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ABSTRACT Antifungal prophylaxis is recommended to prevent invasive fungal dis-
ease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii in patients at
risk for opportunistic infections, such as allogeneic blood or marrow transplant recipi-
ents, patients with hematological disease undergoing chemotherapy, or patients on
immunosuppressive therapies. Current approaches to antifungal prophylaxis require
multiple agents to cover these key fungi. Rezafungin, a novel echinocandin designed
for next-generation properties (e.g., greater stability and long-acting pharmacokinetics
for once-weekly dosing), has demonstrated in vitro activity against Candida and
Aspergillus spp. and efficacy against Pneumocystis spp. biofilms. Rezafungin was eval-
uated in in vivo studies of prophylactic efficacy using immunosuppressed mouse mod-
els of invasive candidiasis, aspergillosis, and Pneumocystis pneumonia. Rezafungin
reduction of Candida CFU burden was generally greater with increasing drug concen-
trations (5, 10, or 20mg/kg) and when rezafungin was administered closer to the time
of fungal challenge (day 21, 23, or 25). Similarly, in the aspergillosis model, survival
rates increased with drug concentrations and when rezafungin was administered
closer to the time of fungal challenge. Against Pneumocystis murina, rezafungin signifi-
cantly reduced trophic nuclei and asci counts at all doses tested. Rezafungin pre-
vented infection at the two higher doses compared to vehicle and had comparable
activity to the active control trimethoprim-sulfamethoxazole at human equivalent
doses for prevention. These findings support phase 3 development of rezafungin and
the potential for single-agent prophylaxis against invasive fungal disease caused by
Candida spp., Aspergillus spp., and Pneumocystis jirovecii.
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Antifungal prophylaxis is an important strategy against invasive fungal disease (IFD)
in patients at risk for opportunistic infections, such as recipients of allogeneic

blood or marrow transplantation or solid organ transplantation, as well as patients
with hematological disorders undergoing chemotherapy (1–6). For such patient popu-
lations, antifungal prophylaxis is recommended to prevent infections caused by
Candida spp., Aspergillus spp., and Pneumocystis jirovecii (7–9). An ideal antifungal pro-
phylaxis regimen would provide fitting coverage of the most prevalent opportunistic
pathogens without obstructing or complicating therapy due to toxicity, intolerability,
or drug-drug interactions (DDIs).

While recommendations and clinical trial data are available to guide antifungal pro-
phylaxis (7, 10–14), there is no single approach as prophylaxis must be customized to
the needs of a given patient, as well as local fungal epidemiology and susceptibility.
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Current strategies to protect against these most commonly encountered pathogens
generally enlist an azole (one with mold activity if there is risk of Aspergillus) and trime-
thoprim-sulfamethoxazole (SXT) for Pneumocystis jirovecii pneumonia (PCP) (7, 9, 10).
Considerations when personalizing azole therapy include pharmacokinetic variability,
oral tolerability, and safety (such as liver toxicity and effects on the QT interval), as well
as DDIs (15, 16). For SXT, personalizing therapy may include modifications to antifungal
prophylaxis and/or primary treatment to mitigate SXT-associated fever, rash resem-
bling GVHD, nephrotoxicity, or myelosuppression (8). Unmet needs in the current
approach to antifungal prophylaxis may lead to gaps in protection against IFD or com-
plications in treatment of primary disease, such as when dosing is disrupted or when
adverse effects (AEs) and DDIs occur.

With the advent of newer therapies for treatment of primary disease, many of which
introduce new or increased risks of IFD and DDIs with antifungal agents, patient-level
considerations have expanded in scope and complexity. Recent examples include the
increased incidence of PCP observed with Bruton’s tyrosine kinase inhibitors (ibrutinib
and acalabrutinib) and IFD associated with immune checkpoint inhibitors (17–21).
Arguably, the greatest impact of newer treatments on antifungal prophylaxis may be
from DDIs caused by CYP interactions or other mechanisms that may contraindicate
concomitant use (16, 22). The AEs of newer treatments or their management with corti-
costeroids or other immunosuppressants may also increase infection risk (23–26).
Additional experience with newer treatments will help to guide antifungal prophylaxis
management. At the same time, newer antifungal options and strategies are needed
to support the continuous advancements in treatment of hematologic diseases and in
immunosuppressive therapies.

