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THE BIGGER PICTURE Proteins constitute the functional machinery in a cell. Genetic aberrations may
cause disrupting the normal functionality of the proteins. On the other hand, biophysical and biochemical
properties of proteins vary in distinct tissues mandating separate modeling of proteomic features given
the tissue being studied, e.g. brain in case of schizophrenia. Using the concept of signal diffusion in graph
theory, we proposed a model, termed MAPSD, which enables us to leverage proteomic properties of
different tissues at single cell resolution along with genomic and epigenomic features of a disease in order
to predict potential risk genes which cannot be annotated using common univariate approaches. Taking
this approach helps create novel therapeutic hypotheses for precision medicine so that more effective
treatments with less side effects on other organs can be developed. Application of MAPSD is not restricted
to schizophrenia and most of complex diseases can benefit from the method.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Accumulation of diverse types of omics data on schizophrenia (SCZ) requires a systems approach to model
the interplay between genome, transcriptome, and proteome.We introduceMarkov affinity-based proteoge-
nomic signal diffusion (MAPSD), a method to model intra-cellular protein trafficking paradigms and tissue-
wise single-cell protein abundances. MAPSD integrates multi-omics data to amplify the signals at SCZ risk
loci with small effect sizes, and reveal convergent disease-associated gene modules in the brain. We pre-
dicted a set of high-confidence SCZ risk loci followed by characterizing the subcellular localization of pro-
teins encoded by candidate SCZ risk genes, and illustrated that most are enriched in neuronal cells in the ce-
rebral cortex as well as Purkinje cells in the cerebellum. We demonstrated how the identified genes may be
involved in neurodevelopment, how they may alter SCZ-related biological pathways, and how they facilitate
drug repurposing. MAPSD is applicable in other polygenic diseases and can facilitate our understanding of
disease mechanisms.
INTRODUCTION

The emergence of omics technologies has revolutionized neuro-

psychiatric research1 by generating high-throughput genomic

data, bridging genome and transcriptome to phenome.2 For

example, genome-wide association studies (GWAS), such as
This is an open access article und
the Psychiatric Genomics Consortium (PGC)3 and the CLOZUK

consortium4 have created a repertoire of tens of thousands of

samples worldwide, leading to the discovery of many common

variants associated with schizophrenia (SCZ). While such

studies mark important milestones in SCZ research, they face

critical challenges with regard to extracting novel biological
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insights and finding additional therapeutic targets or pathways.

In fact, only one recognized drug target dopamine receptor D2

(DRD2) for SCZ has been re-identified by GWAS.5 It is not trivial

to accurately pinpoint the corresponding risk genes in each

GWAS risk locus, as such loci may cover a myriad of genes while

the genuine causal variants may be away from the top-ranking

single nucleotide polymorphisms (SNPs).6

In addition to genetic association studies, tremendous efforts

have been made over the years to understand the machinery of

gene regulation. Whole-body proteomics data, such as the Hu-

man Protein Atlas,7,8 now delineates protein expression not

only across tens of various tissues but at certain cell types, while

drawing their subcellular localization. Moreover, large-scale epi-

genomics data, such as Functional Annotation of theMammalian

Genome 59 and genome-scale chromosome conformation cap-

ture10,11 technology have brought about unprecedented oppor-

tunities to elucidate long-range interactions among genetic loci.

Given that individual omics data serve as complementary ele-

ments to each other, integrating multi-omics data types can

strengthen subtle disease signals from risk genes.5,12,13 In fact,

such multi-omics perspective amplifies signals from genetic

loci with small effect sizes, and help support converging evi-

dence on certain biological processes. This is of critical impor-

tance in understanding polygenic diseases, such as SCZ.

The current available omics data on SCZ are predominantly

related to those of nucleic acids, e.g., genomics, transcriptom-

ics, and epigenomics, while the use of proteomics information

is quite limited.14 As the functional machinery in a cell, proteins

essentially reflect the functional consequences of genome, epi-

genome, and transcriptome. Although proteins are treated as

proxies of gene functions, multiple lines of evidence report a

maximum of 60% correlation between the gene and protein

expression levels in certain organisms.15,16 Moreover, function-

ality of proteins is not restricted to their abundances, where other

determinants such as biochemical and physical properties, such

as subcellular localization, protein-protein interactions (PPIs),

and post-translational modifications affect such functions.17

This mandates an inclusive in-depth analysis of the proteome

and its physical and biochemical properties, not only at the tis-

sue level but at the cell resolution in SCZ. Although proteomic in-

vestigations have been historically hampered due to the lack of

low-cost and reliable high-throughput assay platforms,18,19

there have been recent advances in improving the mass spec-

trometry-based proteomics platforms,20,21 which has resulted

in the generation of valuable resources, such as the Human Pro-

tein Atlas.7,8 On the other hand, subcellular fraction allows prob-

ing enrichment of proteins in micro-domains within cells (such as

neurons), and offers insights into understanding the intra-cellular

trafficking trajectories of proteins. There have been several pro-

teomic studies on SCZ,22–25 whichmainly focus on observing the

differential expression of proteins in postmortem brains, without

taking into account tissue- or cell-specific biochemical and bio-

physical interactions. For a full review on proteome studies in

SCZ, refer to Borgmann-Winter et al.14

In this study, we introduceMAPSD (Markov affinity-based pro-

teogenomic signal diffusion), a multi-omics network-based

computational method to identify novel risk genes for polygenic

diseases. MAPSD leverages multiple layers of omics informa-

tion, as well as the under-studied proteome subcellular localiza-
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tion patterns and tissue-wise cell-specific abundances of pro-

teins in tens of different tissues and a wide range of cells,

followed by propagating the biological signals across the human

interactome to characterize potential disease-associated risk

genes. The proposed model has several unique advantages,

including (1) it uses protein trafficking information in subcellular

micro-domains in 131 tissues and cell types, including multiple

regions in the brain from the Human Protein Atlas;7,8 (2) MAPSD

uses five layers of omics data including differentially expressed

(DE) genes,2 GWAS hits,3,4 rare and de novomutations,26 differ-

entially methylated genes,27–29 and chromatin accessibility

data;30 and (3) MAPSD can effectively model interactions of

genome, epigenome, transcriptome, and proteome at a single-

cell resolution. Althoughwe used SCZ as a test case in the study,

MAPSD is flexible and can be effectively applied to other poly-

genic diseases other than SCZ. The outcome of MAPSD is accu-

rate prediction of risk levels of all human genes in SCZ, which has

led to the identification of a set of new candidate genes for SCZ.

