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Abstract: Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined
by a progressive loss of the IVD structure and functionality, leading to severe impairments with
restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degener-
ative changes in the IVD usually increase with age but at an accelerated rate in some individuals.
To understand the initiation and progression of this disease, it is crucial to identify key top-down
and bottom-up regulations’ processes, across the cell, tissue, and organ levels, in health and dis-
ease. Owing to unremitting investigation of experimental research, the comprehension of detailed
cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico
research substantially contributed to a holistic understanding of spatiotemporal effects and complex,
multifactorial interactions within the IVD. Together with important achievements in the research of
biomaterials, manifold promising approaches for regenerative treatment options were presented over
the last years. This review provides an integrative analysis of the current knowledge about (1) the
multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative
strategies, and (3) the in silico models that shall eventually support the development of advanced
therapies.

Keywords: intervertebral disc; extracellular matrix; disc cell molecular biology; multifactorial cell
stimulation; intervertebral disc degeneration; regenerative medicine; multiscale modeling; computa-
tional multiphysics; computational systems biology

1. Introduction

The intervertebral disc (IVD) is a major mechanical load-bearing organ and is re-
sponsible for the functional articulation of the spine. It is composed of three tissues: the
nucleus pulposus (NP), the annulus fibrosus (AF), and the cartilage endplate (CEP) that
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strongly interact among each other. These interactions depend on the composition and
ultrastructure of each tissue that are largely regulated by the response of the disc cells
to microenvironmental biological, chemical, and physical cues, transmitted to the cells
through the extracellular matrix (ECM). A balance between anabolic and catabolic pro-
cesses on a cellular level, i.e., tissue homeostasis, is essential for a healthy turnover of the
ECM components and optimal aging [1–4]. In contrast, the perturbation of this equilibrium
might cause IVD degeneration (DD), with elevated catabolic activity leading to disease
progression [1,5–7].

The first morphological signs of DD might appear already during adolescence and
largely progress toward moderate to advanced degeneration within the three next decades
of life [8]. Such progression is manifest in MRI images [9], visible though a general
reduction of the disc height; a shift of image signal in the NP toward inhomogeneous, gray
or black shaded nuances that reflect dehydration and cracks; a loss of distinction between
the NP and AF regions; and possible endplate defects and disc bulging or herniation [9–11].
It is commonly believed that these changes start with a drop of pressure within the NP
because of dehydration.

On the one hand, the drop of intradiscal pressure makes the axial deformation of the
disc increase under the action of external mechanical loads, which eventually favors the
collapse of the AF structure. The AF lamellae become unorganized, fissured, and used
to bulge within the NP and/or outward [12]. On the other hand, water loss is commonly
interpreted as a consequence of proteoglycan (PG) depletion [2]. Interestingly, theoretical
simulations associated the loss of PG and tissue swelling with the propagation of radial
crack formation [13], leading to radiating annular tears [14], which might end up in IVD
herniation.

Though appealing, such a systematic explanation of DD progression explains only a
subset of herniated IVD phenotypes [15], i.e., the AF-driven phenotype of DD. Even though,
the spatiotemporal emergence of several subsets of phenotypes related to different types
of AF tears [14,16] remains difficult to explain. Furthermore, endplate-driven DD is also
recognized as a source of important disc disease phenotypes [17]. Signs of inflammation
around the endplate, called Modic changes, are often visible [18] and have been associated
with DD [19], with endplate defects and with severe low back pain (LBP) [20,21]. Yet, the
associated pathophysiology remains largely unexplained. Interestingly, the understanding
of IVD-related diseases differs between authors, which led to an attempt to standardize the
nomenclature about normal and pathological lumbar disc by the “Combined Task Forces
of the North American Spine Society” [22]. In any case, degenerative disc changes at the
tissue level alter the mechanics of the entire IVD [12] and account for at least 40% of all
LBP cases [23,24].