Rezafungin is a novel echinocandin in development for the treatment and preven-
tion of invasive candidiasis, with a phase 3 treatment trial (ReSTORE NCT03667690)
and a phase 3 prophylaxis trial (ReSPECT NCT04368559) under way. While the current
approach to antifungal prophylaxis requires multiple agents to cover the key target
pathogens, rezafungin has demonstrated in vitro activity against Candida and
Aspergillus species, including azole-resistant strains of Aspergillus fumigatus, as well
as efficacy against Pneumocystis biofilms (27–34). Rezafungin is distinguished by a
long half-life and front-loaded, high plasma drug exposures that allow for the once-
weekly intravenous dosing regimen in clinical development. Rezafungin adminis-
tered once weekly has demonstrated safety and tolerability consistent with that of its
echinocandin class. Preclinical evaluation demonstrated rezafungin chemical and
metabolic stability and lack of hepatotoxicity, in contrast to anidulafungin (35, 36).
Phase 1 trials of rezafungin showed a lack of effect on the QT interval and low risk of
DDIs with commonly used drugs (37, 38). To further contribute to these data, this se-
ries of in vivo studies evaluated the efficacy of rezafungin in prophylactic mouse
models of invasive fungal infections caused by Candida, Aspergillus, and Pneumocystis
in immunosuppressed mice.

(Data from these studies were preliminarily presented at the 2017 European
Hematology Association meeting [Madrid, Spain].)

RESULTS
Prevention of Candida infection. Rezafungin prophylaxis in an immunosup-

pressed mouse model of invasive candidiasis demonstrated decreases in the Candida
CFU burden, an effect that increased with rezafungin concentrations and when pro-
phylaxis administration occurred closer to challenge (day 21 . day 23 . day 25; Fig.
1). C. albicans was completely cleared in all animals given rezafungin 20mg/kg, except
for one animal that had prophylaxis administered on day 23. At the lower doses (10
and 5mg/kg), bioburden reduction when prophylaxis was administered on day 25
(similar to day 215 for humans as described in Materials and Methods) was not signifi-
cantly different than vehicle. However, when prophylaxis administration occurred
closer to challenge, on day 23 or day 21, the 10-mg/kg rezafungin groups had no
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measurable CFU, and the 5-mg/kg groups showed significantly lower fungal burden
than did the vehicle control, indicating a dose response as well as correlation with tim-
ing of prophylaxis administration (day21. day23. day 25).

Prevention of Aspergillus infection. Rezafungin prophylaxis against A. fumigatus
in the immunosuppressed mouse model of invasive aspergillosis demonstrated protec-
tion at doses of 10 and 20mg/kg, with all animals in these groups surviving the 14-day
postchallenge period regardless of when prophylaxis was administered (Fig. 2, right).
In the group given the lowest dose tested (rezafungin 5mg/kg), survival increased
when prophylaxis administration occurred closer to challenge (day 21 . day 23 .

day25; Fig. 2, left).
Prevention of PCP. Rezafungin prophylaxis in the immunosuppressed mouse

model of PCP demonstrated significantly reduced trophic nuclei counts in all rezafun-
gin-treated groups compared to the vehicle control, except at the lowest and least fre-
quently administered dose (0.2mg/kg 1�/week). Three of the rezafungin groups—
both 20-mg/kg regimens (20mg/kg 1� or 3�/week) and the 2-mg/kg regimen (3�/
week)—were comparable to the active control SXT, with no trophic nuclei microscopi-
cally detected (Fig. 3a). Similarly, asci counts in all rezafungin-treated groups were sig-
nificantly reduced compared to the vehicle control. The efficacy observed in all but the
0.2-mg/kg 1�/week dose group was comparable to that of SXT, with no asci micro-
scopically detected (Fig. 3b).

DISCUSSION

In this series of in vivo experiments, the novel echinocandin rezafungin was effica-
cious in preventing infection caused by Candida, Aspergillus, and Pneumocystis in
immunosuppressed mice. Although the interpretation of these findings is limited to
the extent that preclinical research may translate to clinical experience, the clinical effi-
cacy demonstrated by currently available, once-daily echinocandins against all three of
the fungal pathogens studied supports the predictive value of these in vivo data. The

FIG 2 Survival rates in mice challenged with Aspergillus (A. fumigatus, MEC= 0.0078mg/ml) after administration of
rezafungin prophylaxis. (Left) 5mg/kg; (right) 10 or 20mg/kg. P , 0.05 for all dosing arms, except for 5mg/kg, day –5
(P = 0.182).