Our functional evaluation on these candidate genes indicate how

the MAPSD-identified genes are predominantly enriched in

certain cell types within specific brain regions. In particular, the

novel candidate genes identified by us are enriched for the tar-

gets of approved drugs for brain disorders and suggest opportu-

nities for repurposing existing therapies for SCZ.

RESULTS

Overview of the MAPSD Framework
MAPSD is a multi-step tissue/cell-specific proteogenomic

method to identify risk genes through leveraging complementary

biological signals from distinct omics data modalities. The over-

all structure of MAPSD is provided in Figure 1. MAPSD starts

with a large-scale PPI network which is assembled frommultiple

sources31–34 (see Experimental Procedures). Using the PPI

network, an affinity matrix is created. This matrix is binary in

which if two nodes (proteins) interact then their corresponding

matrix elements will be 1, otherwise 0. The PPI network is then

adjusted to include molecular trafficking patterns. This adjust-

ment is conducted using the subcellular localization data from

the Human Protein Atlas (Figure 2A). The rationale behind this

adjustment is that if two proteins being connected in the PPI

network co-localize in the same micro-domain within the cell,

then they are more likely to be interacting with each other. In to-

tal, 32 micro-domains have been used in this study. Therefore,

the weight of connecting edges of co-localized proteins in the

PPI network is amplified by a factor of 1.5, while the remaining

edges have a weight of 1 (see Experimental Procedures). Using

the adjusted affinity matrix, the Markov transition distribution

matrixM is created. Using graph Laplacian concept in graph the-

ory, a one-step probability distribution from each node to its

neighbors is computed (see Experimental Procedures).

The multi-omics datasets have been collected from multiple

sources (see Experimental Procedures). We used SCZ as a

test case in our study to evaluate the MAPSD approach, due

to the availability of large-scale genomics, transcriptomics, and

epigenomics datasets on SCZ. Five layers of omics data have

been used in this study, including DE genes,2 GWAS hits,3,4

rare and de novo mutation loci,26 differentially methylated

loci,27–29 and loci being differentially accessible in open



Protein-Protein 
Interaction Network

Creating Matrix Affinity Matrix

Subcellular 
Localization

Adjusted Network and Affinity Matrix

Creating Signal Matrix

GWAS De novo
mutation

Differential 
Expression

Methylation Open chromatin
accessibility

Creating Tissue/Cell-
adjusted Signal Matrix

C

a

Signal Diffusion for each
tissue/cell-type

Protein abundance
High
Medium
Low
Not Detected

Tissue/Cell-type I Tissue/Cell-type II

Disease-associated protein
Uncharacterized protein

Signal intensity

Adjusted original signal intensity
Diffused signal intensities of

uncharacterized proteins

Creating Markov Transition
Distribution Matrix

Creating Tissue/Cell-specific interaction networks

Figure 1. The Structure of MAPSD

MAPSD steps include: creating the protein-protein

interaction network followed by adjusting it for

subcellular localizations; creating the Markov tran-

sition distribution matrix, assembling SCZ signa-

tures from genome, epigenome, and transcriptome

sources followed by creating the signal vector and

adjust it for different tissues and cell types within

them; creating tissue/cell-specific interaction net-

works, and signal diffusion across all of the dedi-

cated networks to measure the disease signal in-

tensities in unannotated proteins. Each dot on the

human body scheme denoted the tissue being

evaluated.
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chromatin regions in neuronal cells.30 The corresponding En-

sembl IDs for all of these loci were obtained and the final signal

matrix was created. Since MAPSD operates at the single-cell

resolution, it needs to adjust the created initial signal vector S

based on the tissues as well as their corresponding cell types

to project the variations between the protein abundances among

them (see Experimental Procedures). To illustrate elements of

the vector S, suppose a gene to be DE and differentially methyl-

ated in SCZ comparedwith controls. Then, the initial signal inten-

sity of this gene in S equals 2. Using the available protein abun-

dance data in various tissues and cell types from the Human

Protein Atlas, we adjusted the signal vector S for 131 combina-

tions of tissues and cell types (Figure 2B, see Experimental Pro-

cedures). For instance, we have five regions in the brain,

including cerebral cortex, cerebellum, caudate, hippocampus,

and hypothalamus, as well as seven cell types, including

neuronal cells, Purkinje cells, glial cells, endothelial cells, neutro-

phils, and cells in granular and molecular layers. Protein abun-

dances vary across tissues and cell types. Therefore, it is

required to overlay the knowledge on such expression patterns

onto the signal vector S. The adjusted signal matrix is called S*

which shows the signal intensities of SCZ risk genes in all of

the considered tissues and cell types. In fact, S* reflects the

functional consequences of genetic variants in distinctive tissues

or cells, given that if the protein product corresponding to a ge-

netic variant is lowly expressed in a specific tissue, then its func-

tional impact will be lower compared with the tissues where its

expression is higher. As a result, the number of candidate risk

genes arising from propagation of signals through these proteins

will be smaller. An important point to consider is to preserve the

consistency between the omics data used to create the signal
vector S and the context of the disease be-

ing studied. For example, in this study the

data used to create the signal vector

have been predominantly generated from

the same brain region or appropriate surro-

gate tissues, otherwise this will result in

spurious signals leading to false-negative

predictions. In the next step, using the

Markov operator matrixM and the created

tissue/cell-specific signal intensity matrix

S*, MAPSD diffuses the available adjusted

signal intensities onto the adjusted net-

works aimed at estimating the disease
signal intensities of the unknown proteins (see Experimental Pro-

cedures). Upon termination of the algorithm, MAPSD outputs the

signal intensities of all of the proteins in 131 different combina-

tions of tissues and cell types, on which we conducted several

tests. The MAPSD results are unbiased given that the adjusted

network for signal diffusion is independently created from SCZ

signal intensities and does not contain any prior information of

the disease. Given that the PPI network is adjusted for subcellu-

lar localization of the nodes, the overall topology of the network

shows amore realistic picture of subcellular molecular trafficking

and protein interactions. The lower panel in Figure 1 represents a

toy example of diffused signals as well as the original SCZ signal

intensities in two different cell types. Given the abundance of

proteins in each tissue and cell type, the overall diffusion pat-

terns of SCZ signals varies in the two networks. The initial signal

matrix does not include protein information. This information,

including the localization in micro-domains and tissue-specific

protein abundances, have been reflected in themodel for adjust-

ing the PPI network weights and create the affinity matrix as well

as creating tissue-specific signal matrix, respectively.