The IVD architecture provides the non-degenerated IVD with adequate resistance
to traumatic loading, as seen in sport or traffic accidents, such that isolated, traumatic
IVD ruptures are hardly seen [25]. Disc rupture is, therefore, widely accepted to be a
slow process, consisting of an accumulation of micro injuries under rather physiological
loads, promoted by intricate biochemical and mechanobiological processes that end up in
debilitated tissues. Considerable progress has been made over the past 20 years identifying
risk factors for DD, and the condition, long thought to be secondary to occupational
loading, has also been shown to be highly heritable [26,27]. Yet, heredity was confirmed
to be significant (55%) for a reduced number of phenotypes such as endplate defects [20]
and explains less than 50% of the progression of DD in the lower lumbar spine [26] where
mechanical loads are the highest. More recently, greater understanding of the interplay
between genes, cellular behavior, and mechanobiology has been achieved [28], and a causal
link has been proposed between IVD pathology and the expression of cytokines and of
structural protein proteases from resident cells [29–33].

The understanding of the multiple interplays within the IVD is further challenged by
the need to consider the delicate nutritional balance to ensure cell survival and activity [34]
in what is the largest avascular organ of the human body. Controlling inflammation,
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nutrition, mechanical deformations, and the interactions thereof appears cornerstone,
therefore, to understand where to act, to slow down, stop, or reverse DD through molecular
or cellular therapies or biomaterial-based strategies. Current literature provides a wealth of
information about the response of IVD cells to inflammatory, nutritional, and mechanical
isolated stimuli. Yet, such knowledge is not sufficient to apprehend and control the complex
combination of factors that effectively shape the microenvironment of disc cells in situ. The
comprehensive understanding of the emergence and net effect of multiple combinations of
cell stimulators is difficult to achieve through experimental and/or clinical observations.
Fortunately, computational implementations of theoretical mechanical, multiphysics, and
biology models are constantly growing, and simulations reveal unsuspected capacity to
reasonably predict multifactorial tissue or ECM regulation at different scales [35,36] or
specific degeneration paths [37].

Accordingly, this review aimed to provide an overview of the latest findings about the
IVD function and regulation in health and disease at the tissue, cell, and molecular levels;
about progresses in IVD regenerative medicine; and about in silico research for knowledge
integration and discovery over different time and length scales.

2. IVD Extracellular Matrix in Health and Disease

The biochemistry and the ultrastructure of the intervertebral disc ECM regulate the
physical interactions among the disc tissues, i.e., the CEP, the AF, and the NP, and provide
the IVD with unique mechanical functions [38,39]. The main ECM components of the
IVD tissues are water, collagen (types I and II), and PG, and the relative contents and
organization of these components are finely tuned in each disc tissue (Figure 1) [38,40].

The solid matrix of the NP mostly contains PG and non-oriented collagen type II,
while the CEP contains PG and highly oriented collagen type II [41]. The AF is made of
concentric bundles of collagen types I and II. While collagen type I is predominant, the
relative amounts of collagen type II increase from the outer AF to the inner AF, adjacent to
the NP [42]. PG is present in the interlamellar space, along with small amounts of elastic
fibers and other types of fibrils [43]. It has been demonstrated that the turnover rate of
collagen and aggrecan in the IVD is relatively slow due to long half-lives, i.e., around 95
and 12 years, respectively [44,45].
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Figure 1. Biochemical composition of disc tissues ([46], adapted from [47]).

Interestingly, collagen turnover rate decreases with age, along with increased synthesis
of types I and III collagen [3], whereas the turnover rate of aggrecan increases, the result
being a gradual progression of a more fibrotic and less hydrated tissue with increasing age.
In the following subsections, the current knowledge about the main ECM components’ PG,
collagens, and water is summarized.
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2.1. Proteoglycans

Aggrecan is the principal PG inside the IVD. Glycosaminoglycan (GAG) chains are
attached to the main core protein of the PG, and they contain negatively charged sulphated
groups [48]. The size and aggregation of PG molecules impedes these negative charges to
move spatially and, because tissue electro-neutrality needs to be respected, small counter-
ions, e.g., potassium and sodium, are attracted from the interstitial fluid, generating a
gradient of chemical potentials between the regions respectively internal and external to the
disc. Such a gradient can only be reduced through the entrance of water in the IVD, known
as Donnan osmosis. The tissues swell and the collagen fibers become tensed, leading to an
intradiscal osmotic pressure. Osmotic pressurization and IVD hydration are crucial for the
basal hydration of the NP and the functional biomechanics of the IVD.

