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The Generalized Robinson-Foulds Distance

for Phylogenetic Trees

MERCÈ LLABRÉS,1,2 FRANCESC ROSSELLÓ,1,2 and GABRIEL VALIENTE3,i

ABSTRACT

The Robinson-Foulds (RF) distance, one of the most widely used metrics for comparing phy-
logenetic trees, has the advantage of being intuitive, with a natural interpretation in terms of
common splits, and it can be computed in linear time, but it has a very low resolution, and it
may become trivial for phylogenetic trees with overlapping taxa, that is, phylogenetic trees
that share some but not all of their leaf labels. In this article, we study the properties of the
Generalized Robinson-Foulds (GRF) distance, a recently proposed metric for comparing
any structures that can be described by multisets of multisets of labels, when applied to
rooted phylogenetic trees with overlapping taxa, which are described by sets of clusters, that
is, by sets of sets of labels. We show that the GRF distance has a very high resolution, it can
also be computed in linear time, and it is not (uniformly) equivalent to the RF distance.
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1. INTRODUCTION

Trees are simple mathematical structures that are used to represent or model a relation on indi-

viduals. When those individuals are species and the relation is the sequence similarity of their genomes,

the tree-like representation becomes a phylogenetic tree. Phylogenetic trees can also be inferred from met-

abolic pathways (Forst and Schulten, 2001; Chor and Tuller, 2007), protein–protein interaction networks

(Erten et al., 2009), tumor clones of cancer (Miura et al., 2020), languages (Pompei et al., 2011), music

(Bomin et al., 2016), etc., with appropriate distance or similarity relations. At the beginning, phylogenetic

trees were designed to infer evolutionary relationships based on some species appearance (mainly morpho-

logical and physiological traits). However, the explosion of sequencing technologies yielding a vast amount

of DNA and RNA sequence data has generated different methodologies to obtain such a phylogenetic tree,

such as maximum parsimony and maximum likelihood approaches; see Bruyn et al. (2014) and Kapli et al.

(2020) for an overview on these phylogenetic reconstruction methods), Bayesian inference (Rannala and

1Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, Spain.
2Balearic Islands Health Research Institute (IdISBa), Palma, Spain.
3Department of Computer Science, Technical University of Catalonia, Barcelona, Spain.
iORCID ID (https://orcid.org/0000-0001-9194-2703).
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Yang, 1996, 1997; Mau et al., 1999; Li et al., 2000), and the neighbor-joining method (Saitou and Nei, 1987;

Studier and Keppler, 1988). Each of them reconstructs a phylogenetic tree from a set of sequences; however,

those phylogenetic trees may differ from one methodology to another, providing different trees for the same

input data.

As a first solution to the disagreement on the different methodologies, consensus trees have been also

defined and consensus tree methods have been implemented as well ( Jansson et al., 2014, 2016). Never-

theless, one step further is when different experiments are performed, yielding different sequence data. In

this case, and to analyze the evolutionary relationship of such sequences, the reconstructed phylogenetic

trees must be compared. Reconstructed phylogenetic trees can be of any type: binary or multifurcating,

labeled only on the leaves (taxa) or on all the nodes, with no repeated labels (injectively labelled) or with

repeated labels, etc. Hence, different experiments may yield different phylogenetic trees of different types,

such as phylogenetic trees with overlapping taxa as in the case of the experiment described later, where

trees share some of the leaves labels but not all of them. Regarding a comparison of phylogenetic trees,

several metrics have been defined as dealing with different types of trees. For phylogenetic trees injectively

labeled on a set of taxa, that is, with no repeated labels, the most widely used distance is the Robinson-

Foulds (RF) distance, which compares the clades (or clusters) of every node in the trees and counts how

many of them are not shared by both trees. Many other metrics on phylogenetic trees have been proposed in

the past few years; see Kuhner and Yamato (2015); Wang et al. (2020) for recent reviews.

Unlike phylogenetic trees reconstructed by different experiments on the same input data, phylogenetic

trees reconstructed from different input data usually have overlapping taxa and thus, the comparison of phy-

logenetic trees with overlapping taxa is also of utmost importance. Figure 1 shows two alternative phylo-

genetic trees with overlapping taxa for several species of tomato (genus Solanum): a chloroplast DNA

phylogeny, adapted from (Palmer and Zamir, 1982), and a mitochondrial DNA phylogeny, adapted from

(McClean and Hanson, 1986); see also Baum and Ragan (2004). They overlap in all taxa but S. juglan-

difolium and S. rickii, shown to be highlighted. Both the chloroplast DNA phylogeny and the mitochondrial

DNA phylogeny have 19 clusters each. They differ in all clusters but those of their nine common taxa, f1g,
f3g, f4g, f5g, f6g, f7g, f8g, f9g, f10g, and cluster f9‚ 10g and thus, their RF distance is 19 + 19 - 2�
10 = 18, which, normalized to [0‚ 1], becomes 9=14 � 0:6429. However, these phylogenies share several

similar clusters, such as f3‚ 4‚ 7g and f3‚ 5‚ 7g, or f3‚ 4‚ 5‚ 6‚ 7‚ 8‚ 9‚ 10g and f3‚ 5‚ 6‚ 7‚ 8‚ 9‚ 10g. In fact,

their Generalized Robinson-Foulds (GRF) distance, defined later in Section 3.1, is 797=266 � 2:9962.