Applying MAPSD on SCZ to Identify Disease Risk Genes
We created a large PPI network containing 232,801 edges and

16,185 nodes. As described above, considering five layers of

omics evidences (gene expression, methylation, GWAS hits,

rare and de novo mutation loci, and open chromatin regions),

3,915 genes were curated to be associated with SCZ with

various degrees of signal intensities (Figure 3A). One gene

(DGKZ) has a single intensity of 4 and six genes were found to

have a signal intensity of 3, including DNAJA4, TCF4, CHRNA2,

CPNE8, GRIN2A, and ZNF536. Notably, in a recent study35 we
Patterns 1, 100091, October 9, 2020 3
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had identified TCF4 to act as a transcriptional master regulator in

SCZ, based on expression network analysis of human dorsolat-

eral prefrontal cortex. Upon initiating the diffusion process,

MAPSD terminated the diffusion at the time step t = 3 (Figure 3C).

A sharp decrease in Figure 3C indicates the tendency of the

graph toward over-smoothness. Therefore, t = 3 is an appro-

priate cutoff point to prevent this phenomenon. After completion

of the diffusion process, we sought to check how many of the

SCZ risk genes show the highest signal intensity in all of the brain

regions (Figure 3B). We can see that DGKZ as well as two other

genes CHRNA2 and GRIN2A with a signal intensity of 3 were

preserved in the brain. MAPSD resulted in 704 genes (4.4% of

the total, see Table S1) to have the highest SCZ risk signal

uniquely in several brain regions, including cerebral cortex, cer-

ebellum, hippocampus, and caudate. We checked this gene set

to look for the SCZ risk genes (which were used as the input to

the method) showing the highest risk signal intensity upon

executing the MAPSD. We found that 190 genes have the high-

est signal intensities only in the brain (the total height of bars in

Figure 3B). We checked the signal intensity of the remaining

SCZ-associated genes (n = 3,725). We found 3,480 genes to

have the highest signal intensity in the brain as well as at least

one other tissue other than the brain, while 245 genes showed

higher risk signals in other tissues other than brain.

MAPSD-Identified SCZ Risk Genes Are Enriched in
Specific Subcellular Domains in Neuronal Cells
To evaluate the reliability of the MAPSD-identified candidate risk

genes, we separated the 704 identified genes with the highest
4 Patterns 1, 100091, October 9, 2020
signal intensity in the brain into two groups: 190 known SCZ

risk genes and 514 newly identified genes (Figures 4A and 4B).

Using the protein abundances from the Human Protein Atlas,

we checked in what specific brain regions and cell types the pro-

tein products of these genes are expressed. Of 190 known SCZ

risk genes, 126 genes (66.3%) were highly expressed in neuronal

cells in the cerebral cortex while in total, 138 genes (�72.3%) of

the entire gene set were highly expressed in various cell types in

the cerebral cortex. We next sought to evaluate the set of newly

identified genes in the brain. We made a similar analysis on the

514 newly identified gene set by MAPSD. Among them, 360

genes (�70%) were highly expressed in neuronal cells in the ce-

rebral cortex. In total, 396 genes were highly expressed only in

the cerebral cortex which accounts for 77% of the total number

of the newly identified gene set. Notably, these observations

reveal an agreement between the enrichment patterns of both

gene sets and suggests reliable cell specificity of the MAPSD

approach. This finding is in agreement with the cell types sug-

gested to be underlying SCZ pathogenesis.36 In an important

study, Skene et al.,36 investigated the enrichment of SCZ com-

mon variants in adult brain temporal cortex and prefrontal cortex.

Cell types being studied in these regions included: astrocytes,

oligodendrocyte progenitor cells, oligodendrocytes, microglia,

pyramidal neurons, and cortical interneurons. In both regions,

pyramidal neurons and interneurons shared the highest degree

of enrichment of GWAS loci compared with the other cell types.

Our observations also show that the identified risk genes, at the

protein level, are predominantly highly expressed in neuronal

cells compared with other available cell types in this region.
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We also noted that endothelial cells share the lowest fraction of

SCZ risk genes in our study. This is also the case in the findings of

Skene et al., in which the enrichment of SCZ common variants in

endothelial cells in prefrontal cortex is the lowest compared with

the other cell types.

Wewere interested in finding the localization of SCZ risk genes

in subcellular domains, using the subcellular localization do-

mains obtained from Human Protein Atlas (Figure 2B). An imme-

diate observation is significant enrichment of SCZ risk loci at pro-

tein level in various subcellular micro-domains of neuronal cells

within the cerebral cortex (Figure 4C). Seventy-eight percent of

the original SCZ risk genes found by MAPSD were enriched in

neuronal cells in the cerebral cortex and across different subcel-

lular domains. Among them, �96% were enriched only in

neuronal cells across different micro-domains. Further focusing

on neuronal cells, we found that five micro-domains, including

cytosol, nucleus, nucleoplasm, plasma membrane, and vesicles

share �70% of the entire SCZ-associated protein products in

the cerebral cortex. Across the entire subcellular micro-do-

mains, cerebellum harbors �13% of the candidate SCZ risk

genes, in which Purkinje cells shares the highest fraction of

SCZ candidate risk genes at protein level.

We compared the enrichment patterns of the newly identified

genes by MAPSD with the known SCZ risk genes based on their

corresponding micro-domains. Similar to the SCZ risk genes,

subcellular micro-domains in neuronal cells within the cerebral

cortex share the largest fraction of the identified genes. We

checked the newly identified gene set in the cerebral cortex.

Considering all of the micro-domains, �96% of the entire identi-

fied proteins are expressed predominantly in neuronal cells (Fig-

ure 4D). Within neuronal cells, five micro-domains share 72.5%

of these proteins, including cytosol, nucleus, nucleoplasm,

plasma membrane, and vesicles. This fraction is very similar to

the localization of SCZ-associated protein products in neuronal

cells within the cerebral cortex.