With age or degeneration, the total content of PG decreases in all disc tissues [49,50],
and increased amounts of small non-aggregating PG are found [49,51]. In the NP, the
drop of PG content and non-aggregating PG negatively affect the osmotic potential and
the capacity of the tissue to attract water. Whether the loss of PG affects the mechanical
stability of the IVD at the macroscopic level remains unclear [52], but theoretical approaches
suggest that it favors the initiation and propagation of radial cracks through the IVD [13],
as observed in IVD specimens [14]. Furthermore, the accumulation of non-aggregating
PG might favor the transport of small glycans out of the disc during daily load cycles [41],
and IVD glycoprofiles might be a hallmark of DD [53]. High-weight hyaluronan-based
molecules were pointed out as potential protectors against DD [54], whereas hyaluronic
acid fragments would increase the expression of key inflammatory cytokines by IVD
cells [55]. Interestingly, during normal aging the IVD shows less than 1% height loss per
year, whereas degenerating discs loose approximately 3% height per year [17].

In the AF, PG is mostly present in interlamellar spaces. On the one hand, these in-
terlamellar spaces have been identified as the preferred path for the extrusion of nuclear
material [56]. On the other hand, single nucleotide polymorphism associated to the aggre-
canase ADAMTS 5 has been significantly associated with AF tears in DD [57], suggesting a
relevant implication of interlamellar PG in the IVD pathophysiology. In the CEP, the control
of the mobility of molecules by PG probably ensures key protection against the loss of struc-
tural proteins and water through the bony endplates [58]. While PG depletion with age or
DD might explain the increased permeability of the CEP measured with aging [59], in silico
models suggest that the fine-tuning of PG contents within the CEP is actually important to
avoid critical chronic dehydration of the IVD under daily mechanical loads [37].

2.2. Collagen

Collagen types II and I are the major structural component of the IVD. Type I collagen
forms highly oriented concentric lamella within the AF, which provides the AF with
resistance to multiaxial loads and finely tunes the mechanical strength of the disc. Collagen
type II forms a loose network, especially within the NP, and it is more extensible than
collagen type I [60,61].

In the NP, the flexibility of collagen type II network allows the swelling of the PG
through Donnan osmosis, whereas the elastic response of the stretching fibers generates
tissue turgidity, providing the IVD with strength under high pressurization and relative
flexibility otherwise. The first oriented collagen bundles appear oriented in the transition
zone between the NP and the AF and the proportion of collagen type I to collagen type
II increases toward the outer AF [42]. The presence of collagen type II would limit the
lateral aggregation of collagen type I fibrils and leads to matrices of increased porosity [62],
which fosters proper hydration of the inner IVD and the transport of molecules to disc
cells. At the same time, the increasing amount of collagen type I toward the outer AF
increases the effective resistance to fluid flow, favoring hydrostatic pressures and proper
cell phenotypes in the inner AF [63]. The CEP matrix has predominantly collagen type
II fibers. While it needs to allow the transport of important solutes between the disc and
the bone marrow [64], its hydraulic permeability, of the order of 1.10−14 m4/Ns [65], is
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one order of magnitude lower than the radial permeability of the AF [66]. Interestingly,
piezoelectric potentials associated with the disc collagen fibers have been measured and
were suggested to be one of the triggers of functional cell alignments, especially in the
AF [67]. In general, it is clear that the functional distribution of collagen types I and II
throughout the IVD supports multiple important functions.

With degeneration or aging, the relative amount of collagen type I increases in the
NP [8], which in addition to PG depletion would also explain the dehydration of the
IVD, i.e., reductions of tissue porosities [68], in general. Decreased tissue porosity due to
modified balance between collagen types I and II would explain why water and PG contents
only moderately correlate to each other [69]. Collagen cross-links are also important;
within the normal NP, high concentrations of pyridonoline cross-links are found, but with
degeneration these cross links are replaced with the pentosidine cross-links [70,71], which
increase the susceptibility of the tissue to tears [71,72].

Other collagens such as types III, V, VI, IX, and XI make up around 20% of the total
collagen components of the disc and are thought to be involved in the organization of the
collagen fibrils [73] and to play a key role in the functional mechanical behavior of the complex
AF interlamellar regions [43]. Remarkably, type VI collagen is an important pericellular
molecule [74] thought to be essential for the mechanosensing of IVD cells [75–77].

