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Abstract: This work is one of our efforts to discover potent anticancer agents. We modified the
most promising derivative of our previous work concerned with the development of VEGFR-2
inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and
evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma
(HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated
against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more
potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM
against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30,
and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2
inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition,
compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against
experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-
2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d
showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it
exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone
(93.15%). The molecular docking studies showed that the binding pattern of the new compounds to
VEGFR-2 kinase was similar to that of sorafenib.

Keywords: anticancer; benzoxazole; molecular modeling; VEGFR-2 kinase

1. Introduction

Cancer is a life-threatening disease that has been identified as a significant global
cause of death, it caused nearly 10 million deaths in the year of 2020 [1]. Many accredited
reports have confirmed that lung cancer, colorectal cancer, liver cancer, and breast cancer
are the leading causes of cancer death [2]. Globally, cancer’s incidence and death have
rapidly increased in the last decades [3]. Therefore, enormous efforts have been made to
combat cancer [4–8]. These facts clearly highlight the need for new anticancer drugs that
are more effective.

Nonselective chemotherapeutic agents are known to cause severe side effects [9].
Meanwhile, cancer cells differ from normal cells in their specific biochemical abnormal-
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ities [10]. The anticancer agents that have been designed to treat such abnormalities are
more likely to be potent and more selective.

A tyrosine kinase abnormality is one of the distinguishing features of cancer cells [11,12].
It was notified that cancer cells have relatively increased levels of vascular endothe-
lial growth factor receptor-2 (VEGFR-2) which has a fundamental role in cancer cell
growth [13–15]. This is accomplished by supplying cancer cells with new blood carry-
ing oxygen and nutrients (angiogenesis) [16–18]. Furthermore, overexpression of VEGFR-2
played an imperative role in the metastasis of solid tumors [19,20]. VEGFR-2 levels were
found to be rather high in breast [21], colorectal [22], hepatocellular [23], non-small cell
lung [24], and urothelialcarcinomas [25]. Accordingly, anticancer drugs that inhibit VEGFR-
2 such as sorafenib [26], regorafenib [27], pazopanib [28], sunitinib [29], tivozanib [30], and
lenvatinib [31], are selective and effective against many cancer types [32–36], (Figure 1).
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Figure 1. Some FDA approved VEGFR-2 inhibitors and their essential pharmacophoric features. Figure 1. Some FDA approved VEGFR-2 inhibitors and their essential pharmacophoric features.

The FDA has approved many VEGFR-2 inhibitors for use in the clinical management
of cancer. However, many complications were reported for such drugs [37–39]. In detail,
sorafenibexpressed sidee effects such as cardiotoxicity, thrombotic effects, diarrhea, renal
impairment and arterial hypertension [40,41]. In the meantime, hepatotoxicity, hand-foot
syndrome, GIT disturbance, fatigue, hypertension, decreased appetite, nausea, diarrhea,
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thrombocytopenia, proteinuria, and hyperparathyroidism were the most common adverse
effects of sunitinib, vatalinib, and tivazonib [42–45].

For many years, our team designed and synthesized many promising VEGFR-2 in-
hibitors. In 2020, compound VII (quinazolin-4(3H)-one derivative) was discovered exerting
promising activities against three different cancerous cell lines with good VEGFR-2 in-
hibitory activities. In addition, it induced malignant cell’s apoptosis and arrested their
growth at the G2/M phase. In vivo studies revealed that compound VII showed a signifi-
cant tumor growth inhibition effect [46]. In 2021, Some thieno [2,3-d]pyrimidine derivatives
were synthesized. Compounds VIII exhibited the highest cytotoxic activities against HCT-
116 and HepG2, with high activity against VEGFR-2 [47]. In the same year, a new series of
3-methylquinoxalin-2(1H)-one derived compounds were synthesized. Compounds IX [18],
and X [48], showed the most promising VEGFR-2 inhibitory effects. In addition, these
compounds showed good apoptotic induction levels through the elevation of caspase-3,
caspase-9, and BAX, in addition to the decrease of Bcl-2 levels. In 2022, compound XI, a ben-
zoxazole derivative, decreased the proliferation and the migration potential of HUVEC cells
with good VEGFR-2 inhibitory activity. Also, it inhibited the HepG2 cell’s growth at the
Pre-G1 phase and induced a significant apoptotic effect [49]. In the same year, compound
XII, a nicotinamide derivative, expressed the highest anti-proliferative activities against
HCT-116 and HepG2, with a potent VEGFR-2 inhibitory effect. The immunomodulatory
effect of such compound was assessed against TNF-α and IL-6. It showed a significant
decrease in TNF-α level [50], (Figure 2).

Figure 2. Some reported anti-proliferative VEGFR-2 inhibitors.
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This work is an extension of our previous work to discover new VEGFR-2 inhibitors,
especially that focused on the benzoxazole-based compounds carrying pharmacophoric
structural features of VEGFR-2 inhibitors [49]. We aimed to explore the potency of more
related derivatives to establish a more accurate structure–activity relationship, hoping to
develop more potent candidates.