We compared the proportions of enrichment of SCZ genes

and the identified genes based on their localizations within

each cell in separate brain regions. In the cerebral cortex,
considering all of the micro-domains and cell types, fractions

of the both known SCZ risk genes and MAPSD newly identified

genes were similar with no significant difference observed (chi-

square p value = 0.79). We further compared the differences be-

tween the proportions of the major subcellular domains indi-

cated above in neuronal cells within the cerebral cortex. Except

vesicles (chi-square p value = 0.018), no significant difference

was observed between their proportions: plasma membrane

(chi-square p value = 0.9432), cytosol (chi-square p value =

0.114), nucleus (chi-square p value = 0.842), and nucleoplasm

(chi-square p value = 0.191). These observations extend further

support, regarding efficacy of MAPSD in modeling, a more real-

istic map of proteomic properties of SCZ at the cellular

resolution.

MAPSD Recovers Potential Disease-Associated
Susceptibility Protein Complexes
In addition to finding novel candidate risk genes, MAPSD can

also reveal protein complexes that may be involved in disease

pathogenesis. We tested MAPSD to show how it can facilitate

recovering the SCZ risk signals in the brain. We ran MAPSD

100 times and each time randomly removed one SCZ risk gene

with the highest signal intensity in the brain. MAPSD successfully

recovered their signal intensities to bear the highest SCZ signal

intensities in the brain. As an example, we illustrate the signal in-

tensity of two SCZ risk genes (DGKZ and ST8SIA2) to show the

highest signal intensity levels in the brain. DGKZ showed the

highest signal intensity of 4. DGKZ is a well-studied SCZ risk

gene demonstrated to be DE2 and differentially methylated28

as well as harboring GWAS hits3,4 and de novo mutations.26

MAPSD signal intensities for this gene (Figure 5A) are the highest

in three regions, including neuronal cells in the cerebral cortex,

Purkinje cells in the cerebellum, and neuronal cells in the

caudate. ST8SIA2 (Figure 5B) is known to be implicated in

SCZ in various ways, such as its impacts on cerebral white mat-

ter diffusion properties in SCZ37 as well as harboring multiple

SCZ-associated SNPs.3,38 After removing this gene from the

initial signal vector, we ran MAPSD and observed that MAPSD
Patterns 1, 100091, October 9, 2020 5
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yields the highest SCZ signal intensities in the cerebral cortex

and cerebellum. These experiments verify the robustness of

MAPSD when the initial signal information for a disease is

partially complete and that the method is capable to re-identify

genuine SCZ risk loci given the topology of the adjusted PPI net-

works as well as proteome information incorporated into the

model. Looking at the newly identified gene set by MAPSD, we

found several genes to be implicated in other brain disorders.

Considering that MAPSD can recover known SCZ-associated

risk factors, we hypothesize that the newly identified genes

may potentially be implicated in SCZ. On the other hand, we

are already aware that many psychiatric disorders, such as
SCZ, autism, and bipolar disorder share substantial genetic sus-

ceptibility.39 Therefore, as a proof of concept, we picked some of

the top MAPSD genes with the highest signal intensity and eval-

uated whether they have already been indicated in other brain

diseases.

As a proof of concept, we picked NRXN3, which shows the

highest signal intensity in neuronal cells in the cerebral cortex

upon executing MAPSD (Figure 5C). The autism risk gene

NRXN340,41 is a member of the Neuroxin gene family, which en-

codes neuronal adhesion proteins with critical roles in synapse

development and function. Although restricted evidence, such

as copy-number variation42 and a polymorphism43 on NRXN3
Patterns 1, 100091, October 9, 2020 7
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have been reported to be associated with SCZ in small popula-

tion cohorts, its association to the disease has not been repli-

cated44 or widely recognized. We investigated the PPI network

to look for the genes connected to NRXN3. NRXN3 is directly

connected to six genes, where the majority of them are signifi-

cantly associated with diseases related to the central nervous

system (CNS). These genes include NLGN1, NLGN2, NLGN3,

CASK, AFDN, and PAX4. NLGN1, NLGN2, and NLGN3 belong

to the family of neuronal cell surface proteins, Neuroligin, and

are involved in formation of CNS synapses.45 They have been

implicated in epilepsy,46 autism spectrum disorders (ASDs),47

and post-traumatic stress disorder.48 Notably, MAPSD recapitu-

lated these three genes in the brain where NLGN1 and NLGN2

were input to themodel as SCZ risk genes, yetNLGN3was iden-

tified by MAPSD as a susceptibility disease risk gene. This

finding is in concordance with the well-established observations

that Neuroligin protein members act as ligands for Neuroxins, re-

sulting in the connections between neurons and generation of

synapses.49 CASK and AFDN have also been implicated in

CNS diseases such intellectual disabilities50,51 and CNS leuke-

mia,52,53 respectively. Given that AFDN interacts with

NRXN3,54 we can conclude thatMAPSD is capable of recovering

high-risk loci in protein complexes and can infer converging dis-

ease risk modules in the human interactome.

Tissue and Developmental Stage-Specific Expression of
MAPSD Risk Genes
To further gain evidence supporting their disease relevance, we

analyzed the tissue-specific expression levels of the identified

SCZ risk genes at mRNA level. For this analysis, we used gene

expression levels on 53 different tissues from the Genotype-Tis-

sue Expression (GTEx) project.55 GTEx data contain mRNA

levels across the entire transcriptome, which enables specifying

to what extent a gene is expressed in distinct tissues.We divided

theMAPSD risk genes into two groups, including the known SCZ

risk genes with the highest signal intensities in the brain and

newly identified genes with the highest signal intensity in the

brain. We queried the GTEx data and observed that in both

sets, the outputs of MAPSD are highly enriched in brain tissues

(Figure 6A). In fact, frontal cortex showed remarkably higher

enrichment scores, which is supported by the previous findings

regarding its implications in SCZ.2,56 The extent of enrichment in

distinct brain regions was different. For instance, the frontal cor-

tex and cerebral hemisphere represented a much stronger

enrichment significance compared with other regions in the

brain, while the amygdala and hippocampus, despite being sig-

nificant, were less implicated in our analysis. In addition to the

provided significance p values, we calculated the fold enrich-

ment ratios (FER) for the top 5 significant brain regions for the

set of identified genes, including frontal cortex (FER = 8.9), cor-

tex (FER = 8.8), anterior cingulate cortex (FER = 21.7), nucleus

accumbens (FER = 5.1), and cerebellar hemisphere (FER =

2.9). These observations suggest that integrating cell-specific

genome and proteome knowledge in modeling the disease can

lead to more sensitive and reliable identification of novel risk

factors.