2.3. Water

As discussed in Section 2.1 and Section 2.2, the function of the IVD tissue matrices
cannot be dissociated from the very specific interactions of the ECM components with
interstitial water. Remarkably, the physics of water in the IVD and the macroscopic effect
thereof depend on the balance of PG and collagen contents. While PG controls Donnan
osmosis, it might further affect the shear stiffness of cartilage-like tissues [78]. Multi-
physics models and experiments also suggest that the effective turgidity of disc tissues
is additionally controlled by the existence of a dual porosity, generated by volumes of
exclusion of PG molecules generated by the fibrillar matrix [79,80].

3. IVD Cell Activity and Molecular Biology in Health and Disease

The cells responsible for disc maintenance represent only 1% of the volume of the
organ [81], the disc cell densities (~4 × 103 cells/mm3 in the NP; ~9 × 103 cells/mm3

in the AF; ~15 × 103 cells/mm3 in the CEP) being among the lowest within the body,
due to the low nutrient supply [82]. These densities decrease with aging and DD [82–84].
The cells of the CEP are chondrocytes [82], while those in the outer AF are similar to
fibroblasts. The NP cells of a mature human disc are spherical and, while similar to
chondrocytes [85], they synthesize a greater proportion of PG than chondrocytes, with a PG-
to-collagens ratio of about 27:1 [86], and have a number of distinctive cell markers [87,88].
Mature NP cells are uniquely derived from notochordal cells, which, in humans, are lost
during adolescence [89–91]. From one IVD tissue to another, cells display transitional
phenotypes, illustrating the likely influence of their microenvironment on their phenotype
and activity [63].

3.1. Multifactorial Regulation of Cell Activity in Health

The IVD has low nutritional supply with blood vessels located in the vertebral end-
plates and outer AF [82]. This leads to a hostile environment for cells, characterized by
low oxygen tension, low glucose concentrations, high lactate levels, i.e., low pH, and high
osmolality, altogether under the action of dynamic loads [92–97]. However, the cells of the
IVD are remarkably adapted to such conditions [98].

In hypoxia, the increased production of lactate generated during adenosine triphos-
phate synthesis decreases the pH. Accordingly, IVD cells express a number of control
mechanisms that maintain pH homeostasis, such as expression of plasma membrane
monocarboxylate transporters [99] and bicarbonate recycling mechanisms [100]. NP cells
further show robust and constitutive hypoxia inducible factor (HIF) 1 expression, and
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under hypoxic conditions the inducible subunit of HIF-1, HIF-1α, accumulates due to the
inhibition of prolyl hydroxylase enzymes. Then, it translocates to the nucleus, where it
binds to the constitutively expressed subunit HIF-1β. Subsequent binding of this dimer to
hypoxia response elements on the promoter region of target genes allows the regulation
of gene expression [101]. HIF-1α has been shown to contribute to the survival of NP cells
in the harsh, hypoxic environment by increasing gal-3 expression, thereby inhibiting Fas
receptor/Fas ligand-mediated apoptosis [102]. It may also be involved in hypoxia-driven
suppression of NP cells’ autophagy via inactivation of the mTOR (mammalian target of
rapamycin) signaling pathway [103]. Furthermore, HIF-1 seems to play a crucial role in
supporting adequate energy metabolism (i.e., anaerobic glycolysis) in NP cells by regulat-
ing the expression of the glucose transporters GLUT-1, GLUT-3, and GLUT-9 [104]. The
crucial role of HIF-1α in NP homeostasis has been underlined by knockout experiment in
mice, whereby HIF-1α deficiency resulted in DD, as evidenced by reduced PG and collagen
II contents [105]. Interestingly, research in other areas points toward cross talk between the
nuclear factor kappa B (NF-κB) and HIF-1 signaling pathways [106], which could constitute
a molecular link between hypoxia and inflammation. First data in NP cells support this
notion as prolyl hydroxylase domain-containing protein 2, able to degrade HIF-1α [107],
was shown to co-activate NF-κB signaling (Section 4.1) [108].