FIG 1 Clearance and significant decreases in kidney CFU burden of Candida (C. albicans,
MIC = 0.03mg/ml) in mice after administration of rezafungin prophylaxis.
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role of preclinical models notwithstanding, these results contribute to the develop-
ment of rezafungin and the future of antifungal prophylaxis for patients at risk for IFD.
To our knowledge, rezafungin is the first echinocandin to report prophylactic efficacy
against Pneumocystis, as well as against Candida and Aspergillus.

Safe and efficacious antifungal prophylaxis is important and yet increasingly chal-
lenging to provide in a growing number of immunosuppressed conditions and patient
populations at risk of developing IFD. The current mainstays of prophylaxis against
these key pathogens (azoles and SXT) are generally efficacious but limited by DDIs
and/or toxicity that can impede prophylaxis, as well as the treatment of primary dis-
ease (39, 40). Alternative therapies for prophylaxis are lacking. Pentamidine, dapsone,
and atovaquone, as options for PCP prophylaxis, each have tolerability issues, limita-
tions in efficacy, or administration challenges in the case of inhaled pentamidine (41).
Liposomal amphotericin B at intermittent or low doses has been used for prophylaxis
of Candida and Aspergillus but is hampered by a side-effect profile that includes neph-
rotoxicity and electrolyte abnormalities. In contrast, the relative tolerability and lack of
DDIs with echinocandins present an attractive safety profile (41, 42). While all three
echinocandins have been studied in various patient populations (13, 43–48), only mica-
fungin is indicated for use as antifungal prophylaxis, specifically, of Candida infections
in adult and pediatric patients undergoing hematopoietic stem cell transplantation
(12, 49, 50). In a retrospective study in patients with hematological disease who
received antifungal prophylaxis, micafungin was selected in 26% of 104 cases for
safety- or tolerability-related reasons (e.g., liver dysfunctions, severe mucositis, DDIs of
other antifungals, and long QT syndrome) (51). The safety of rezafungin is consistent
with that of the echinocandin class, as observed in the phase 2 STRIVE trial of once-
weekly rezafungin compared to caspofungin in the treatment of candidemia and inva-
sive candidiasis (35, 52) and in phase 1 trials that confirmed rezafungin lack of effect
on the QT interval and low DDI potential (37, 38).

The efficacy findings reported here also underscore the distinctive pharmacoki-
netics of rezafungin. Its long half-life and front-loaded drug exposure allow for once-
weekly dosing of rezafungin, as studied in the completed phase 2 and ongoing phase
3 clinical trials. Furthermore, rezafungin demonstrates extensive distribution and tissue
penetration, as shown by Zhao et al. (53), who observed 4-fold-higher rezafungin con-
centrations within lesions than for micafungin at the same dosage in a mouse intra-ab-
dominal abscess model. Rezafungin is distributed to lung epithelial lining fluid and has
demonstrated high in vivo exposures in the lung and other organs commonly infected
by IFD, ;4-fold higher than in plasma (54–56). These pharmacokinetics, together with
the in vivo efficacy of rezafungin demonstrated here, suggest a potential to replace

FIG 3 Clearance and significant decreases in kidney burden of Pneumocystis (P. murina; both trophic [a] and asci [b]
forms) in mice after administration of rezafungin prophylaxis compared to active control SXT. *, P , 0.05 versus the
control. The limit of microscopic observation on this scale is log10 of 4 (the value indicating that no nuclei or asci
were observed).
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poorly tolerated combination regimens for prophylaxis in patients at risk for IFD, many
of whom are burdened by polypharmacy and increasingly longer periods of infection
risk.

The current set of in vivo studies on rezafungin contribute important findings to the
published literature on this novel echinocandin and on approaches to antifungal pro-
phylaxis. The efficacy of rezafungin in preventing infections caused by Candida,
Aspergillus, and Pneumocystis in immunosuppressed mice demonstrate the potential of
rezafungin as prophylaxis for patients at high risk of infection and support its ongoing
clinical development.