Because SCZ is likely a neurodevelopmental disorder, we next

investigated if the brain-specificMAPSD genes are dysregulated

during various developmental stages in human brain. We used
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the Atlas of the Developing Human Brain (BrainSpan)57 on three

brain regions, including the dorsolateral frontal cortex (DFC), ce-

rebral cortex (CBC), and hippocampus (HIP). Next, we divided

the data into two large categories of prenatal and postnatal

stages, each with various time points. Prenatal stage includes

0–12 post-conception weeks (pcw), 13–24 pcw, and 25–36

pcw. Postnatal stages include 0–2, 3–8, 9–16, and >17 years.

We averaged the expression levels of each MAPSD gene across

different stages of pre- and postnatal stages and looked for DE

genes (Figure 6B). Our observation indicates that almost half

these genes were DE in postnatal stages versus the prenatal

stages. The overall pattern of the number of DE genes in SCZ

and MAPSD genes was almost similar. We were interested to

specify what biological pathways are disrupted by the dysregu-

lated genes during neurodevelopment in DFC, CBC, and HIP.

We conducted pathway enrichment analysis (see Experimental

Procedures) on these three gene sets. Although several path-

ways were nominally significant, none of them passed the false

discovery rate (FDR) threshold of 0.05. On the other hand, check-

ing the SCZ-associated genes that demonstrated the highest

signal intensity while being DE during neurodevelopment led to

finding multiple pathways that are statistically significant

(FDR < 0.05). The majority of these pathways were shared by

the three regions, such as glutamatergic synapse (DFC: FDR =

2.3 3 10�8, FER = 15.4; CBC: FDR = 8.5 3 10�9, FER = 13.8;

HIP: FDR = 2.8 3 10�7, FER = 11.8), calcium signaling pathway

(DFC: FDR = 1.32 3 10�7, FER = 10.4; CBC: FDR = 8.5 3 10�9,

FER = 10; HIP: FDR = 2.83 10�7, FER = 8.7), circadian entertain-

ment (DFC: FDR = 7.5 3 10�6, FER = 13.2; CBC: FDR = 2.2 3

10�7, FER = 13.6; HIP: FDR = 4.4 3 10�7, FER = 12.8), and

cholinergic synapse (DFC: FDR = 2.1 3 10�5, FER = 11.3;

CBC: FDR = 7.3 3 10�4, FER = 8.2; HIP: FDR = 2 3 10�4,

FER = 8.8).

Some MAPSD Risk Genes Are Potential Drug Targets
We were interested in whether the MAPSD-identified SCZ risk

genes act as targets of known drugs related to CNS. We used

the list of US Food and Drug Administration (FDA)-approved

drug targets by Santos et al.58 comprising 4,631 drug-target

connections as well as their mechanism of action. The data con-

tained 881 unique protein targets in which the Ensemble IDs of

713 proteins were obtained. Among 514 newly identifiedMAPSD

risk genes, we found 38 genes (Table S2) to be the targets of

available FDA-approved drugs (FET p value = 2.68 3 10�4).

We found multiple calcium channel mRNAs to be of high-risk

signal intensities, such as CACNB1, CACNG2, CACNG3, and

CACNG7. These genes are known to be the targets of fragile X

mental retardation protein, which cause fragile X syndrome

and autistic symptoms.59 These proteins were highly enriched

in the brain, specifically in neuronal cells in the cerebral cortex

(Figure 6C). We were interested in finding the genes that are

already targets of drugs developed for CNS diseases. Twenty-

one (56%) of the 38 genes were targets of drugs developed for

CNS-related diseases (Figure S1). Some of these genes are

well-documented risk loci in neurological diseases. For instance,

SCN1A, a voltage-dependent sodium channel gene is known to

be associated with epilepsy.60,61 These genes are essential in

generating action potentials in neurons and muscles. We found

this gene to be the target of 16 drugs primarily developed to treat



Figure 6. Tissue-Wise Enrichment Statistics for SCZ- and MAPSD-Identified Genes at Gene Expression Level

(A) –log10(p value) of SCZ and MAPSD risk genes with the highest signal intensity in brain tissues in GTEx consortium gene expression data.

(B) The number of differentially expressed SCZ and MAPSD risk genes in the cerebral cortex (CBC), dorsolateral frontal cortex (DFC), and hippocampus (HIP)

between prenatal and postnatal developmental stages using BrainSpan data.

(C) Number of MAPSD risk genes to be the targets of FDA-approved drugs being enriched in specific cell types in certain brain regions.

(D) Percentage of SCZ-associated genes to be direct neighbors of theMAPSD-identified geneswhere each color representsMAPSD genes with a certain number

of immediate connecting nodes in the PPI network.
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epilepsy. We had found this gene to exhibit the highest signal in-

tensity in neuronal cells in the cerebral cortex. Similarly, SCN3A,

an epilepsy gene was picked up by MAPSD in neuronal cells in

the cerebral cortex and hippocampus. These two genes have

been widely studied in epilepsy as well as mental retardation

and other neuropsychiatric disorders.60 We recognize that these

genes may have a different mode of action (gain of function

versus loss of function) in different brain disorders, but our anal-

ysis demonstrated a proof of principle that MAPSDmay facilitate

drug repurposing efforts by integrating more fine-grained (tissue
specific, cell-type specific, and subcellular localization specific)

omics information on brain disorders.