Rationale of the Design

The new derivatives were mainly based on the four reported features of Type II VEGFR-
2 inhibitors [48,51,52]. The features comprise a head that fixes the ATP binding domain;
spacer; H-bond donor (HBD)/H-bond acceptor (HBA) that binds to the essential Glu885
and Asp1046 amino acid residues at the DFG domain; and hydrophobic moiety occupying
the hydrophobic allosteric site that appears just close to the ATP binding domain [53]. It
was reported that type II kinase inhibitors are characterized by stabilizing the inactive
conformation (DFG-out) of the enzyme by binding to the hydrophobic allosteric site [54].
Therefore, the strong interactions at the allosteric site may increase the stability of the
receptor–ligand complex. Consequently, we made further modifications to the allosteric
site-interacting terminal phenyl group of the benzoxazole derivatives examined in our
previous work [49]. The previously obtained results revealed that the 4-hydroxyphenyl
derivative presented in Figure 3 was the most potent candidate against the VEGFR-2
receptor, showing comparable results to sorafenib. Accordingly, it was selected to be a lead
compound for the current design (Figure 3). It can be seen that electron-donating (methyl)
and electron-withdrawing (nitro and acetyl) groups were designed at the 4-position of the
terminal phenyl ring. The three substituents also differ in the hydrophobicity and steric
effect. Furthermore, benzyl and phenethyl groups were constructed instead of phenyl to
see to what extent the allosteric pocket could interact firmly. In a recent related study, the
benzyl group was proved to accommodate the allosteric pocket, showing better results [55].

The anti-cancer potential of the obtained compounds was examined against three
human cancer cell lines. The most active candidates were evaluated against VEGFR-2
kinase activity. Then, the most promising member was selected for deep mechanistic
studies including apoptosis and cell cycle analyses. In addition, the effects of the most
active compounds on the levels of TNF-α and IL-6 were assessed. To reach a good insight
into the binding mode of the synthesized compounds against VEGFR-2. Also, a molecular
docking study was carried out.
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2. Results and Discussion
2.1. Chemistry

Schemes 1–3 illustrate the synthetic procedure of the target compounds 8a–m. at first,
the 2-aminophenol derivatives 1a–c were cyclized to give the key derivatives in this work
(2-mercapto-benzoxazoles 2a–c). The cyclization reactions were performed through the
reflux of the mixtures of 2-aminophenols, carbon disulfide, and potassium hydroxide in
methanol [56]. To facilitate the nucleophilic substitution reaction, the potassium salts of
2-mercapto-benzoxazoles 3a–c were prepared. These salts were formed through the reflux
of compounds 2a–c with alcoholic KOH solution (Scheme 1).
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In parallel, other key intermediates 7a–e were synthesized in high purity and yields.
The sequence of the preparation of compounds 7a–e started with the acylation reaction
of 4-aminobenzoic acid 4 with chloroacetyl chloride to give the corresponding acyl form
5. Then, the carboxylic group of compound 5 was activated via the formation of acyl
chloride derivative 6. This reaction was performed using thionyl chloride and a catalytic
amount of DMF as reported [57]. Next, compound 6 was subjected to amide formation
(compounds 7a–e) through its stirring with deferent amines in the presence of TEA in
acetonitrile as a solvent at room temperature (Scheme 2).

The two key groups of intermediates 3a–c and 7a–e were allowed to react to each other
in dry DMF over a water bath to produce the final target compounds 8a–m as described
in Scheme 3.

1H NMR charts of the final compounds showed a characteristic peak at about 4.5 ppm
for the methylene group that is flanked between S and C = O. The δ value of the spacer
amide NH was around 10.8 ppm. The other amide group that was flanked between two
phenyl rings showed different δ values according to the substitution at the terminal phenyl
ring. The NH attached to the 4-methylphenyl (compounds 8a–c) appeared at about 10 ppm.
The NH that attached to the 4-acetylphenyl (compounds 8g,h) appeared at about 10.5 ppm.
While the NH attached to the 4-nitrophenyl (compounds 8d–f) was highly deshielded to
appear at about 10.8 ppm. The proton of the NH group appeared from 8.5 to 9 ppm when
the terminal phenyl was replaced by alkyl phenyl (compounds 8i–m). A peak of three
protons at about 2.4 ppm was specific to derivatives based on methybenzoxazole nucleus
(compounds 8c, f,h, k, and m). 13C NMR charts of all compounds revealed three peaks
from about 164 to 167 ppm, for two amides C = O and one C = N of benzoxazole moiety.
Compounds 8g,h showed characteristic peaks of ketone C = O at about 197 ppm. IR charts
demonstrated signals for NH, amide C = O, aliphatic, and aromatic protons.