ECM osmolarity fluctuates (~430 to 496 mOsm ) with normal daily activity in the
IVD [109,110] and disc cells are well adapted to respond to these fluctuations [111,112] through
robust expression of osmosensitive transcription factor TonEBP (tonicity-responsive enhancer
binding protein),which maintains cellular function under daily osmotic changes [113,114].
TonEBP (or NFAT5, nuclear factor of activated T-cells 5, or OREBP, osmotic response
element-binding protein) is a transcription factor modulated by growth factors (GF) [115],
cytokines [115,116], and calcium [117]. It is involved also in the survival of NP cells in
the hyperosmotic milieu [118]. Together with other osmosensitive pathways and recep-
tors, especially from the mitogen-activated protein kinases (MAPK), transient receptor
potential (TRP) channel and Aquaporin family, TonEBP/NFAT5 (tonicity-responsive en-
hancer binding protein/nuclear factor of activated T-cells 5) plays a crucial role in cell
volume regulatory mechanisms [118]. In rat NP cells, extracellular signal-regulated ki-
nase (ERK) phosphorylation following hyperosmotic stress results in TonEBP/NFAT5
activation, thereby promoting cell survival [114,119]. The tight cross talk between ERK
and TonEBP/NFAT5 and the link to cell survival/apoptosis have also been demonstrated
through pharmacological ERK inhibition [119–121]. In addition to MAPK, TonEBP/NFAT5
interconnects to the NF-kB pathway [122,123] and interacts with members of the TRP
family [118]. The TRPV subfamily (especially TRPV4) has been identified as potential
osmo- and volume-sensors involved in regulatory volume change mechanisms and cell
signaling, following osmotically driven opening of the channel pore and subsequent influx
of extracellular Ca2+ [118]. Consequently, TonEBP/NFAT5 has a wide variety of target
genes, ranging from organic osmolytes [124] and aquaporins [125] to ECM molecules [114]
and pro-inflammatory cytokines [116]. In particular, aquaporins form transmembrane
water channels and are able to regulate intra- and extracellular water balance, which is
essential to keep cells alive in fluctuating osmotic environments [125–129].

The IVD is constantly subjected to dynamic loads and the cells embedded within
the ECM experience compressive, tensile, and shear mechanical stresses and strains [130].
They respond to these loads via a number of mechanotransduction mechanisms, which
have been reviewed previously [130–132]. For example, TRP channels, whereby TRPV4 as
well as TRPC6, TRPM2, and TRPML1 stand out due to fundamental roles in osmo- and
mechano-sensing [118,133,134]. NP cells are more responsive to hydrostatic pressure, while
AF cells respond better to cyclic strain [135]. Mechanical loads considered physiological for
non-degenerative IVD cells promote matrix synthesis, while higher loading regimes can
promote catabolism and contribute to DD [130–132]. IVD cells activate distinctive signaling
pathways depending on the load magnitude, frequency, and duration, in a zone-specific
manner [136–138]. Over the past years, the YAP/TAZ signaling has also come into focus in



Int. J. Mol. Sci. 2021, 22, 703 7 of 45

mechanobiology due to its regulation by the mechanical signals elicited by the surrounding
ECM [139,140], whereby integrins in focal adhesions (FA) evidently play a crucial role [141].
YAP and TAZ are transcriptional coactivators with involvement in development, tissue
homeostasis, tissue renewal/regeneration, and cell proliferation and survival to stress [139].
Previous research clearly indicated that cell stretching over the ECM with reformation of
the cytoskeleton causes YAP/TAZ activation, whereas restriction of cell adhesion inhibits
YAP/TAZ-related transcription [142]. Such responses were observed when NP cells were
cultured in laminin-functionalized polyethylene glycol (PEG) hydrogels with different
stiffnesses [143]. In AF cells, the degree of fiber alignment and fiber stress was shown to
affect YAP/TAZ activation, with lower nuclear YAP/TAZ in the case of fiber alignment
and prestress (highly elongated cell morphology and lower FA area). In contrast, slack
and random fibers promoted larger FA and nuclear YAP/TAZ localization [144]. YAP
inhibition seems to occur by cell-to-cell contact in IVD cells [145]. Remarkably, while the
expression of YAP decreases with age [146], YAP silencing was shown to promote NP cell
senescence [145], which adds to the difficulty to duly apprehend the variation of disc cell
regulation, upon multifactorial simulation and aging.

IVD cell activity is finely related with careful balance of multifactorial cell cues. Altered
balance might result in a vicious cycle of catabolic cell responses and functions [147], which
leads to a loss of functional sensitivity to, e.g., mechanical loads at a cellular level, to
undue osmolarity, and to ECM depletion over time at a tissue level, which finally results in
DD [148,149].