Another highly connected gene within the created drug target

network was HRH1. This gene was found to be the target of 51

drugs, of which 10 were developed for CNS diseases. This

gene showed the highest MAPSD signal intensity in neuronal

cells in the cerebral cortex despite not being used initially as

an SCZ signature in MAPSD. A few studies have investigated

its association with SCZ. For example, Nakai et al.62 have shown

the possible associations between HRH1 and SCZ, despite
Patterns 1, 100091, October 9, 2020 9
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borderline evidence for an association in GWAS.63We found this

gene to be connected to ADRA1B through two antipsychotic

drugs chlorpromazine and trimipramine. Such interdepen-

dencies between the original SCZ risk genes supplied toMAPSD

and the identified high signal genes further supports an orches-

trated mechanism of the disease through interactions in conver-

gent modules in the human interactome.

Among the identified genes to be drug targets, CHRM1 and

CHRM2 were found to be targeted by over 30 drugs, 8 related

to CNS. These genes are implicated in alcohol dependence,64

major depression,65 as well as possible involvements in SCZ.66

In addition to the identified genes that might have been impli-

cated in neuropsychiatric disorders, MAPSD revealed new can-

didates for treatment of SCZ. For instance, SLC12A1, a solute

carrier transporter, was found with the highest signal intensity

in the brain to be targeted by five drugs. This gene is essentially

targeted to reduce edema caused by kidney or heart failure.

However, granted the role of such membrane-bound proteins

in transferring substrates within the cell, such as dopamine and

serotonin,67 they can be further studied for the treatment of SCZ.

DISCUSSION

In our view, the extreme polygenic nature of complex psychiatric

disorders, such as SCZ, necessitates taking a more holistic view

on the overall system of the diseases. One critical component of

such a system is the proteome and its dynamics, given that pro-

teins are in fact work horses of intra-cellular activities. Proteins

reflect the genetic, epigenetic, and transcriptomic alterations

that are caused by the disease. Yet, research on the proteome

lags behind other omics data types, especially those generated

on DNA and RNA levels,14 due to technical limitations in data

generation. Recent advances in proteome experimental para-

digms has created new horizons to further use proteome knowl-

edge in studying SCZ. Integrated analysis of omics data types at

nucleic acid and amino acid levels makes it possible to accu-

rately pinpoint SCZ drivers as well as accurate isolation of

gene modules whose orchestrated interactions may confer sus-

ceptibility to the disease. Taking a multi-layer approach to SCZ,

we introduced MAPSD, a proteogenomic signal diffusion

method that accounts for subcellular localization of the proteins

and intra-cellular trafficking in an integrated manner. Our study

demonstrated the effectiveness of the MAPSD in recovering

known SCZ risk genes and identifying novel candidate risk

genes, and in identifying possible drug targets for drug-repur-

posing studies.

MAPSD has unique characteristics that are worth further dis-

cussion. MAPSD features modeling the protein localization in

subcellular micro-domains as well as tissue-wise cell-specific

distribution of protein abundances in the human body. Taking

all this information into account, MAPSD creates a dedicated

cell-specific PPI network for tens of distinct human tissues.

This allowed us to create more realistic PPI networks that can

lead to more accurate prediction of disease drivers. MAPSD

jointly uses GWAS hits, DE genes, rare and de novo mutations,

and chromatin accessibility data followed by diffusing this reper-

toire of information into each dedicated cell-specific PPI network

to predict the signal intensities of novel candidate genes and

their potential role in the disease onset and progression. The
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Markov affinity-based criterion borrowed from graph theory as

well as the designed termination criterion ensures accurate tran-

sition of information across the network, while avoiding over-

smoothing the signal intensities. Therefore, the highest amount

of information will flow through the network while preventing

the signals at each node are distinctive enough. MAPSD enables

ranking the genes related to SCZ given their signal intensity

levels in the brain.

An important strength of MAPSD is that the identified novel

disease risk gene may not be immediate neighbors of known

SCZ risk genes. For example, 217 genes out of 514 (�42%) iden-

tified risk genes byMAPSD are not directly connected to disease

susceptibility loci. We checked the topology of the PPI network

on the identified MAPSD risk genes, which were connected to

at least one SCZ risk gene. Given the direct neighbors of MAPSD

genes, we categorized them into four groups (Figure 6D) fol-

lowed by counting the number of SCZ risk genes that are con-

nected to each MAPSD risk gene within each group. Ninety-

three percent of MAPSD genes have 1 to 30 direct neighbors

among which the median percentage of SCZ risk genes is

�30%. In other words, on average, 30% of the accumulated sig-

nals in MAPSD risk genes were transmitted directly from neigh-

boring SCZ risk genes, while the remaining signal intensities are

transmitted from distant genes. This is remarkable given that

MAPSD can capture the signals from distant risk loci so that

the convergence of small effect size loci can be observed and

modeled. Another major property of MAPSD is its resilience

against noise. Markov operators in graph signal processing act

as a low-pass filter.68 Therefore, in the case of introducing false

signals, i.e., noise, to the MAPSD initial signal vector, these sig-

nals will automatically be filtered out during the signal diffusion.

As a result, MAPSD is noise resistant. MAPSD was able to

recover a significant fraction of known SCZ susceptibility genes

from multi-omics studies. For example, in a recent study by

Wang et al.,5 multiple SNPs were reported to be associated

with the disease. A significant overlap between MAPSD-identi-

fied genes and their reported loci was observed (FET p value =

2.1 3 10�4, enrichment ratio = 3.2). Among them, 85% of the

genes were enriched in neuronal cells in the cerebral cortex,

7.5% in Purkinje cells in the cerebellum, and 7.5% in neuronal

cells in the caudate. This observation further supports the mech-

anism introduced in MAPSD to jointly model mutual interactions

between omics data modalities for identification of novel risk

genes and susceptibility risk modules in PPI networks.