2.2. Biological Testing
2.2.1. In Vitro Anticancer Activity

The anti-proliferative properties of the synthesized candidates were evaluated against
three human cancer cell lines: breast cancer (MCF-7), colorectal carcinoma (HCT116), and
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hepatocellular carcinoma (HepG2). Sorafenib was utilized as a positive control. The data
outlined in Table 1 shows the significance of the new derivatives as anti-proliferative agents.
In general, compounds 8d, 8h, 8f, 8e, 8c, 8i, 8k, and 8a were the most promising candidates
and revealed IC50 values ranging from 2.43 to 10.44 µM. In detail, compound 8d came first,
with IC50 values of 3.43, 2.79, and 2.43 µM against the mentioned cell lines, respectively.
The second active candidate was compound 8h, which showed IC50 values of 3.53, 2.94,
and 2.76 µM, respectively. These two anti-proliferative candidates were more potent than
sorafenib, which showed IC50 values of 4.21, 5.30, and 3.40 µM, respectively. Compound
8f later showed IC50 values of 4.97, 4.00, and 4.41 µM, respectively, which were nearly
comparable to those of sorafenib. It can also be noticed that the results of compound 8e
were better than those of sorafenib against HCT116 cells and close to it against MCF-7 and
HepG2 cells.

Table 1. Anti-proliferative assay for the new derivatives and sorafenib.

Comp. IC50 (µM) a

MCF-7 HCT116 HepG2

8a 9.49 ± 0.75 10.06 ± 0.95 10.44 ± 0.98

8b 12.41 ± 0.92 11.57 ± 0.91 10.40 ± 0.92

8c 9.15 ± 0.85 6.12 ± 0.55 8.16 ± 0.77

8d 3.43 ± 0.15 2.79 ± 0.19 2.43 ± 0.16

8e 5.69 ± 0.44 3.29 ± 0.26 4.51 ± 0.35

8f 4.97 ± 0.32 4.00 ± 0.33 4.41 ± 0.35

8g 12.54 ± 1.1 10.36 ± 0.92 8.44 ± 0.65

8h 3.53 ± 0.28 2.94 ± 0.19 2.76 ± 0.18

8i 10.00 ± 0.95 8.53 ± 0.77 5.92 ± 0.47

8j 16.91 ± 1.5 18.23 ± 1.5 14.21 ± 1.1

8k 8.37 ± 0.77 8.09 ± 0.71 10.08 ± 0.93

8l 12.49 ± 1.05 14.16 ± 1.2 11.17 ± 0.95

8m 25.77 ± 2.1 16.36 ± 1.3 28.57 ± 2.1

Sorafenib 4.21 ± 0.33 5.30 ± 0.44 3.40 ± 0.25
a All results are the median of three different experiments.

2.2.2. In Vitro VEGFR-2 Kinase Inhibitory Assay

The most promising anti-proliferative candidates: 8d, 8h, 8f, 8e, 8c, 8i, 8k, and 8a were
further evaluated against VEGFR-2 kinase. The obtained IC50 values were listed in Table 2.
The most curious result obtained is that three out of the tested eight members were more
potent than the reference drug, sorafenib. It can be noticed that compounds 8d and 8a
showed far better results than sorafenib. They revealed IC50 values of 0.0554 and 0.0579 µM,
respectively. Furthermore, compound 8e showed an IC50 value of 0.0741 compared to that
of sorafenib (0.0782 µM). The other candidates demonstrated IC50 values ranging from
0.1142 to 1.139 µM. It is noticeable that compound 8d was the most potent in both the
anti-proliferative assay and the VEGF-2 inhibition assay compared to other candidates and
sorafenib as well.
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Table 2. In vitro inhibitory activities against VEGFR-2 for the selected new candidates and sorafenib.

Comp. VEGFR-2
IC50 (µM) a

8d 0.0554

8h 0.1142

8f 0.2037

8e 0.0741

8c 1.1391

8i 0.3167

8k 0.6534

8a 0.0579

Sorafenib 0.0782
a All results are the median of three different experiments.

2.2.3. Structure-Activity Relationship

Based on the given results, structure–activity relationships can be established as
follows: the candidates based on unsubstituted benzoxazole (8a, 8d, 8i, and 8l) were
more potent than those based on 5-methyl (8c, 8f, 8h, 8k, and 8m) or 5-chlorobenzoxazole
(8b, 8e, 8g, and 8j). Also, 5-methylbenzoxazole derivatives were more significant than
5-chlorobenzoxazole derivatives. With respect to the terminal hydrophobic moiety, the
strong electron-withdrawing groups were far better than the electron-donating groups.
It was found that 4-nitrophenyl derivative (8d) showed the best results. Moreover, the
4-acetylphenyl derivative was better than the 4-methylphenyl ones. This indicated that
the electron-withdrawing groups as NO2 and COCH3 are more beneficial for activity than
the electron donating one as CH3. This may be due to a decreased partial negative charge
on the nitrogen of the amide moiety. This may increase the acidity of the NH group and
consequently lead to increase its ability to form a hydrogen bond donor with the carbonyl
moiety of Asp1046. In other words, the nitro group can cause the same electronic effect
that may be done by the two electron-withdrawing groups (chloro and trifluoromethyl) of
sorafenib. Furthermore, compound 8d (incorporating a nitro group at para position of the
terminal phenyl ring) has comparable activity with sorafenib. Substituted phenyl groups
were superior to both the benzyl and phenylethyl groups (Figure 4).
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2.2.4. HepG2 Cell Cycle Analysis

The most promising candidate, compound 8d, was further evaluated by analyzing
its effect on cycle phases of the HepG2 cells. From the results presented in Table 3, it can
be noticed that a large percentage (70.23%) of cells treated with 8d was accumulated at
the pre-G1 phase compared to the 2.70% reported for control cells. This clearly indicates
the ability of compound 8d to inhibit HepG2 cell proliferation efficiently at the pre-G1
phase (Figure 5).