3.2. Multifactorial Regulation of Cell Activity in Disease

During DD, cellular changes lead to increased production of catabolic cytokines [29,30,150–155],
matrix-degrading enzymes [4,156–162], and neurotropic and angiogenic factors [163–177],
which lead to ECM degradation, catabolism, and nerve and blood vessel ingrowth [178–186]
(Figure 2).
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Furthermore, the number of functional cells decreases with increases in apoptosis,
autophagy [187], and cellular senescence [147,188–195]. The initiating trigger of these
catabolic events is clearly multifactorial, and different processes are likely to predominate
in individual patients, with links to genetics, abnormal loading profiles, infection, and
diabetes, among other potential risk factors [196–198].

For example, cells from a degenerative IVD respond differently to mechanical stimuli
with mechanotransduction pathways altered during degeneration, which further leads
to decreased synthesis and increased degradation of the ECM [75,137,199–201]. IVD cells
respond to altered biomechanics, infection, or metabolic changes with increased production
of catabolic cytokines, leading to the generation of a ‘cytokine soup’ regulated predom-
inantly by the pleiotropic cytokine interleukin (IL)-1 [154,202]. The IVD environment
becomes progressively more hostile for cells with decreased IVD hydration and nutritional
supply, leading to increased lactate production, decrease of pH, and decreased osmolar-
ity [93]. Cells become less able to withstand these conditions and lose the physiological
response mechanisms that would maintain homeostasis [116,118,126,203,204]. Low glu-
cose [159,205–207] and high lactate concentrations [159,205,207,208] lead to a higher rate of
cell death and a catabolic shift in mRNA expression. However, the role of oxygen remains
controversial. While it seems that NP cells survive well with limited oxygen levels [159,207],
on the one hand, the lack of oxygen has been alternatively linked to either lower [207] or
unmodified [209] GAG synthesis by NP or AF cells. On the other hand, a significant rise in
aggrecan mRNA expression at 1%, compared to 6% or 21% oxygen concentrations, was
found, while mRNA expression for collagen type II was decreased [159]. Other studies
report increases in both collagen type II and aggrecan at 1% oxygen [209].

Cell senescence has been reported to be a contributing factor toward the progression
of DD, and the causes and molecular mechanisms that are seen to take place were already
nicely reviewed [191]. A correlation between age and increased measures of senescence has
been shown as well as associations between senescence and elevated MMP and ADAMTS
expression [193,210]. As well as losing replicative ability, senescent cells also release
pro-inflammatory cytokines and matrix-degrading enzymes. This cell characteristic is
referred to as senescence-associated secretory phenotype (SASP) [191]. Secretion of pro-
inflammatory cytokines by senescent disc cells includes various catabolic factors, including
tumor necrosis factor α (TNF-α) and IL-1β [30].

Apoptosis and autophagy are other important aspects of cell activity in the IVD.
The mechanisms of action and roles in matrix homeostasis and degeneration have been
reviewed and discussed in detail [187,211,212]. It has been observed in human, animal,
and in vitro studies that excessive NP and AF cell apoptosis and autophagy takes place
during DD, which may be exacerbated by harsh disc cell microenvironments [187,213].
Autophagy is also important in natural cell and protein turnover within the IVD as low
levels have been reported in non-degenerate rat NP and AF cells [214]. However, its
role during DD is more complicated, as both higher [215,216] and lower [217] levels of
autophagy have been shown. The potentially conflicting roles of autophagy during DD is
reviewed and discussed elsewhere [218]. In regards to the role of cytokines, IL-1β has been
shown to induce both autophagy and apoptosis in rat AF cells, but only in serum-deprived
conditions [219,220], which may be a more reflective condition of the IVD, where nutrient
levels are low due to avascularity.