Given thatMAPSD takes an additive approach to combine sig-

nals from a variety of omics data types, we sought to explore if

therewere any correlations between these data types.We calcu-

lated the pairwise Matthews correlation among DE genes, de

novo mutations, common variants, methylated loci, and open

chromatin regions across the entire signature genes. Except

for amild correlation between DE andmethylation signals (corre-

lation coefficient = �0.43), we did not observe significant corre-

lations between these data types. Incorporating the biophysical

properties of proteins plays a critical role in precision predictions

made by MAPSD. To evaluate the effects of removing the cell-

specific PPI adjustment step in the performance of MAPSD,

we ran MAPSD while disabling this stage followed by comparing

the results with the original findings where the PPI network was

adjusted for protein localization information. First, we looked for
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the known SCZ risk factors showing the highest signal intensity

in the brain. We found that 108 genes, compared with 190 genes

when applying this stage, share the highest signal intensity in the

brain demonstrating a 43% loss in reproducibility power of

MAPSD. While all of the previous 190 genes were unique to

the brain, we found 11 genes having unique signal intensities in

tissues other than the brain. Regarding the prediction power of

MAPSD, we came up with 450 genes to share the highest signal

intensity in the brain compared with 514 predicted risk genes

(12.5% decrease). These observations suggest a loss of power

in reproducing a good portion of the predictions. Moreover, we

evaluated the effect adjusting the signal vector using the cell-

specific protein abundances. For this, we directly used the initial

signal vector in the diffusion process in tandemwith the adjusted

PPI network. We found 69 SCZ risk genes, compared with 190

genes in the original experiment, to share the highest signal in-

tensity in the brain. However, we found that 97 SCZ risk genes

also show the highest signal intensity in other tissues, such as

heart muscle, lung, and liver. Next, we checked the status of

the 514 predicted hits in the original analysis. We found only

109 (21.2%) genes to be significantly enriched in the brain and

213 genes to be significantly enriched in other tissues. Collec-

tively, it can be concluded that removing the effect of modeling

the cell-specific protein abundances has a radical impact on

the overall performance of MAPSD in distinguishing cell-specific

hits. Moreover, we found, from above, that relaxing the PPI

adjustment stage in MAPSD has serious negative impacts on

the reproducibility power of the algorithm and diminished the

overall reliability of the predictions.

To evaluate howMAPSD can be resilient to the networks being

used, we conducted a secondary analysis using a second inde-

pendent PPI network from the IMEx consortium69 called the In-

terologous Interaction Database (I2D).70 We observed 782 SCZ

risk genes from the original signal vector of 3,915 risk factor to

be present in the I2D PPI (�20% overlap). Among 190 SCZ risk

factors which showed the largest signal intensity in the brain after

running MAPSD, 45 genes existed in the I2D network, where 32

(71%) of them showed the highest signal intensity in the brain

(Table S3). In our initial results, we had predicted 514 susceptible

risk loci to share the highest signal intensity in the brain. Eighty-

three of these predicted risk genes existed in the I2D network,

where 55 (66%) genes yielded the highest signal intensity in

the brain. We did not observe unique hits in the I2D PPI not being

available in the analysis performed on our large curated PPI

network. We had previously shown that SCZ risk genes DGKZ,

GRIN2A, and CHRNA2 (Figure 3) keep the highest signal inten-

sity in the brain after the signal diffusion. Notably, two of them

(DGKZ andGRIN2A) showed high signals in the brain after signal

diffusion on the I2D network demonstrating a 67% overlap with

the previous findings. Although the I2D PPI is significantly

smaller (almost 18-fold) than the original PPI used previously,

wewere able to re-identify�11%of the original predictionswhile

only �16% of the predictions existed in the I2D network. There-

fore, our findings suggest thatMAPSD is resilient to changing the

networks being used. However, using a more detailed network

will certainly lead to more robust predictions. In addition, con-

ducting a randomized trial with 10 signal vectors each containing

3,915 signatures where none of which are SCZ risk loci led to an

average of 473 genes with the highest signal intensity in the
brain. We did not observe a significant overlap with the original

SCZ findings (p = 0.398) suggesting the robustness of MAPSD.

There are some factors that may influence the overall quality

of the prediction performance of MAPSD. First, the quality of

the networks fed to the model. Since there are multiple

compendia for PPIs, strict thresholds should be applied on

the quality and reliability of pairwise interactions. This will

ensure more accurate signal propagation through the network

and will reveal more reliable outcomes. Second, more data

types being fed to the model equates to more enriched signal

matrices, which will in turn potentially lead to more concrete

predictions regarding associations of the novel risk genes

with the disease. If there is not enough evidence regarding

each initial risk factor, then the Markov process will immedi-

ately converge while being over-smooth. Therefore, it would

be difficult to interpret the findings, and the identified hits will

likely be false negatives. Third, availability of high-resolution

single-cell proteome data can increasingly improve the overall

performance of MAPSD. Current data in the Human Protein

Atlas are the major resource for profiling proteins across a

wide range of tissues and cells. We acknowledge that the cur-

rent data are not quite comprehensive, yet with the advent of

technologies, generating more in-depth proteome data across

more tissues has become possible. Therefore, we will be

continuously updating MAPSD with more additional data. Given

that a large number of the identified risk genes by MAPSD co-

localize in various cell types in the cerebral cortex, we made

sure that the results are not driven by the bias in the proteome

data used. We used the Human Protein Atlas data and ex-

tracted the genes whose protein products are highly expressed

in various cerebral cell types. Among 13,150 protein products,

2,894 (22.0%) proteins showed high expression in various cell

types in the cerebral cortex. Therefore, the dataset used is

not biased toward the cerebral cortex. MAPSD had predicted

514 novel risk genes among which 390 (�76%) are highly ex-

pressed in the cerebral cortex which is equivalent to an odds

ratio of 3.45. Therefore, MAPSD findings are bias-free.

MAPSD takes advantage of high-dimensional omics data and

is not tied to specific phenotypes. Therefore, it can effectively be

applied to any complex disease, such as ASDs or autoimmune

diseases, when necessary multi-omics datasets are available.

MAPSD provides an ideal platform to leverage the outcomes of

ongoing massive-scale projects, such as the PGC,71 the largest

consortium in psychiatry genetics, and the PsychENCODE proj-

ect,72 which is actively generating extensive epigenomic data on

various psychiatric disorders. We envision MAPSD to be useful

to the community to catalyze integrated evaluation of candidate

genes for various neuropsychiatric and neurodevelopmental dis-

orders at a systems level.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Kai Wang, PhD (email: wangk@email.chop.edu).

Materials Availability

This study did not generate any new unique reagents or materials.