Table 3. The impact of compound 8d on the HepG2 cell cycle.

Sample %G0–G1 %S %G2-M %Pre-G1

8d/ HepG2 31.1 49.8 19.1 70.23

Cont. HepG2 39.81 40.88 19.31 2.70Molecules 2022, 27, x FOR PEER REVIEW 10 of 24 
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2.2.5. The Effect of 8d on Apoptosis and Necrosis Rates of HepG2

Table 4 and Figure 6 show that the death rate of HepG2 cells treated with compound
8d was dramatically increased from 2.70% to 70.23%. It was found that the apoptosis
rate was sharply increased from 0.60% to 65.22% and from 1.50% to 2.85% at the late and
early stages, respectively. Meanwhile, necrosis was increased from 0.60% to 2.16%. This
suggests that apoptosis was the main mechanism of HepG2 cell death that was caused by
compound 8d.

Table 4. Effect of compound 8d on apoptosis and necrosis rates of HepG2 cells.

Sample
Apoptosis

Necrosis Total
Early Late

8d/ HepG2 2.85 65.22 2.16 70.23

Cont. HepG2 1.50 0.60 0.60 2.70
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2.2.6. The Inhibitory Effect of 8d on the Cytokines’ Level (TNF-α and IL-6)

Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) have been shown to have
pro-apoptotic properties. The inhibition of these mediators caused apoptosis of tumor
cells [58,59]. Therefore, further investigation was conducted to see how compound 8
affect these cytokines (TNF-α and IL-6). Compound 8d was added to HepG2 cells at
a concentration of 2.43 µM for 24 h, then the levels of TNF-α and IL-6 were measured
using the qRT-PCR method. The results showed a significant inhibition of TNF-α (90.54%)
compared to the control, dexamethasone, which showed an 82.47% inhibition. The data
also showed a marked inhibition of IL-6 (92.19%) compared to the control (93.15%). This
indicates that compound 8d has a significant apoptosis induction potential in HepG2 cancer
cells through immune-dependent pathways (Table 5).

Table 5. The inhibition of compound 8d to TNF-α and IL-6 compared to dexamethasone.

Sample TNF-α (% Inhibition) IL-6 (% Inhibition)

8d 90.54 92.19

Dexamethasone 82.47 93.15
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2.3. Molecular Docking

A molecular docking study was performed to recognize the binding interactions by
which the designed members bound to their target enzyme [60–63]. VEGFR-2 kinase (PDB
ID: 4ASD) was utilized as a putative binding site in this study. The co-crystallized ligand
with the selected protein was sorafenib. Molecular operating environment (MOE 2014)
software was used to carry out the docking protocol. Redocking of sorafenib showed
an RMSD of 0.24 Å. This value indicatesthe validaty of the employed protocol. Figure 7
declears the overlay of both co-crystallized and redocked sorafenib. The free energies (∆G)
of the binding modes were reported in Table 6.
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Table 6. ∆G of the synthesized members and sorafenib against VEGFR-2.

Compounds Docking Score
(Kcal/mol) Compounds Docking Score

(Kcal/mol)

8a −7.70 8h −8.03

8b −7.82 8i −7.93

8c −7.61 8j −7.95

8d −7.65 8k −7.95

8e −7.69 8l −8.22

8f −7.60 8m −8.16

8g −7.89 Sorafenib −9.59

The binding pattern of the redocked sorafenib is shown in Figure 8. It revealed two
hydrogen bonds with Glu885, one hydrogen bond with Asp1046, and one hydrogen bond
with Cys919. Additionally, sorafenib interacted via numerous hydrophobic interactions
with the different hydrophobic pockets in the active site formed by Leu1035, Ala866 (in
the hinge region), Val899, Val916, Lys868, Cys1045 (in the linker region), Leu1019, Leu889,
Cys1024, and Ile892 (in the allosteric hydrophobic region).
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Figure 8. 3D and 2D image of sorafenib against VEGFR-2 active site.

The obtained results showed that almost all the new candidates fitted the active
pocket of VEGFR-2, revealing binding modes similar to that of sorafenib. Figure 9 shows
the binding pattern of the most promising candidate 8d. It can be noticed that the new
derivative fitted the active site and took the right orientation through which it formed a
hydrogen bond with the essential amino acid Asp1046. Two arene-H interactions were
noticed between the benzoxazole moiety and Leu840 at the ATP binding region. In the same
region there was also an essential hydrogen bond between the sulfur atom and Cys919. It
can be seen that the 4-nitrophenyl group was oriented to occupy the hydrophobic allosteric
site of the receptor. In addition, the nitro group at the para position can withdraw the
electron from the amide moiety. This may lead to a decrease in the partial negative charge
on the nitrogen of the amide moiety and increase the acidity of the NH group. Therefore,
there was a good chance of a good fitting in the active site through the formation of a
hydrogen bond donor with the carbonyl moiety of Asp1044.
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The superimposition of compound 8d and sorafenib is illustrated in Figure 10, which
reveals the similarity of the binding modes of both compound 8d and sorafenib. From
Figure 8, it can be noticed that the benzoxazole moiety of compound 8d has the same
orientation of picolinamide moiety of sorafenib. The central phenyl rings of compound 8d
and sorafenib have the same orientation. In addition, the amide group of 8d has the same
position of urea moiety of sorafenib. Furthermore, the hydrophobic tail of compound 8d
(4-nitrophenyl) shows the same orientation of 1-chloro-2-(trifluoromethyl)benzene of so-
rafenib. This may explain the good biological activity of compound 8d.
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Figure 10. Overlay of compound 8d (pink color) and sorafenib (green color) in the active site
of VEGFR-2.