Normalized to [0‚ 1], it is 69‚ 339=131‚ 782 � 0:526164.

2. BACKGROUND

2.1. The RF distance

Recall that the cluster (also, the clade or the monophyletic group) associated with a node in a phylo-

genetic tree is the set of descendant leaf labels of the node in the tree, and the cluster representation of a

phylogenetic tree (Steel, 2016, x2.2) is the set of clusters for the nodes in the tree.

The RF distance (Robinson and Foulds, 1981), a widely used metric for comparing phylogenetic trees,

can be computed in linear time in the size of the trees (Day, 1985; Pattengale et al., 2007). It was originally

defined as the cardinality of the symmetric difference between the sets of clusters of the phylogenetic trees.

When normalized to the unit interval, it becomes the Jaccard distance on these sets (Levandowsky and

Winter, 1971): the one-complement of their Jaccard index ( Jaccard, 1912).

Despite the wide acceptance over several decades now, the RF distance has some shortcomings. On the

one hand, it has a very low resolution, because it can only take a small number of different values—the total

FIG. 1. Chloroplast DNA phylogeny (left) and

mitochondrial DNA phylogeny (right) of several

species of the genus Solanum. 1: S. lycopersicoides;

2: S. juglandifolium; 3: S. peruvianum; 4: S. chi-

lense; 5: S. pennellii; 6: S. hirsutum; 7: S. chmie-

lewskii; 8: S. esculentum; 9: S. pimpinellifolium; 10:

S. cheesmaniae; 11: S. rickii.
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number of leaves in the pair of compared trees—and it only takes into account whether two clusters are

equal or not. Hence, when two clusters differ in only one label, this is equally counted as when they differ

in all their labels (Section 3). On the other hand, and as a consequence of the latter, it may become trivial

for phylogenetic trees with overlapping taxa, which differ in all their clusters except at most those con-

sisting only of common labels.

2.2. Previous generalizations of the RF distance

Several generalizations of the RF distance have been proposed over the past few years, in an attempt to

address the shortcomings discussed earlier. One approach consists of considering the distance between

two phylogenetic trees as an optimal matching problem on a weighted complete bipartite graph, where the

vertices correspond to the clusters of descendant node labels of the two phylogenetic trees. In this setting, in

the RF distance (Robinson and Foulds, 1981), the edges are weighted by 1 (for different clusters) or 0 (for

identical clusters). In the b distance (Boorman and Olivier, 1973), which is basically the same as the

matching cluster distance of (Bogdanowicz and Giaro, 2012b), each edge is weighted by the size of the

symmetric difference of the pair of clusters it connects.

A related approach consists of matching each cluster in one tree to the most similar cluster in the other tree.

In the cluster dissimilarity (CD) (Shuguang and Zhihui, 2015), the edges are also weighted by the size of the

symmetric difference of the two clusters, and the distance between two phylogenetic trees is the sum of the

minimum edge weights for the clusters of the first tree and the non-trivial clusters of the second tree, averaged with

the sum of the minimum edge weights for the clusters of the second tree and the non-trivial clusters of the first tree.

Similar generalizations of the RF distance based on matching have also been proposed for unrooted

phylogenetic trees (Boc et al., 2010; Bogdanowicz and Giaro, 2012a; Lin et al., 2012; Shuguang et al.,

2014; Smith, 2020), and for trees with labeled internal nodes (Briand et al., 2020; Jahn et al., 2020). Further

generalizations based on matching that take into account not only the clusters but also the structure of the

phylogenetic trees have been proposed (Böcker et al., 2013; Borozan et al., 2019).

We have presented (Llabrés et al., 2020) a different generalization of the RF distance, based on the

distances between sets of sets defined in Fujita (2013) and generalized to distances between multisets of

multisets, which is a metric for the clonal trees (Govek et al., 2018; Karpov et al., 2019; DiNardo et al.,

2020; Jahn et al., 2020) and the mutation trees (Kim and Simon, 2014; Aguse et al., 2019) that model tumor

evolution under perfect phylogeny, phylogenetic trees, and several classes of phylogenetic networks, such as

binary galled trees (Cardona et al., 2011), tree-child time-consistent phylogenetic networks (Cardona et al.,

2008c, 2009a,b), and semi-binary tree-sibling time-consistent phylogenetic networks (Cardona et al., 2008a).

In this article, we further study the generalization of the RF distance when applied to phylogenetic trees,

including theoretical properties, further empirical results, and more efficient algorithms. In comparison to

previous generalizations, the latter has the advantage that it can be applied to phylogenetic trees over the

same taxa and with overlapping taxa as well, that it has a much higher resolution, and that it, similar to the

RF distance, can be computed in linear time.

2.3. Notation and basic results

Except when otherwise explicitly stated, all phylogenetic trees considered in this article are rooted

phylogenetic trees. For every phylogenetic tree T, let: V(T) be its set of nodes; rT its root; Vint(T) its set of

internal nodes; L(T) its set of leaves, which we identify with their labels and hence we also understand L(T)

as its set of taxa; C(T) its set of clusters; CT (v) the cluster of a node v; and dT (v) the depth of a node v in T.