Data and Code Availability

MAPSD scripts and data required for running the platform are available online

at: https://github.com/adoostparast/MAPSD.
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Description of the Data Used in the Study

Interaction networks used in this study were collected from three sources,

including PICKLE 2.3,33,34 the Human Reference Interactome,32 and the Hu-

man Interactome Database.31 Upon removing the duplicate interaction, the

final network being used by MAPSD contained 232,801 interactions. The list

of DE genes were obtained from the CommonMind Consortium.2 GWAS hits

on SCZ were downloaded from the CLOZUK consortium4 and the Psychiatric

Genomics Consortium.3 Rare and de novo mutations were downloaded from

denovo-db v.1.6.1.26 DNA methylation data were downloaded from the works

by Vitale et al.,27 Aberg et al.,28 and Alelu-Paz et al.29 Open chromatin acces-

sibility peaks were downloaded from the study by Bryois et al.30 Protein abun-

dances in all of the tissues and cell types as well as the subcellular localization

of all of the proteins were obtained from the Human Protein Atlas project.7,8

Tissue-specific gene expression levels were obtained from the GTEx project55

consortium on 53 tissues.

Creating the Signal Vector

The initial signal matrix S, is an overlaid column vector which contains the cu-

mulative levels of biological evidences, such as transcriptional signatures,

methylation, GWAS. For each level of information for a specific gene, we

add a point 1 if there was a significant hit, such as an FDR threshold of 0.05

on transcriptome signals and 5 3 10�8 for GWAS loci. To create S, first we

introduce evidence matrix EG3L, where G denotes the total number of genes

and L is the number of omics data layers (in this study, 5). Therefore

�
Eij = 1 if for gene i there is evidence in layer j
Eij = 0 otherwise

Next, using E, we can create S as follows: Si =
PL

j =1eij . For example, if a

gene i is DE and differentially methylated, then Si = 2. We should make sure

that the data being collected to create the signal vector have been generated

from the same tissue or appropriate surrogate tissues to avoid generating

spurious signals.

Adjusting the PPI Network Weights and Creating the Affinity Matrix

Subcellular localization data used in MAPSD were downloaded from the Hu-

man Protein Atlas project.7,8 In total, 32 subcellular domains were available.

To project this information onto the PPI network, first the affinity matrix A

was created. A is an n3n binary matrix where aij = 1 if two proteins i and j

are connected in the network, otherwise aij = 0. n denotes the total number

of unique proteins in the PPI network. MAPSD scans the entire elements of

A and checks its localization micro-domain. If two proteins i and j are con-

nected in the network while co-localizing in the same micro-domain, then

aij = 1.5. However, If two proteins i and j are connected in the network while

not being co-localized in the same micro-domain, then aij = 1. Note that A is

a symmetric matrix, i.e., aij = aji.

Creating the Markov Transition Matrix from Affinity Matrix

Upon adjusting the raw affinity matrix to contain the subcellular localization in-

formation, MAPSD obtains the Markov operator matrix (M). M is an n3n

transition probability matrix whose element mij denoted the probability of sin-

gle-step random walk from the node i to the node j. Leveraging random walk

Laplacian in the graph theory,73M can be obtained as follows:M =D�1A, where

A denotes the adjusted affinity matrix above which consists subcellular local-

ization information on all of the edges in the network and D represents the de-

gree matrix. D is a diagonal matrix of the degree n, generated from A whose

non-zero elements can be obtained as follows: Dii =
Pn

j =1aij . Therefore,

each element of the main diagonal in D equals the row-wise summation of

its corresponding protein in the affinity matrix A.

Creating Tissue/Cell-Specific Signal Matrix

To use the knowledge on the expression levels of each protein in each cell

within each tissue, the Human Protein Atlas data were leveraged. In these

data, expression levels are defined by four qualitative terms, including High,

Medium, Low, and Not Detected. To use this in MAPSD, we converted them

into aweight matrixWG3T, whereG is the total number of proteins from the Hu-

man Protein Atlas and T is the total number of tissues and cell types. The total
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combinations of tissues and cell types in this study is 131. Therefore, the

expression degree of protein i in the tissue/cell j is denoted by wij as follows:

wij =

8>><
>>:

High= 1
Medium= 0:75
Low= 0:5
Not detected= 0:25

Later, we converted the signal vector S to tissue/cell-specific signal matrix

S* by scalar multiplying the weight matrix W and the initial signal vector S as

follows:

S* is a G3T matrix where S�
j = Wj1S, where matrix and 1 denotes dot

(scalar) product. Here, S�
ij represents the disease signal intensity of the protein

i in the tissue/cell j.

Signal Diffusion Process in MAPSD

MAPSD uses the Markov operator matrix M and tissue/cell-specific signal in-

tensity matrix S* to initiate the diffusion process. During the diffusion process,

given the topology of the PPI network, for each combination of tissues and cell

types, signal intensities of SCZ risk loci are propagated onto the network so the

signal intensities of unknown proteins are estimated. The higher the signal in-

tensity of a protein in the brain, the higher the likelihood of its association to

SCZ. MAPSD is an iterative process where in each iteration signal intensities

from disease risk genes are propagated through the network using the

following equation: St = Mt3S* where t denotes the diffusion time, i.e., the

length of a random walk of size t from each node. A critical point to address

during the diffusion process is choose of an appropriate diffusion time given

that very large values of t leads to over-smoothness of the signal intensities.

In other words, when the signals are over-smooth, then the signal intensities

across all of the network will converge to a constant value leading to the

loss of useful information. To avoid this situation, we have created a termina-

tion criterion called smoothness rate (R) as follows: R = SSE=SST , where SSE

is the sum of square error and SST is the sum of square total and can be calcu-

lated as follows:SSE =
PG

i = 1

PT
j = 1e

2
ij , where e denotes a single element of the

error matrix E = Mt+1S*�MtS*. SST =
PG

i =1

PT
j =1k

2
ij , where k denotes a single

element of the total matrix K=Mt+1S*+MtS*. MAPSD terminates the diffusion

process ifR% 0.05. In other words, if the normalized difference of changes be-

tween signal intensities do not change at a certain threshold, thenMAPSD stop

the diffusion to avoid over-smoothing the signals of the protein across the

network.

Pathway Enrichment Analysis

Pathway enrichment and gene ontology analysis were conducted using Web-

Gestalt74 v.2019. KEGG was used as the functional database the list of ex-

pressed genes were used as the background. The maximum and minimum

number of genes for each category were set to 2,000 and 5, respectively,

based on the default setting. Bonferroni-Hochberg multiple test adjustment

was applied to the enrichment output. FDR significance threshold was set

to 0.05.
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