Compound 8a, the second promising candidate, showed a binding mode similar to
that of sorafenib. It revealed the correct orientation of hydrogen bonds with the three
essential amino acids Asp1046, Glu885, and Cys919, as can be seen in Figure 11. It also
displayed an arene proton interaction between the aromatic ring and NH2 of the side chain
of Asp923.
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Figure 11. 2D and 3D illustration of the binding mode of compound 8a against VEGFR-2.

Compound 8e also displayed a similar binding mode as illustrated in Figure 12. It
showed hydrogen bonds with the three essential amino acid residues, Asp1046, Glu885,
and Cys919. An arene-H interaction was observed between the benzoxazole nucleus and
Leu840. It is clear that the new derivative revealed an orientation that was in line with
the design. The benzoxazole nucleus was oriented to occupy the ATP binding region.
Meanwhile, the para nitrophenyl was directed towards the hydrophobic residues (Ile888,
Leu889, Ile892, and Leu1019) in the allosteric region.
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3. Conclusions

Thirteen benzoxazole-based derivatives were designed and synthesized for anticancer
and VEGFR-2 kinase inhibition evaluation. Compound 8d emerged as the most promising
candidate and showed far better results than sorafenib in both anti-proliferative and
VEGFR-2 inhibition assays. It showed IC50 values of 3.43, 2.79, 2.43, and 0.0554 µM
against MCF-7, HCT116, HepG2 cell lines, and VEGFR-2 kinase, respectively. On the
other hand, IC50 values of sorafenib were 4.21, 5.30, 3.40, and 0.0782 µM, respectively.
Furthermore, compounds 8e and 8a showed better inhibition of VEGFR-2 kinase than
sorafenib. SAR study revealed that unsubstituted benzoxazoles (8a, 8d, 8i, and 8l) were
more potent than those based on 5-methyl (8c, 8f, 8h, 8k, and 8m) or 5-chlorobenzoxazole
(8b, 8e, 8g, and 8j). In addition, the substitution of the electron-withdrawing groups with
the terminal hydrophobic moiety was beneficial for activity. Furthermore, compound
8d showed powerful apoptotic effect as well it arrested the HepG2 cell at pre-G1 phase.
Moreover, compound 8d exhibited a significant inhibition for TNF-α (90.54%) and of IL-6
(92.19%) compared to the dexamethasone (93.15%). We suggest that these potent candidates,
especially 8d, can serve as a lead compound for further development and discovery of
potent anticancer.

4. Materials and Methods
4.1. Chemistry
4.1.1. General

All apparatus used in the synthesis and analyses were illustrated in the Supplementary
data. Compounds 3a–c and 7a–e were previously synthesized and reported [49,64,65].

4.1.2. The Preparation of Compounds 8a–m:

A mixture of potassium salts 3a–c, intermediates 7a–e, and KI (0.001 mol of each)
in dry DMF (10 mL) was heated for 6 h over a water bath. After reaction’s completion,
the mixture was poured over iced water whilst being continuously stirred. Then, the
precipitates were filtred and washed with water. The obtained compounds were purified
by crystallization from methanol to afford compounds 8a–m. Table 7 shows the colors,
yields, and meting points of the obtained compounds.
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Table 7. Colors, yields, and melting points of compounds 8a–m.

Compound Color Yield Meting Points (◦C)

8a White crystals 78% 253–255

8b Greenish crystals 85% 280–282

8c Yellow crystals 83% 242–244

8d White solid 67% 250–252

8e Brown crystals 65% 270–272

8f Reddish crystals 75% 230–233

8g White solid 72% 240–242

8h Brownish crystals 90% 250–252

8i White crystals 77% 216–218

8j Pale yellow crystals 92% 244–246

8k Yellowish white
crystals 67% 277–279

8l White crystals 85% 263–265

8m White crystals 76% 215–218

4-(2-(Benzo[d]oxazol-2-ylthio)acetamido)-N-(p-tolyl)benzamide (8a)

IR: 3300 (NH), 3037 (aromatic CH), 3915, 2856 (aliphatic CH), 1660, 1643 (CO amide);
1H NMR: 2.27 (s, 3H, CH3), 4.47 (s, 2H, CH2), 7.15 (m, 2H, Ar-H), 7.33 (m, 2H, Ar-H),
7.68 (m, 6H, Ar-H), 7.99 (m, 2H, Ar-H), 10.11 (s, 1H, NH), 10.78 (s, 1H, NH); Mass (m/z):
417 (M+), 311, 257, 237, 192, 164, 146, 132, 120 (100%, base peak), 106, 91, 77 and 64.