For every pair of sets A‚ B, their symmetric difference is A� B = (AnB) [ (BnA). Thus, jA� Bj =
jAj + jBj - 2jA \ Bj. Notice that jA� Bj6jAj+ jBj, and jA� Bj = jAj + jBj if, and only if, A \ B = B.

For every pair of phylogenetic trees T1‚ T2 on the same set of taxa, their RF distance is

RF(T1‚ T2) =
jC(T1)� C(T2)j
jC(T1) [ C(T2)j :

3. THE GRF DISTANCE

In this section, we introduce the GRF distance, and we establish some properties of this distance

comparing it with the RF distance.

THE GENERALIZED ROBINSON-FOULDS DISTANCE 1183



3.1. Definition

In the original formulation, the GRF distance allowed for comparing any structures that can be described by

sets or multisets of sets of multisets of labels (Llabrés et al., 2020). When restricted to phylogenetic trees (with

possibly different sets of taxa), which are described by sets of sets of taxa, the GRF distance is defined as follows.

Definition 1. Let T1 and T2 be phylogenetic trees, not necessarily on the same set of taxa. The GRF

distance between T1 and T2 is given by

GRF(T1‚ T2) =

P
x2C(T1)

P
y2C(T2)nC(T1)

jx� yj

jC(T1) [ C(T2)j � jC(T1)j +

P
x2C(T1)nC(T2)

P
y2C(T2)

jx� yj

jC(T1) [ C(T2)j � jC(T2)j :

This GRF distance is, indeed, a metric, in the sense, that, for any phylogenetic trees T1‚ T2‚ T3, the

following properties hold:

Separation GRF(T1‚ T2) = 0 if, and only if, T1 = T2,

Symmetry GRF(T1‚ T2) = GRF(T2‚ T1), and

Triangular inequality GRF(T1‚ T3) 6 GRF(T1‚ T2) + GRF(T2‚ T3).

The proof of this fact is a simple application of Fujita, 2013, Theorem 1, taking into account that the

cardinality of symmetric difference is a metric on sets and that every phylogenetic tree is characterized by

its set of clusters.

Example 1. Let Kn be a caterpillar with n leaves, let w1‚ w2‚ . . . ‚ wn - 1 be its path of internal nodes from

its root to the parent of its only cherry, and for every i = 1‚ . . . ‚ n - 2 let i be the label of the leaf child of wi;

the children of wn - 1 are labeled with n - 1 and n (Fig. 2). It is clear that

C(Kn) = C(wj) = fj‚ j + 1‚ . . . ‚ ngj j = 1‚ . . . ‚ n - 1
� �

[ fjgjj = 1‚ . . . ‚ nf g :

Now, take some i 2 f2‚ . . . ‚ n - 1g and consider the tree K(i)
n obtained by collapsing the arc (wi - 1‚ wi)

(Fig. 2). Then, on the one hand,

C(K(i)
n ) = C(Kn)n fi‚ i + 1‚ . . . ‚ ngf g

and

RF(Kn‚ K(i)
n ) =

jC(Kn)� C(K(i)
n )j

jC(Kn) [ C(K(i)
n )j

=
1

2n - 1

for every i = 1‚ . . . ‚ n - 1. On the other hand,

GRF(Kn‚ K(i)
n ) =

P
C2C(K(i)

n ) ffi‚ i + 1‚ . . . ‚ ng � Cj j
jC(Kn) [ C(K(i)

n )j � jC(K(i)
n )j

=

=
Pn - 1

j = 1‚ j6¼i fi‚ i + 1‚ . . . ‚ ng � fj‚ j + 1‚ . . . ‚ ngj j +
Pn - 1

j = 1 fi‚ i + 1‚ . . . ‚ ng � fjgj j
(2n - 1)(2n - 2)

(1)

FIG. 2. The contraction of edge e = (w1‚ w2) in the caterpillar on the left yields the phylogenetic tree K(2)
n at the center,

and the contraction of edge e0 = (wn - 2‚ wn - 1) in the caterpillar on the left yields the phylogenetic tree K(n - 1)
n on the right.
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where

fi‚ i + 1‚ . . . ‚ ng � fj‚ j + 1‚ . . . ‚ ngj j = fi‚ . . . ‚ j - 1gj j = j - i if j > i

fj‚ . . . ‚ i - 1gj j = i - j if j < i

�
fi‚ i + 1‚ . . . ‚ ng � fjgj j = fi‚ . . . ‚ j - 1‚ j + 1‚ . . . ‚ ngj j = n - i if j 7 i

fj‚ i‚ i + 1‚ . . . ‚ ngj j = n - i + 2 if j < i

�
So, returning to Eq. (1), the numerator of its right-hand side isXi - i

j = 1

(i - j) +
Xn - 1

j = i + 1

(j - i) +
Xi - i

j = 1

(n - i + 2) +
Xn

j = i

(n - i) =
(n - i)(3(n - i) + 1)

2

and hence, finally,

GRF(Kn‚ K(i)
n ) =

(n - i)(3(n - i) + 1)

2(2n - 1)(2n - 2)

Therefore, contrary to what happens with the RF distance, all phylogenetic trees K(i)
n are at a different

distance from Kn. Actually,

GRF(Kn‚ K(i + 1)
n ) < GRF(Kn‚ K(i)

n )‚ i = 2‚ . . . ‚ n - 2:

Example 2. Consider now the caterpillar Kn - 1 with n - 1 leaves obtained by replacing the cherry

(n - 1‚ n) at the bottom of Kn by a single leaf n - 1 (Fig. 3). If we were to compute the RF distance between

Kn and Kn - 1, it would turn out that all internal nodes in both trees have different clusters. Therefore,

C(Kn)nC(Kn - 1) = fCKn
(w1)‚ . . . ‚ CKn

(wn - 1)‚ fngg
C(Kn - 1)nC(Kn) = fCKn - 1

(w1)‚ . . . ‚ CKn - 1
(wn - 2)g

and hence, RF(Kn‚ Kn - 1) = 2n - 2
3n - 3

= 2
3
.

