and, therefore, has not yet been extensively
evaluated for use in PDAC [183]. A phase II clinical trial tested single agent trabectedin in
patients with gemcitabine resistant metastatic PDAC. Unfortunately, the primary endpoint
measure of progression-free survival at six months from treatment was not met [184]. An
interesting future investigation should analyze the impact of trabectedin on PDAC fibrosis
and determine if combination with other cytotoxic agents improves clinical outcomes.

Some investigators have found success by reprogramming TAMs to deplete fibrosis.
Treatment with an agonist CD40 monoclonal antibody increased the systemic release of
IFN-γ, leading to polarization of CCR2+ monocytes into an anti-fibrotic phenotype. These
inflammatory monocytes are then recruited into the PDAC TME via CCL2 release. Once in
the TME, monocytes differentiate to inflammatory macrophages that are able to release
various MMPs that deplete ECM proteins such as fibronectin and type I collagen, thereby
reducing fibrosis and increasing the efficacy of cytotoxic agents in the PDAC TME [185].
Previous studies have shown the beneficial effect of the anti-fibrotic hormone relaxin (RLN)
in reducing fibrosis in PDAC and liver metastasis from various cancers [186,187]. A study
done by Zhou et al. found that more than 70% of cells in both macrophage and fibroblast
populations expressed the relaxin family peptide receptor type 1 (RXFP1). After RLN gene
delivery, the authors observed significant increases MMP9 and MMP13 mRNAs in the
PDAC TME compared to the PBS-treated group, thereby leading to ECM degradation [188].

Regarding treatment strategies for TEMs, disruption of the ANG-2/Tie2 signaling
pathway in vivo has been shown to inhibit tumor growth and reduce tumor microvascu-
lature using monoclonal antibodies [189,190] and peptides [191]. A recent study using
rebastinib, a selective inhibitor of Tie2, decreased both Tie2-expressing macrophage infiltra-
tion and TME vasculature density in a mouse model of mammary cancer, but reduced only
Tie2-expressing macrophage infiltration in a pancreatic neuroendocrine tumor model [192].
Rebastinib is currently being evaluated in clinical trials in combination with chemotherapy
for treatment of metastatic breast cancer (NCT02824575) and other advanced solid tumors
(NCT03717415 and NCT03601897). To our knowledge, there have been no studies or clinical
trials targeting Tie2-expressing macrophages in the context of PDAC.

5.8. Beyond Neutrophils and Macrophages

Neutrophils and macrophages are the most extensively investigated immune cell
types regarding fibrotic production. Generally, the involvement of immune cells appears
to contribute to fibrosis in many disease contexts. Some immune cells, such as regulatory
T cells (Tregs) and natural killer T (NKT) cells, have conflicting roles in fibrosis [193]. For
example, in the TME, factors released from CAFs such as TGF-β cause Tregs to release
their own TGF-β, which influences the conversion of quiescent fibroblasts into CAFs, likely
promoting ECM deposition [194]. Although, in a study examining human immunodefi-
ciency virus type 1 (HIV-1) infection in a humanized mouse model, the presence of Tregs
mitigates liver fibrosis [195]. NKT cells have been shown to reduce collagen in the liver
by selectively removing hepatic stellate cells after treatment with IL-30 [196]. In contrast,
NKT cells have also been implicated in fibrosis production following liver injury through a
CXCR6-dependent mechanism [197].

Dendritic cells release MMP9, which can have modulatory effects on the ECM, but
more studies are required to clarify their relationship with fibrogenesis [198]. There is
evidence that both T helper 2 and T helper 17 cells activate hepatic stellate cells, which
in turn secrete collagen [199]. T helper 17 cells can release IL-17, which can promote
hepatic stellate cell expression of collagen I and influence their conversion into fibrogenic
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myofibroblasts [200]. As mentioned earlier, γδ T cells have been demonstrated to contribute
to both the immunosuppressive and fibrotic TME in PDAC [62]. Overall, crosstalk between
various immune cells and CAFs are evident [201], but several more studies are needed to
investigate the potential pro-fibrotic or anti-fibrotic roles of the various immune cells in
PDAC specifically.

6. Conclusions and Future Perspectives

The desmoplastic reaction heavily contributes to the poor prognosis of PDAC. The
overabundance of ECM proteins establishes a fibrotic stroma and TME that are highly
refractory to cytotoxic chemotherapy, immunotherapy, and radiotherapy. Targeting the
stroma directly in pre-clinical studies has unfortunately led to inconsistent results and in
some instances, a more aggressive disease [202]. Thus, various other therapeutic options
such as targeting immune cell modulation of the ECM should be explored. Although it
has been known for some time that NETs can contribute to various pathologies, their effect
on PSC activation is a relatively new discovery. Thus, the laboratory investigations that
target NETs in PDAC models are also quite new and limited in number yet promising. To
our knowledge, there are currently no active clinical trials targeting NETs in the context
of PDAC. With regard to TAMs in PDAC, several more laboratory studies and clinical
trials of therapeutic strategies have been published. Further pre-clinical studies using NET-
targeting therapies in combination with neoadjuvant and/or adjuvant cytotoxic agents is
warranted. This strategy is already being evaluated for TAMs in clinical trials. Targeting
both NETs and TAMs could deplete some of the fibrosis surrounding the tumor, thereby
enabling better penetration of cytotoxic agents into the TME. While current strategies
have focused on either macrophage or neutrophil targeting, limited efforts have been
made to target both immune cells [103], which may be critical for efficacy. With the recent
advancements in chemotherapy such as FOLFORINOX and innovations in more directed
cytotoxic delivery, the addition of immune cell-targeting agents could be the extra boost
needed to win the battle against this devastating disease.
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