4-(2-((5-Chlorobenzo[d]oxazol-2-yl)thio)acetamido)-N-(p-tolyl)benzamide (8b)

IR: 3426, 3289 (NH), 3064, 3033 (aromatic CH), 2988, 2921, 2857 (aliphatic CH), 1660 (CO
amide); 1H NMR: 2.28 (s, 3H, CH3), 4.48 (s, 2H, CH2), 7.14 (d, J = 8.2 Hz, 2H, Ar-H), 7.37 (dd,
J = 8.6, 1.7 Hz, 1H, Ar-H), 7.67 (m, 6H, Ar-H), 7.96 (d, J = 8.2 Hz, 2H, Ar-H), 10.09 (s, 1H,
NH), 10.76 (s, 1H, NH); 13C NMR: 20.97, 37.43, 112.00, 118.52, 118.84, 120.84, 124.78, 129.18,
129.44, 129.47, 130.25, 132.93, 137.18, 141.97, 142.96, 150.62, 165.07, 165.73, 166.42; Mass
(m/z): 453 (M+ + 2), 451 (M+), 345, 271, 257, 226, 192, 156, 146, 132, 120 (100 %, base peak),
106, 91, 77 and 63.

4-(2-((5-Methylbenzo[d]oxazol-2-yl)thio)acetamido)-N-(p-tolyl)benzamide (8c)

IR: 3428, 3297 (NH), 3030 (aromatic CH), 2985, 2920, 2858 (aliphatic CH), 1662 (CO
amide); 1H NMR: 2.28 (s, 3H, CH3), 2.40 (s, 3H, CH3), 4.44 (s, 2H, CH2), 7.15 (m, 3H, Ar-H),
7.43 (s, 1H, Ar-H), 7.52 (d, J = 8.2 Hz, 1H, Ar-H), 7.65 (d, J = 8.2 Hz, 2H, Ar-H), 7.73 (d,
J = 8.5 Hz, 2H, Ar-H), 7.95 (d, J = 8.5 Hz, 2H, Ar-H), 10.09 (s, 1H, NH), 10.75 (s, 1H, NH);
13C NMR: 20.97, 21.41, 37.29, 110.10, 118.67, 118.83, 120.83, 125.65, 129.17, 129.45, 130.21,
132.93, 134.58, 137.19, 141.88, 142.02, 150.00, 164.18, 165.08, 165.96; Mass (m/z): 431 (M+),
325, 251, 206, 178, 164, 146, 136, 120 (100 %, base peak), 106, 91, 77 and 65.

4-(2-(Benzo[d]oxazol-2-ylthio)acetamido)-N-(4-nitrophenyl)benzamide (8d)

IR: 3414, 3301 (NH), 2921 (aliphatic CH), 1660 (CO amide); 1H NMR: 4.46 (s, 2H, CH2),
7.33 (m, 2H, Ar-H), 7.64 (m, 2H, Ar-H), 7.77 (d, J = 7.4 Hz, 2H, Ar-H), 8.01 (m, 4H, Ar-H),
8.24 (d, J = 7.9 Hz, 2H, Ar-H), 10.71 (s, 1H, NH), 10.81 (s, 1H, NH); 13C NMR: 37.34, 110.71,
118.72, 118.90, 120.20, 124.83, 125.15, 125.23, 129.27, 129.63, 141.67, 142.67, 142.77, 146.11,
151.82, 164.31, 165.95, 166.05; Mass (m/z): 448 (M+), 311, 237, 192, 164, 146, 132, 120 (100%,
base peak), 104, 91, 77 and 63.
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4-(2-((5-Chlorobenzo[d]oxazol-2-yl)thio)acetamido)-N-(4-nitrophenyl) benzamide (8e)

IR: 3290 (NH), 3070 (aromatic CH), 2936 (aliphatic CH), 1687, 1655 (CO amide); 1H
NMR: 4.48 (s, 2H, CH2), 7.36 (d, J = 8.1 Hz, 1H, Ar-H), 7.71 (m, 4H, Ar-H), 8.01 (m, 4H,
Ar-H), 8.25 (d, J = 8.5 Hz, 2H, Ar-H), 10.72 (s, 1H, NH), 10.82 (s, 1H, NH); 13C NMR: 37.44,
112.00, 118.51, 118.90, 120.21, 124.78, 125.26, 129.28, 129.47, 129.64, 142.62, 142.78, 142.95,
146.11, 150.62, 165.85, 165.94, 166.40; Mass (m/z): 484 (M+ + 2), 482 (M+), 345, 271, 226, 198,
179, 156, 146, 132 120 (100%, base peak), 104, 91, 76 and 63.