Now,

GRF(Kn‚ Kn - 1) =

P
C2C(Kn - 1)nC(Kn)

P
C02C(Kn)

jC � C0j

jC(Kn) [ C(Kn - 1)j � jC(Kn)j +

P
C02C(Kn)nC(Kn - 1)

P
C2C(Kn - 1)

jC � C0j

jC(Kn) [ C(Kn - 1)j � jC(Kn - 1)j =

=
1

(3n - 3)(2n - 1)
(
Xn - 2

i = 1

Xn - 1

j = 1

jCKn - 1
(wi)� CKn

(wj)j +
Xn - 2

i = 1

Xn

j = 1

jCKn - 1
(wi)� fjgj)

+
1

(3n - 3)(2n - 3)
(
Xn - 1

j = 1

Xn - 2

i = 1

jCKn - 1
(wi)� CKn

(wj)j +
Xn - 2

i = 1

jCKn - 1
(wi)� fngj

+ (
Xn - 1

j = 1

Xn - 1

i = 1

jCKn
(wj)� figj +

Xn - 1

i = 1

jfig � fngj)

where

FIG. 3. The caterpillars with n and n - 1 leaves.
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jCKn - 1
(wi)� CKn

(wj)j=

= fi‚ . . . ‚ n - 1g � fj‚ . . . ‚ ngj j =
fj‚ . . . ‚ i - 1‚ ngj j = i - j + 1 if j < i

fngj j = 1 = i - j + 1 if j = i

fi‚ . . . ‚ j - 1‚ ngj j = j - i + 1 if j > i

8<:
jCKn - 1

(wi)� fjgj =

= fi‚ . . . ‚ n - 1g � fjgj j =

fj‚ i‚ i + 1‚ . . . ‚ n - 1gj j = n - i + 1 if j < i

fi‚ . . . ‚ j - 1‚ j + 1‚ . . . ‚ n - 1gj j
= n - i - 1 if i 6 j < n

fi‚ . . . ‚ n - 1‚ ngj j = n - i + 1 if j = n

8>><>>:
jCKn

(wj)� figj =

= fj‚ . . . ‚ ng � figj j = fj‚ . . . ‚ i - 1‚ i + 1‚ . . . ‚ ngj j = n - j if j 6 i

fi‚ j‚ j + 1‚ . . . ‚ ngj j = n - j + 2 if j > i

�
jfig � fngj = 2 for every i 6 n - 1:

Therefore,

Xn - 2

i = 1

Xn - 1

j = 1

jCKn - 1
(wi)� CKn

(wj)j =

=
Xn - 2

i = 1

(
Xi

j = 1

(i - j + 1) +
Xn

j = i + 1

(j - i + 1)) =
n3 - n - 6

3

Xn - 2

i = 1

Xn

j = 1

jCKn - 1
(wi)� fjgj =

=
Xn - 2

i = 1

Xi - 1

j = 1

(n - i + 1) +
Xn - 1

j = i

(n - i - 1) + n - i + 1

 !
=

(n + 2)(n - 1)(n - 2)

2

Xn - 2

i = 1

jCKn - 1
(wi)� fngj =

=
Xn - 2

i = 1

(n - i + 1) =
(n + 3)(n - 2)

2

Xn - 1

i = 1

Xn - 1

j = 1

jCKn
(wj)� figj=

=
Xn - 1

i = 1

Xi

j = 1

(n - j) +
Xn - 1

j = i + 1

(n - j + 2)

 !
=

n(n2 + n - 4)

2

Xn - 1

i = 1

jfig � fngj = 2(n - 1)

and, finally,

GRF(Kn‚ Kn - 1) =

=
1

(3n - 3)(2n - 1)
(

n3 - n - 6

3
+

(n + 2)(n - 1)(n - 2)

2
) +

+
1

(3n - 3)(2n - 3)
(

n3 - n - 6

3
+

(n + 3)(n - 2)

2
+

n(n2 + n - 4)

2
+ 2(n - 1)) =
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=
20n4 - 14n3 - 23n2 - 43n + 42

18(n - 1)(2n - 3)(2n - 1)

Remark 1. The GRF distance can be easily generalized to unrooted phylogenetic trees, as follows. Let

T1 and T2 be unrooted phylogenetic trees, not necessarily on the same set of taxa, and let S(T1)‚ S(T2) be

their sets of splits. For each A1jB1 2 S(T1) and A2jB2 2 S(T2), let

D�(A1jB1‚ A2jB2) = min jA1 � A2j + jB1 � B2j‚ jA1 � B2j+ jB1 � A2jf g

Then,

GRF(T1‚ T2) =

P
x2S(T1)

P
y2S(T2)nS(T1)

D�(x‚ y)

jS(T1) [ S(T2)j � jS(T1)j +

P
x2S(T1)nS(T2)

P
y2S(T2)

D�(x‚ y)

jS(T1) [ S(T2)j � jS(T2)j

defines a GRF distance for unrooted phylogenetic trees.

