
Supplementary material

Serotonergic psychedelics rapidly modulate evoked glutamate release in cultured cortical neurons

Aneta Petrušková^{1,2,3}, Debarpan Guhathakurta¹, Enes Yağız Akdaş¹, Bartomeu Perelló-Amorós⁴, Renato Frischknecht⁴, Eva-Maria Weiss¹, Tomáš Páleníček^{2,3}, Anna Fejtová^{1#}

⁴ Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Gene	Ct value	Gene	Ct value
Htr1a	26.75±0.25	Htr3b	33.38±0.32
Htr1b	28.62±0.25	Htr4	27.71±0.42
Htr1d	27.69±0.19	Htr5a	25.89±0.22
Htr1f	26.22±0.31	Htr5b	32.74±0.38
Htr2a	33.49±0.21	Htr6	33.49±0.43
Htr2b	32.34±0.28	Htr7	25.34±0.12
Htr2c	24.82±0.21	Actb	17.49±0.05
Htr3a	30.37±0.11	Gapdh	16.51±0.28

Fig. S1 Expressional mapping of 5-HT receptor subtypes in rat cortical cultures. a qRT-PCR were resolved on agarose gel electrophoresis to validate expression of 5-HT receptor subtypes. The presence of distinct bands of predicted size (as compared to the DNA ladder) confirms the specificity of amplification. b Table shows the respective Ct values for all tested genes. Ct values<35 demonstrate the expression level of gene targets, which is positive for all 5-HT receptor subtypes. Red captions indicate genes with moderate expression (Ct < 30), while blue captions indicate lower expression of target genes (Ct > 30). Black captions of genes indicate the reference genes used in the qRT-PCR analysis. Values are given as mean \pm SEM.

¹ Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

² National Institute of Mental Health, Klecany, Czech Republic

³ Third Faculty of Medicine, Charles University, Prague, Czech Republic

Supplementary methods for qRT-PCR

250 000 rat cortical neurons were seeded onto poly-L-lysin coated 12-well plate (isolation and seeding according to main methods). After 21 days of cultivation, RNA extraction was carried out using the Nucleospin RNA isolation kit (MN #740955.250, Germany) including a DNAse treatment step following the manufacturer's guidelines. 100 ng total RNA was reverse transcribed to synthesize complementary DNA (cDNA) using LunaScript® RT SuperMix Kit (NEB, #E3010, USA) according to manufacturer's protocol. For the subsequent quantitative reverse transcription PCR (qRT-PCR) analysis, approximately 0.5 ng of RNA-containing cDNA, 0.4 μM final concentration of each primer, and Luna® Universal qPCR Master Mix (NEB, #M3003, USA) were mixed. The qPCR cycling conditions involved an initial denaturation step at 95°C for 1 minute followed by 45 cycles consisting of a 10-second denaturation at 95°C, a 20-second annealing step at 60°C, and a 30-second elongation at 68°C. All primers except *Htr1a* and *Htr1f* contain an exon/exon junction site. After amplification step, melting curves were plotted. Ct values were directly obtained using Light Cycler 480 II software. Following the qRT-PCR, the PCR amplicons were subjected to validation through electrophoresis on a 2% agarose gel.

Table S1 Primer sequences used in qRT-PCR together with their predicted amplicon size.

Gene name	Primer sequences	Amplicon length	
Htr1a	CTAGCATCTCCGACGTGACC	288	
	AGGTGCAGCACAGTACATCC		
Htr1b	AAGTCTGTGGCAGCGACTAA	157	
	CTTCTCAGGTTCCCTTGTCC		
Htr1d	AGCTCAGCGGGGTCGTG	197	
	GACAAAACATTCCAGTTACCAAGACTC		
Htr1f	CCTGGCCTTGATGACAACCA	261	
	AACGCTATAGCCGACAGGTG		
Htr2a	TTTGAGAGGGGCTCTCTGGT	294	
	AAGGCCACCGGTACCATTC		
Htr2b	GGTGGCTGATTTGCTGGTTG	277	
	TGGGATGCCTATTG		
Htr2c	TGGTCTTCGTCCGCTTAGAA	378	
	GGTAATAGTTGACAACCCGCT		
Htr3a	GCACTCCCTCATTGGTGTC	264	
	GGTTTCCCATGGCTGGAAGA		
Htr3b	TGTGGTACCGAGAGGTTTGG	183	
	TCGTTCCGGAAGAGTTCACG		
Htr4	CTCTGGCACAGACACCTCAG	376	
	CACAGGACCCTGGGCAC		
Htr5a	CATACCTGAAGCTGTGGAGGTGA	271	
	GGAGTTGGAATAGCCCAGCC		
Htr5b	CCACCTGCGGAGCTTTCTAC	140	
	TGCTTCCTTTGCCTGCGTG		
Htr6	CCAACATAGCTCAGGCCGT	121	
	AAGTCCCGCATAAAGAGCGG		
Htr7	ATGTCTGTGGCTGGGCTATG	217	
	CACAGTGGTCAGAGTTTTGTCTTA		
Actb	CTTCGAGCAAGAGATGGCCA	413	
	GCTTGCTGATCCACATCTGC		
Gapdh	GACCCCTTCATTGACCTCAACT	396	
,	GTCATGGATGACCTTGGCCA		