4-(2-((5-Methylbenzo[d]oxazol-2-yl)thio)acetamido)-N-(4-nitrophenyl) benzamide (8f)

IR: 3427, 3290 (NH), 3065 (aromatic CH), 2920, 2853 (aliphatic CH), 1651 (CO amide);
1H NMR: 2.52 (s, 3H, CH3), 4.44 (s, 2H, CH2), 7.12 (d, J = 8.0 Hz, 1H, Ar-H), 7.42 (s, 1H,
Ar-H), 7.51 (d, J = 8.0 Hz, 1H, Ar-H), 7.77 (d, J = 8.0 Hz, 2H, Ar-H), 8.02 (m, 4H, Ar-H),
8.26 (d, J = 8.5 Hz, 2H, Ar-H), 10.73 (s, 1H, NH), 10.81 (s, 1H, NH); 13C NMR: 21.40, 37.30,
110.10, 118.66, 118.89, 120.22, 125.27, 125.65, 129.25, 129.64, 134.58, 141.87, 142.68, 142.79,
146.12, 150.08, 164.17, 165.96, 166.08; Mass (m/z): 462 (M+), 325, 251, 206, 175, 164, 146, 136,
120 (100%, base peak), 104, 91, 78 and 64.

N-(4-Acetylphenyl)-4-(2-((5-chlorobenzo[d]oxazol-2-yl)thio)acetamido) benzamide (8g)

IR: 3338 (NH), 3078 (aromatic CH), 2924 (aliphatic CH), 1676 (CO ketone), 1654 (CO
amide); 1H NMR: 2.52 (s, 3H, CH3), 4.47 (s, 2H, CH2), 7.33 (3, 2H, Ar-H), 7.64 (m, 2H, Ar-H),
7.78 (d, J = 7.9 Hz, 2H, Ar-H), 8.00 (m, 5H, Ar-H), 10.49 (s, 1H, NH), 10.83 (s, 1H, NH);
13C NMR: 26.92, 37.35, 110.70, 118.72, 118.89, 119.86, 124.81, 125.14, 129.48, 129.67, 129.76,
132.33, 141.69, 142.44, 144.23, 151.83, 164.33, 165.70, 166.02, 197.05; Mass (m/z): 481 (M+ + 2),
479 (M+), 345, 226, 192, 179, 156, 146, 132, 120 (100%, base peak), 104, 91, 77 and 63.

N-(4-Acetylphenyl)-4-(2-((5-methylbenzo[d]oxazol-2-yl)thio)acetamido) benzamide (8h)

IR: 3438, 3306 (NH), 2920, 2853 (aliphatic CH), 1676 (CO ketone), 1653 (CO amide); 1H
NMR: 2.39 (s, 3H, CH3), 2.56 (s, 3H, CH3), 4.45 (s, 2H, CH2), 7.12 (d, J = 8.1 Hz, 1H, Ar-H),
7.42 (s, 1H, Ar-H), 7.51 (d, J = 8.2 Hz, 1H, Ar-H), 7.76 (d, J = 8.4 Hz, 2H, Ar-H), 7.97 (m, 6H,
Ar-H), 10.48 (s, 1H, NH), 10.81 (s, 1H, NH); 13C NMR: 21.40, 26.94, 37.31, 110.09, 118.66,
118.88, 119.85, 125.64, 129.47, 129.66, 129.77, 132.35, 134.57, 141.88, 142.44, 144.21, 150.09,
164.17, 165.70, 166.05, 197.06; Mass (m/z): 459 (M+), 325, 251, 206, 178, 164, 132, 120 (100%,
base peak), 104, 91, 78 and 63.

4-(2-(Benzo[d]oxazol-2-ylthio)acetamido)-N-benzylbenzamide (8i)

IR: 3438, 3309, 3269 (NH), 3055, 3032 (aromatic CH), 2988, 2927 (aliphatic CH), 1663,
1629 (CO amide); 1H NMR: 4.45 (s, 2H, CH2), 4.49 (d, J = 5.6 Hz, 2H, CH2), 7.24 (m, 1H,
Ar-H), 7.32 (m, 6H, Ar-H), 7.64 (m, 2H, Ar-H), 7.70 (d, J = 8.3 Hz, 2H, Ar-H), 7.90 (d,
J = 8.3 Hz, 2H, Ar-H), 8.99 (t, J = 5.6 Hz, 1H, NH), 10.72 (s, 1H, NH); 13C NMR: 37.28, 43.05,
110.72, 118.73, 118.87, 124.84, 125.16, 127.18, 127.69, 128.74, 128.77, 129.72, 140.26, 141.68,
141.80, 151.82, 164.33, 165.88, 166.10; Mass (m/z): 417 (M+), 266, 257, 237, 192, 161, 146, 132,
120, 106, 91 (100%, base peak), 77, 65, 63.

N-Benzyl-4-(2-((5-chlorobenzo[d]oxazol-2-yl)thio)acetamido)benzamide (8j)

IR: 3431, 3271 (NH), 3033 (aromatic CH), 2923 (aliphatic CH), 1662, 1630 (CO amide);
1H NMR: 4.45 (s, 2H, CH2), 4.47 (d, J = 5.8 Hz, 2H, CH2), 7.24 (m, 1H, Ar-H), 7.32 (m, 4H,
Ar-H), 7.36 (dd, J = 8.7 & 1.8 Hz, 1H, Ar-H), 7.69 (m, 3H, Ar-H), 7.75 (d, J = 1.8 Hz, 1H, Ar-H),
7.89 (d, J = 8.5 Hz, 2H, Ar-H), 8.99 (t, J = 5.8 Hz, 1H, NH), 10.73 (s, 1H, NH); 13C NMR: 37.39,
43.04, 112.01, 118.52, 118.86, 124.78, 127.18, 127.69, 128.74, 128.76, 129.47, 129.73, 140.26,
141.74, 142.97, 150.62, 165.67, 166.07, 166.42; Mass (m/z): 453 (M+ + 2), 451 (M+), 266, 146,
133, 120, 106, 91 (100%, base peak), 77, 65 and 63.
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N-Benzyl-4-(2-((5-methylbenzo[d]oxazol-2-yl)thio)acetamido)benzamide (8k)