The proof that this is a metric is again an application of (Fujita, 2013, Thm. 1), stating that every

unrooted phylogenetic tree is characterized by its set of splits and that D� defines a distance on splits. This

last assertion can be proved as follows. Since the cardinality of the symmetric difference is a metric on sets,

D2((A‚ B)‚ (C‚ D)) = jA� Cj + jB� Dj

is a metric on ordered pairs of sets. Now, each split AjB can be understood as the set of ordered pairs

f(A‚ B)‚ (B‚ A)g. The distance D� is then simply (half) the Hausdorff distance between sets of this type

induced by D2.

3.2. Theoretical properties

Our first lemma deals with the metric equivalence between GRF and RF. Recall that two metrics d1 and

d2 defined on a space X are equivalent when there exist a pair of non-negative real numbers k‚ l such that,

for every x‚ y 2 X,

d1(x‚ y)6k � d2(x‚ y)‚ d2(x‚ y)6l � d1(x‚ y):

This definition captures the intuitive idea that both metrics define the same notion of ‘‘closeness’’ on X.

Lemma 1. (a) If T1‚ T2 are phylogenetic trees on the same set of taxa, then RF(T1‚ T2)6GRF(T1‚ T2).

(b) There is no constant C 2 R such that, for every pair of phylogenetic trees T1‚ T2 on the same set of

taxa, GRF(T1‚ T2)6C � RF(T1‚ T2).

Proof. (a) Notice that

GRF(T1‚ T2) 7
jV(T1)j � jC(T2)nC(T1)j
jV(T1)j � jC(T1) [ C(T2)j +

jV(T2)j � jC(T1)nC(T2)j
jV(T2)j � jC(T1) [ C(T2)j =

jC(T1)� C(T2)j
jC(T1) [ C(T2)j = RF(T1‚ T2)

(b) Let Kn be the caterpillar with n leaves and K(2)
n the tree obtained from Kn by collapsing the arc from

the root to its internal child. By Example 1,

GRF(Kn‚ K(2)
n ) =

3(n2 - 3n + 4)

4(2n - 1)(n - 1)

whereas

RF(Kn‚ K(2)
n ) =

1

jC(Kn) [ C(Tw)j =
1

2n - 1

and there is no C 2 R such that, for every n73,

n2 - 3n + 4

n - 1
6 C:

,
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The previous lemma entails that the GRF distance is not equivalent to the RF distance on the whole space

of phylogenetic trees with any number of leaves. That is, although for every set of taxa, GRF and RF are

equivalent metrics on the space of phylogenetic trees on this set of taxa, because all metrics on a given

finite set are equivalent, any factor that transforms RF into a metric greater than GRF must depend on the

number of taxa, being impossible to find a real number that works for every number of taxa. This is usually

phrased by saying that RF and GRF are not uniformly equivalent (with respect to the number of leaves).

The following results will be used to show that, much like the RF distance, the GRF distance can also be

computed in linear time in the size of the phylogenetic trees. Recall that the Sackin index of balance,

introduced in Shao and Sokal (1990), for a phylogenetic tree T is

S(T) =
X

x2L(T)

dT (x) =
X

v2Vint(T)

jC(v)j

and set bS(T) = S(T) + jL(T)j =
X

x2L(T)

(dT (x) + 1) =
X

v2V(T)

jC(v)j:

Lemma 2. Let T be a phylogenetic tree, and let X be a set of labels. Then,X
C2C(T)

jC � Xj = bS(T) + jV(T)j � jXj - 2
X

x2X\L(T)

(dT (x) + 1) :

Proof. Since jC � Xj = jCj + jXj - jC \ Xj, we have thatX
C2C(T)

jC � Xj =
X

C2C(T)

jCj + jC(T)j � jXj - 2
X

C2C(T)

jC \ Xj

where X
C2C(T)

jC \ Xj =
X

C2C(T)

X
x2X\L(T)

jC \ fxgj

=
X

x2X\L(T)

X
C2C(T)

jC \ fxgj =
X

x2X\L(T)

(dT (x) + 1)

,

Corollary 1. For every pair of phylogenetic trees T1‚ T2,X
C12C(T1)

X
C22C(T2)nC(T1)

jC1 � C2j = (jV(T2)j - jC(T1) \ C(T2)j)bS(T1)

+ jV(T1)j � bS(T2) - jV(T1)j
X

C2C(T1)\C(T2)

jCj

- 2
X

x2L(T1)\ L(T2)

(dT1
(x) + 1)(dT2

(x) + 1)

+ 2
X

x2 L(T1)\L(T2)

jfC 2 C(T1) \ C(T2) : x 2 Cgj(dT1
(x) + 1) :

Proof. By the previous lemma,X
C12C(T1)

X
C22C(T2)nC(T1)

jC1 � C2j

=
X

C22C(T2)nC(T1)

(bS(T1) + jV(T1)j � jC2j - 2
X

x2C2\ L(T1)

(dT (x) + 1))
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= jC(T2)nC(T1)j � bS(T1) + jV(T1)j
X