Cell survival and cell death under multifactorial cell environments are strongly con-
trolled though mTOR and Notch cell signaling pathways. mTOR is downstream of PI3/Akt,
whereby mTOR is substrate of Akt [221]. Akt can induce direct and indirect activation
of mTOR and, similar to PI3/Akt, the protein kinase mTOR has a central role in cell
metabolism, growth, proliferation, and survival [222]. Increasing evidence highlights that
mTOR controls the decision between cell survival and cell death in case of endoplasmic
reticulum (ER) stress [223,224]. In the IVD, mTOR has mostly been investigated in the
context of autophagy [187], i.e., an intracellular process that allows cells to remove mis-
folded or aggregated proteins and eliminate damaged organelles occurring due to stressors
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such as nutrient deprivation [103,225], oxidative stress [226,227], or overloading [226], thus
ensuring cell survival and appropriate cell metabolism [228]. On the one hand, inhibition
of mTORC1 promoted rabbit AF and human NP cell survival and reduced catabolic re-
sponses under serum and nutrient deprivation as well as by IL-1β treatment via autophagy
induction [225,229,230]. Furthermore, the beneficial effect of osteogenic protein 1 treatment
on rat NP cell survival under hyperosmotic culture conditions was associated with mTOR
(and PI3/Akt) activation [231]. Interestingly, mTOR inhibition has also been found to affect
matrix synthesis and degradation in the IVD in mice, with reduced aggrecanolysis (likely
via reduction in cell senescence) but simultaneous suppression of PG synthesis, thus not
leading to any changes in total PG content [232].

The Notch signaling pathway is a highly conserved pathway with a wide variety of
functions in development, tissue homeostasis and diseases, ranging from stimulation of
tissue growth to promotion of cell death under different cell microenvironments [233]. As
transmembrane receptors with a direct route from the membrane to the nucleus, Notch
1-4 can only exhibit such diverse functionality by a range of regulatory mechanisms such
as tissue topology, ligand expression patterns, expression of certain enzymes, or the ex-
tent of cell–cell contact [234]. In IVD cells, the expression of Notch 2 is increased during
DD [235], whereas intradiscal injection of JAG2 (which induces Notch 2) reduced DD
processes in rats [236]. Notch signaling in the IVD was activated by hypoxia [237] and
pro-inflammatory cytokine exposure [235], thereby activating NP and AF cell prolifer-
ation [236,237], inhibiting NP cell apoptosis promoted by TNF-α [236] and modulating
the expression of anabolic and catabolic genes [238]. Yet, these effects seem to be zone-
dependent, with Notch activation causing catabolic and anabolic responses in AF and
NP cells, respectively [238]. Importantly, cross talk between the Notch signaling pathway
and MAPK, NF-kB, PI3K/Akt, and Wnt/β-catenin (Section 4.1) seems to exist [235,236].
Despite these fascinating findings, relatively little research has thus far been conducted on
the Notch pathway in the IVD.

4. IVD Regeneration Strategies: Biological Targets and Biomaterials

Given the high incidence of DD and the related high financial burden [47] and global
disability [239], IVD regeneration is a crucial focus in IVD research. Apart from conserva-
tive approaches, regeneration due to a manipulation of biological targets, cell therapy-based
strategies, biomaterials, and nanotechnologies to, for example assimilate the architecture
of biomaterials to the native tissue or to optimize drug delivery, is currently under in-
vestigation. The following subsections provide an overview of the current hopes in IVD
regeneration strategies.

4.1. Signaling Pathways and Biological Targets

As illustrated in the previous sections, the multifactorial regulation of IVD cell activity
by cues such as mechanical loading, osmolarity, glucose, hypoxia, and paracrine and
autocrine factors results in complex cell signaling processes that are often interconnected.
Understanding the regulation and interconnectivity of various pathways is crucial for
elucidating the complex mechanisms of DD, especially when the goal is to develop novel
molecular treatment options.

Over the past years, the IVD research community has identified numerous promising
biological targets. Modulating these targets, e.g., pharmacologically or through genome en-
gineering approaches such as CRISPR/Cas [240], may allow interfering with the molecular
and biological mechanisms of DD and/or pain development. Consequently, the hope is to
develop more effective and less invasive treatment options compared to currently available
strategies in patient care. Some of the most promising therapeutic targets are, for example,
MAPK, NF-κB, Wnt/β-Catenin, and PI3/Akt.

MAPK are a family of highly conserved signal transduction pathways that facilitate
mammalian cell responses to numerous extracellular signals. MAPK activation occurs as a
cascade, whereby each member of the family of MAPK is activated by specific upstream
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kinases (MAPKK), which are in turn activated by a MAPKK kinase (MAPKKK), all by
phosphorylation [185]. In mammals, three major subfamilies of MAPK exist: ERK, the
c-Jun NH2 terminal kinases (JNK), and the p38 isoforms (p38 MAPK) [186,187]. MAPK
can be activated by numerous cell stimuli present in the IVD and have thus been discussed
as potential therapeutic targets in DD [241].