MATERIALS ANDMETHODS
These studies were performed in accordance with the Guide for the Care and Use of Laboratory

Animals, 8th ed. (National Academies Press, Washington, DC), in AAALAC-accredited ABSL-2 laboratories
(with the exception of P. murina-infected mice) under the supervision of veterinarians. In addition, all
procedures were conducted in compliance with the Institutional Animal Care and Use Committee at the
respective sites.

Test agents were supplied by Cidara Therapeutics, Inc. (San Diego, CA), except for SXT (Sulfatrim H
pediatric oral suspension; Actavis, Baltimore, MD), and amphotericin B (Sigma), which were purchased.

Invasive candidiasis prophylaxis mouse model. Female ICR mice (Envigo Laboratories) weighing
;0.02 kg were immunosuppressed using two intraperitoneal (i.p.) injections of cyclophosphamide, with
a first injection of 150mg/kg administered 4 days before challenge (day 24) with Candida albicans
(American Type Culture Collection [ATCC] SC5314; Manassas, VA; 4.5 log10 CFU/mouse intravenous [i.v.])
and a second injection of 100mg/kg administered 1 day before challenge (day 21). Prior to C. albicans
challenge, mice (n= 5/group; 9 groups) were treated with one subcutaneous (s.c.) dose of either rezafun-
gin 5, 10, or 20mg/kg on either day 25 (which is similar to day 215 for humans, based on a 2- to 3-fold
faster clearance in mice), day 23, or day 21. In three additional groups, mice were given either rezafun-
gin at 5mg/kg s.c., micafungin at 5mg/kg i.p., or s.c. vehicle control on day 0 administered immediately
following C. albicans challenge. Treated mice were sacrificed at 24 h postchallenge, and the kidneys
were harvested for bioburden enumeration (CFU/g of tissue).

Invasive aspergillosis prophylaxis mouse model. Female ICR mice (BioLasco Taiwan/Charles River)
weighing ;0.02 kg were immunosuppressed using three i.p. injections of cyclophosphamide, with the
first injection (6mg/mouse) administered 3 days before challenge (day –3) with Aspergillus fumigatus
(ATCC 13073; Rockville, MD; 1.85� 104 CFU/mouse i.v.) and the second and third injections (2mg/
mouse) administered 1 day before (day –1) and 4 days after (day 4) challenge. Prior to A. fumigatus chal-
lenge, mice (n= 6/group; 9 groups) were treated with one s.c. rezafungin dose of either 5, 10, or 20mg/
kg on either day 25 (similar to day 215 for humans as noted above, day 23, or day 21. In two addi-
tional groups, mice were given either rezafungin at 5mg/kg s.c. or amphotericin B at 3mg/kg i.p. on day
0 administered 1 h after challenge with A. fumigatus. Mortality was observed for 14 days.

PCP prophylaxis mouse model.Male C3H/H3N mice (Charles River) weighing ;0.02 kg were immu-
nosuppressed using dexamethasone (4mg/liter) added to drinking water acidified with sulfuric acid
(1ml/liter) to prevent secondary microbial infections. Prophylaxis was administered at the same time as
inoculation with Pneumocystis murina (Cincinnati VAMC Veterinary Medical Unit, Cincinnati, OH; 2� 106/
50 ml intranasally), the standard for this Pneumocystis infection model, given the slower growth of
Pneumocystis relative to other fungi. Eight groups of mice (n=10/group) received either negative control
(control steroid, no treatment), positive control (SXT at 50/250mg/kg 3�/week i.p.), or rezafungin (0.2, 2,
or 20mg/kg i.p. 1� or 3�/week) for 6weeks. Mice were sacrificed after 6weeks, and the lungs were pre-
pared for fungal count measurement (CFU/g of tissue) of both trophic and asci (cyst) forms by rapid
Wright-Giemsa and cresyl echt violet stains, respectively (57).

Statistical analysis. Statistical analyses were conducted according to the respective study protocols
as follows. In the study of invasive candidiasis, CFU counts for each mouse were log transformed, and P
values were calculated in Microsoft Excel by using a two-sample Student t test assuming unequal var-
iance with comparisons made between treatment groups and the 24-h vehicle control group. In the
study of invasive aspergillosis, a Fisher exact test (two tailed) was conducted on the survival curves. In
the study of Pneumocystis prophylaxis, nuclei and asci counts for each lung were log transformed and
analyzed by analysis of variance. Individual groups were compared by using Dunn’s test for multiple
comparisons (GraphPad Prism, v6).
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