C22C(T2)nC(T1)

jC2j

- 2
X

x2L(T1)

jfC2 2 C(T2)nC(T1) : x 2 C2gj(dT1
(x) + 1)

= (jV(T2)j - jC(T1) \ C(T2)j)bS(T1) + jV(T1)j � bS(T2) - jV(T1)j
X

C2C(T1)\C(T2)

jCj

- 2
X

x2L(T1)\ L(T2)

(jfC2 2 C(T2) : x 2 C2gj - jfC 2 C(T1) \ C(T2) : x 2 Cgj)(dT1
(x) + 1)

= (jV(T2)j - jC(T1) \ C(T2)j)bS(T1) + jV(T1)j � bS(T2) - jV(T1)j
X

C2C(T1)\C(T2)

jCj

- 2
X

x2L(T1)\L(T2)

(dT1
(x) + 1)(dT2

(x) + 1)

+ 2
X

x2L(T1)\ L(T2)

jfC 2 C(T1) \ C(T2) : x 2 Cgj(dT1
(x) + 1)

,

3.3. Computation in linear time

Let T1 and T2 be phylogenetic trees, let m = jL(T1)j, and let n = jL(T1) [ L(T2)j. The cluster represen-

tation of T1 and T2 can be obtained during a postorder traversal of the trees (Llabrés et al., 2020, x2.2).

With a sorted list representation of the clusters, which uses O(n2) space and can be obtained in O(n2) time

by radix sorting (Davis, 1992), and based on the idea behind the merge algorithm (Mehlhorn and Sanders,

2016, x5.2) of the simultaneous traversal of two sorted lists or arrays, the union and the symmetric difference

of two clusters can be computed in O(n) time and thus, the GRF distance can be computed in O(n3) time using

O(n2) space by a direct implementation of the formula in Definition 1. See Llabrés et al. (2020) for details.

With a bit-vector representation of the clusters, which uses O(n lg n) space and can be obtained in

O(n lg n) time, the GRF distance can be computed in O(n2 lg n) time using O(n lg n) space by a direct

implementation of the formula in Definition 1, where the union and the symmetric difference of two

clusters are implemented by the OR and the XOR of the corresponding bit-vectors, respectively.

However, both the cluster representation of the trees and the intersection of the sets of clusters of the

trees can be computed in O(n) time with the algorithm of Day (1985), even if the trees have overlapping

taxa, that is, when m 6¼ n. Then, it follows from Corollary 1 that the GRF distance can actually be

computed in O(n) time.

Lemma 3. Let T1 and T2 be phylogenetic trees, and let n = jL(T1) [ L(T2)j. Then, GRF(T1‚ T2) can be

computed in O(n) time.

Proof. Let T1 and T2 be phylogenetic trees, let m = jL(T1)j, let n = jL(T1) [ L(T2)j, let k = jL(T1) \ L(T2)j,
and assume, without loss of generality, that L(T1) = f1‚ . . . ‚ mg, and that L(T2) = f1‚ . . . ‚ k‚ m + 1‚ . . . ‚ ng.
During a postorder traversal of T1, both bS(T1) and (dT1

(x) : x 2 L(T1)) can be computed in O(m) time and,

during a postorder traversal of T2, both bS(T2) and (dT2
(y) : y 2 L(T2)) can be computed in O(n) time. On the

other hand, C(T1), C(T2), and C(T1) \ C(T2) can be computed in O(n) time, using the algorithm of Day

(1985) and thus, both jC(T1) \ C(T2)j and
P

C2C(T1)\C(T2) jCj, and also
Pk

i = 1 (dT1
(i) + 1)(dT2

(i) + 1), can

be computed in O(n) time. Now, H = C(T1) \ C(T2) are the sets of clusters of a phylogenetic tree on

f1‚ . . . ‚ mg with O(m) nodes and, therefore, (dH(1)‚ . . . ‚ dH(m)) can be computed in O(m) time. Then,P
x2L(T1)\L(T2) jfC 2 C(T1) \ C(T2) : x 2 Cgj(dT1

(x) + 1) =
Pm

i = 1 (dH(i) + 1)(dT1
(i) + 1), which shows that

this sum can be computed in O(m) time. Then, by Corollary 1, GRF(T1‚ T2) can be computed in O(n)

time. ,

4. EXPERIMENTAL RESULTS

To study the resolution of the GRF distance and to compare it with the RF distance, we have performed a

series of experiments on phylogenetic trees.
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First of all, we have generated the 3 binary phylogenetic trees with 3 labeled leaves, the 15 binary

phylogenetic trees with 4 labeled leaves, the 105 binary phylogenetic trees with 5 labeled leaves, and the

945 binary phylogenetic trees with 6 labeled leaves, using the algorithm described in Valiente (2009,

x5.3.3), as implemented in Bio::Phylo (Cardona et al., 2008b; Vos et al., 2011).

Further, we have also generated 10,000 pairs of random binary phylogenetic trees with n labeled leaves,

for n = 4‚ 6‚ 8‚ . . . ‚ 100, using the algorithm of Quiroz (1989) to obtain Prüfer codes for random uniform

phylogenetic trees and decoding them by using the algorithm of Caminiti et al. (2007).

Then, we computed both the RF distance and the GRF distance for every generated pair of phylogenetic

trees.