IR: 3271 (NH), 3029 (aromatic CH), 2986, 2923, 2869 (aliphatic CH), 1663, 1630 (CO
amide); 1H NMR: 2.97 (s, 3H, CH3), 4.44 (s, 2H, CH2), 4.49 (d, J = 5.1 Hz, 2H, CH2), 7.21 (d,
J = 8.0 Hz, 1H, Ar-H), 7.24 (m, 1H, Ar-H), 7.32 (m, 4H, Ar-H), 7.42 (s, 1H, Ar-H), 7.50 (d,
J = 8.1 Hz, 1H, Ar-H), 7.70 (d, J = 8.1 Hz, 2H, Ar-H), 7.91 (d, J = 8.1 Hz, 2H, Ar-H), 8.99 (t,
J = 5.1 Hz, 1H, NH), 10.72 (s, 1H, NH); Mass (m/z): 431 (M+), 266, 251, 206, 182, 179, 161,
146, 133, 120, 106, 91 (100%, base peak), 78, 65 and 63.

4-(2-(Benzo[d]oxazol-2-ylthio)acetamido)-N-phenethylbenzamide (8l)

IR: 3304 (NH), 3032 (C-H aromatic), 2922 (C-H aliphatic), 1633 (CO amide); 1H NMR:
2.85 (t, J = 7.2 Hz, 2H, CH2), 3.47 (m, 2H, CH2), 4.43 (s, 2H, CH2), 7.25 (m, 7H, Ar-H),
7.66 (m, 4H, Ar-H), 7.82 (d, J = 8.5 Hz, 2H, Ar-H), 8.50 (t, J = 5.3 Hz, 1H, NH), 10.69 (s, 1H,
NH); Mass (m/z): 431 (M+), 327, 311, 192, 161, 146, 132, 120 (100%, base peak), 120, 104, 91,
77 and 65.

4-(2-((5-Methylbenzo[d]oxazol-2-yl)thio)acetamido)-N-phenethylbenzamide (8m)

IR (KBr, cm−1): 3298 (NH), 3028 (C-H aromatic), 2924, 2865 (C-H aliphatic), 1663,
1631 (CO amide), 1535, 1350 (NO2), 1234 (C-O); 1H NMR: 2.40 (s, 3H, CH3), 2.84 (t, J = 7.2 Hz,
2H, CH2), 3.49 (m, 2H, CH2), 4.42 (s, 2H, CH2), 7.12 (d, J = 8.2 Hz, 1H, Ar-H), 7.20 (m, 3H,
Ar-H), 7.28 (d, J = 7.2 Hz, 2H, Ar-H), 7.42 (s, 1H, Ar-H), 7.51 (d, J = 8.2 Hz, 1H, Ar-H), 7.66 (d,
J = 8.5 Hz, 2H, Ar-H), 7.82 (d, J = 8.5 Hz, 2H, Ar-H), 8.51 (t, J = 5.4 Hz, 1H, NH), 10.70 (s, 1H,
NH); Mass (m/z): 445 (M+), 341, 325, 271, 251, 206, 175, 164, 146, 136, 120 (100%, base peak),
104, 91, 78 and 65.

4.2. Biological Testing
4.2.1. In Vitro Antitumor Assay

This test was carried out on three different human cancer cell lines: MCF-7, HCT116,
and HepG2 using the MTT method [66]. The Supplementary data provides further detailed
information about the study.

4.2.2. In Vitro VEGFR-2 Kinase Inhibitory Assay

VEGFR-2 enzyme linked immunosorbent assay (ELISA) kits were used. The Supple-
mentary data provides further detailed information about the study.

4.2.3. HepG2 Cell Cycle Analysis

HepG2 Cell Cycle Analysis was performed for compound 8d according to the method-
ology reported by Wang et al. [67]. The Supplementary data provides further detailed
information about the study.

4.2.4. The effect of 8d on apoptosis and necrosis rates of HepG2

The effect of 8d on apoptosis and necrosis rates of HepG2 was calculated using the
Annexin V assay, according to the published technique [68,69]. The Supplementary data
provides further detailed information about the study.

4.2.5. The effects of 8d on TNF-α and IL-6

The effects of 8d on TNF-α and IL-6 were determined using the qRT-PCR tech-
nique [70,71]. The Supplementary data provides further detailed information about
the study.

4.2.6. Molecular Docking

Molecular docking as carried out against VEGFR-2 (ID: 4ASD) using the Molecular
Operating Environment (MOE) 2014 software [72–76]. The Supplementary data provides
further detailed information about the study.
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