4.1. Resolution of the metric

The resolution of a distance between phylogenetic trees on a set of labels is the number of different

values taken by the distance upon all pairs of phylogenetic trees on that set of labels. When divided by the

number of phylogenetic trees on that set of labels, it is the recognition ratio defined by Shao and Sokal

(1986) for consensus indices between phylogenetic tree shapes.

We have computed the RF distance and the GRF distance between each pair of binary phylogenetic trees

with the same number n = 3‚ 4‚ 5‚ 6 of labeled leaves, and also for a random uniform sample of 10,000 pairs

of binary phylogenetic trees with n = 4‚ 6‚ 8‚ . . . ‚ 100 labeled leaves.

The resolution of the RF distance on binary phylogenetic trees with n73 labeled leaves is n - 1, even

when normalized to the unit interval. The GRF distance, on the other hand, has a much higher resolution.

As a matter of fact, there are Y(n2) different values for the GRF distance on binary phylogenetic trees with

n76 labeled leaves. Table 1 shows the number of different values for the GRF distance on all pairs of

binary phylogenetic trees with n = 3‚ 4‚ 5‚ 6 labeled leaves, and on a random uniform sample of 10,000 pairs

of binary phylogenetic trees with n = 4‚ 6‚ . . . ‚ 100 labeled leaves.

Table 1 also shows the number of different values for two previous generalizations of the RF distance

based on matching, the b distance of Boorman and Olivier (1973), and the CD of Shuguang and Zhihui

(2015). Although their resolution is slightly better than the resolution of the RF distance, there are still only

Y(n) different values for these previous generalizations of the RF distance on binary phylogenetic trees

with n labeled leaves.

4.2. Refinement of the RF distance

In this second test, we wanted to determine whether the GRF distance is a refinement of the RF distance.

Hence, we first checked whether any triplet of phylogenetic trees, such that two of them are at the same

GRF distance of the third one, is also at the same RF distance of the third one. We shall call GRF-

equidistant triplets and RF-equidistant triplets those triplets of phylogenetic trees such that two of them are

at the same GRF distance and RF distance of the third one, respectively. Thus, for all triplets of binary

phylogenetic trees with n = 3‚ 4‚ 5‚ 6 labeled leaves, and for a random uniform sample of 10,000 triplets

of binary phylogenetic trees with n = 4‚ 6‚ 8‚ . . . ‚ 100 labeled leaves, we computed the ratio of GRF-

equidistant triplets to RF-equidistant triplets. That is, the number of GRF-equidistant triplets that are not

RF-equidistant over the number of GRF-equidistant triplets, and the number of RF-equidistant triplets that

are not GRF-equidistant over the number of RF-equidistant triplets.

As shown in Table 2, the first ratio (i.e., the number of GRF-equidistant triplets that are not RF-

equidistant over the number of GRF-equidistant triplets) quickly converges to one as the number of labeled

leaves increases, meaning that almost none of the GRF-equidistant triplets are RF-equidistant. This result

reinforces the statement in the previous section that the GRF distance has a much higher resolution than the

RF distance. On the other hand, the second ratio (i.e., the number of RF-equidistant triplets that are not

GRF-equidistant over the number of RF-equidistant triplets) turned out to be zero except for phylogenetic

trees with 6 leaves. Indeed, in the example given next, we show a triplet of phylogenetic trees with 6 leaves

that is a GRF-equidistant triplet but it is not RF-equidistant. This means that the GRF distance is not a

refinement of the RF distance. However, we can also observe in Table 2 that almost all the RF-equidistant

triplets are GRF-equidistant as well.

Example 3. The triplet of phylogenetic trees T1‚ T2‚ T3 with 6 labeled leaves shown in Figure 4 has

clusters C(T1) = ff1g‚ f1‚ 2‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 4‚ 5‚ 6g‚ f1‚ 5‚ 6g‚ f1‚ 6g‚ f2g‚ f3g‚ f4g‚
f5g‚ f6gg, C(T2) = ff1g‚ f1‚ 2‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 3‚ 4‚ 5g‚ f1‚ 4g‚ f1‚ 4‚ 5g‚ f2g‚ f2‚ 6g‚ f3g‚ f4g‚
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Table 1. Number of Different Values Taken by the b Distance, the Cluster Dissimilarity,

and the Generalized Robinson-Foulds Distance, on All Pairs of Binary Phylogenetic

Trees with n = 3‚ 4‚ 5‚ 6 Labeled Leaves (a) and for a Random Uniform Sample of 10,000

Pairs of Binary Phylogenetic Trees with n = 4‚ 6‚ 8‚ . . . ‚ 100 Labeled Leaves (b)

(a) n

No. of values

b CD GRF

3 2 2 2

4 5 3 9

5 9 7 32

6 15 11 142

(b) n

No. of values

b CD GRF

4 5 3 9

6 15 11 140

8 28 22 475

10 36 33 828

12 44 45 1245

14 57 56 1956

16 62 65 2458

18 76 80 3504

20 87 92 4114

22 101 100 5111

24 115 117 5711

26 129 134 6447

28 139 141 6882

30 158 162 7360

32 180 177 7702

34 192 195 8072

36 209 216 8276

38 228 230 8641

40 247 248 8708

42 268 264 8911

44 294 282 8980

46 303 312 9137

48 319 336 9256

50 350 354 9320

52 369 375 9365

54 384 402 9429

56 403 427 9480

58 425 456 9515

60 437 469 9605

62 470 492 9638

64 485 510 9614

66 523 547 9670

68 550 575 9689

70 559 609 9760

72 588 625 9738

74 623 665 9791

76 627 669 9785

78 671 690 9803

80 689 742 9809

82 699 762 9844

84 723 770 9802

86 745 805 9841

(continued)
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f5g‚ f6gg, and C(T3) = ff1g‚ f1‚ 2‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 6g‚ f2g‚ f2‚ 3g‚ f2‚ 3‚ 4‚ 5g‚ f2‚ 3‚ 5g‚ f3g‚
f4g‚ f5g‚ f6gg. Then, C(T1)nC(T2) = ff1‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 4‚ 5‚ 6g‚ f1‚ 5‚ 6g‚ f1‚ 6gg, C(T2)nC(T1) =
ff1‚ 3‚ 4‚ 5g‚ f1‚ 4g‚ f1‚ 4‚ 5g‚ f2‚ 6gg, jC(T1)� C(T2)j = 8, jC(T1) [ C(T2)j = 15, and RF(T1‚ T2) =
8=15. On the other hand, C(T1)nC(T3) = ff1‚ 3‚ 4‚ 5‚ 6g‚ f1‚ 4‚ 5‚ 6g‚ f1‚ 5‚ 6gg, C(T3)nC(T1) = ff2‚ 3g‚
f2‚ 3‚ 4‚ 5g‚ f2‚ 3‚ 5gg, jC(T1)� C(T3)j = 6, jC(T1) [ C(T3)j = 14, and RF(T1‚ T3) = 3=7. However,

GRF(T1‚ T2) = GRF(T1‚ T3) = 17=11. In fact,

Table 1. (Continued)

(b) n

No. of values

b CD GRF

88 774 836 9850

90 792 857 9869

92 825 897 9888

94 865 946 9895

96 865 959 9900

98 890 994 9894

100 940 1,009 9903

CD, cluster dissimilarity; GRF, generalized Robinson-Foulds.

Table 2. Ratio of Generalized Robinson-Foulds-Equidistant Triplets to Robinson-Foulds-

Equidistant Triplets and Vice Versa, for All the Triplets of Binary Phylogenetic Trees

with n = 3‚ 4‚ 5‚ 6 Labeled Leaves (a) and for a Random Uniform Sample of 10,000 Triplets of

Binary Phylogenetic Trees with n = 4‚ 6‚ 8‚ . . . ‚ 100 Labeled Leaves (b)

(a) n GRF vs. RF RF vs. GRF

3 0.000000 0.000000

4 0.697417 0.000000

5 0.801518 0.000000

5 0.957795 0.000228

(b) n GRF vs. RF RF vs. GRF

4 0.616926 0.000000

6 0.950519 0.000000

8 0.990442 0.000157

10 0.994981 0.000000

12 0.997874 0.000000

14 0.998600 0.000000

16 0.998787 0.000000

18 0.999864 0.000000

20 1.000000 0.000000

22 0.999733 0.000000

24 0.999606 0.000000

26 0.999474 0.000000

28 1.000000 0.000000

30 0.999868 0.000000

32 1.000000 0.000000

34 1.000000 0.000000

36 1.000000 0.000000

38 0.999870 0.000000

40 1.000000 0.000000

42 0.999871 0.000000

44 1.000000 0.000000

46 1.000000 0.000000

� � � 1.000000 0.000000

100 1.000000 0.000000
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GRF(T1‚ T2) =
123

15 � 11
+

132

15 � 11
=

17

11
=

119

14 � 11
+

119

14 � 11
= GRF(T1‚ T3) :

5. DISCUSSION

Even though the RF distance is the most widely used distance for phylogenetic trees with no repeated

labels, it has some drawbacks. First, it is only defined for pairs of trees on the same set of taxa. Second, it

counts how many clades are shared by a pair of trees but, for the non-shared clades, it does not take into

account how similar they are and, consequently, it has a very low resolution. In contrast to the RF distance,

the GRF distance studied in this article happens to solve these shortcomings while keeping the advantages of

the former one. First of all, the GRF distance allows for the comparison of any structures that can be

described by multisets of multisets of labels. Thus, in the phylogenetic trees setting, phylogenetic trees are not

restricted to be defined on the same set of taxa. In addition, for every pair of phylogenetic trees, it considers

their shared clades but also, for the non-shared ones, it considers their dissimilarity, thus producing a distance

with a high resolution. When restricted to phylogenetic trees on the same set of taxa, the tests presented in this

study to compare both distances show that the GRF distance is nearly a refinement of the RF distance and it

has a much higher resolution. As it is the case of the RF distance, the GRF distance can be computed in linear

time and keeps the advantage of being intuitive, with a natural interpretation in terms of common splits.

Our current agenda involves the analysis of the topological behavior of the GRF distance, such as the

metric diameter, that is, those phylogenetic trees at the maximum distance, the phylogenetic trees at mini-

mum distance as well as the effect of elementary edit operations such as contracting an edge or removing a

leaf, and rearrangement operations such as nearest-neighbor interchange, subtree pruning and regrafting,

and tree bisection and reconnection (Allen and Steel, 2001) on the distance.
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