• ERK activation typically occurs via mitogens and GF (e.g., platelet-derived growth
factor (PDGF), transforming growth factors β1 and β3 (TGF-β1, TGF-β3), fibroblast
growth factor (FGF), and insulin-like growth factor (IGF) I [242–244]), thereby con-
trolling growth, differentiation, cell cycle progression, and development. In addition,
ERK activation in the IVD supports cell survival following hypoxia and osmotic stress,
the latter with cross talk to TonEBP [118–121,245–247]. Interestingly, NP-derived mes-
enchymal stromal cells (MSC) also respond to osmotic stimuli, whereby hyperosmotic
stress was associated with ERK activation, leading to a reduction in proliferation
and chondrogenic differentiation [248]. Interestingly, excessive cyclic stretch was
shown to induce AF apoptosis via inhibition of ERK phosphorylation, whereby β1
integrin could inhibit the apoptotic processes [249]. Pro-inflammatory cytokines, such
as TNF-α and IL-1β, as well as stimuli known to induce inflammation, such as ECM
fragments, activate the ERK pathway in IVD cells, possibly mediating loss of tissue
ECM proteins associated with DD [31,55,250–253], inflammatory and catabolic re-
sponses [250,254,255], apoptosis [256], and senescence [257]. Interestingly, ERK was
suppressed by stimulation with the anti-inflammatory cytokine IL-10 [254]. Overall,
these findings indicate that modulating ERK activity for therapeutic means is possible
yet challenging due to the multifactorial role of this signaling pathway.

• The p38 signaling pathway is generally activated by stressors and is known to regulate
inflammation, autophagy, apoptosis, and differentiation [241]. Numerous studies
have investigated p38 in the IVD, thereby identifying hypoxia [245], hyperosmolar-
ity [120], hyperphysiological mechanical loads [133], ER stress [258], acidity [257],
high glucose levels [256], and IL-1 [253] as potent activators. Interestingly, p38 is
connected to TPRV4 [133], which has previously been described to transduce mechan-
ical, inflammatory, and pain signals in cartilage [259]. Different research fields have
shown extensive cross talk between p38 and other signaling pathways, e.g., ERK [258],
TGF-β/Smad, [260] or Akt [261], which should be investigated in IVD cells. Overall,
inhibition of p38 is being discussed for therapeutic approaches, potentially reducing
inflammation, pain, and disc matrix catabolism [253,262], although ultimate outcomes
may be difficult to predict due to the extensive cross talk with other pathways.

• JNK, similar to p38, is activated by stressors, GF, and pro-inflammatory cytokines [241,253].
Stressors entail high glucose levels [256], hyperosmolarity [120,263], TNF-α and IL-1β
exposure [250,251,255], syndecan-4 overexpression [264], and Propionibacterium acnes
(P. acnes) infection [265]. Following activation, JNK regulates apoptosis [120,256,265],
enhanced expression of MMP [250], DNA damage [263], and DD [264]. The pro-
apoptotic mechanisms of JNK seem to be associated with p53 induction [266] and
with toll-like receptor 2 activation [265]. Although not yet investigated in the IVD, the
interaction of JNK with miRNAs (e.g., miR-138, miR-133a-3p, miR-133b-3p, miR-4268)
is likely relevant [267–269]. Therefore, a better understanding of JNK signaling will be
needed before its modulation can be effectively used as a therapeutic means.

NF-κB is described as the master regulator of inflammation. As it has become increas-
ingly clear that aberrant regulation of the NF-κB signaling pathway intervenes in DD, stud-
ies have started to investigate its potential clinical use of NF-κB-targeting therapies [270].
This signaling pathway is activated in response to damage, pathogens, and cellular and me-
chanical stress and inflammation and regulates the expression of numerous genes related to
inflammation, catabolism, and apoptosis/cell survival [241,271]. In mammals, it consists of
a family of dimer-forming transcription factors that share the Rel homology, namely RelA
(p65), c-Rel, RelB, p50, and p52 [272]. In the IVD, p65 expression and more importantly
NF-κB activation are increased with degeneration [253,273], and pro-inflammatory cy-
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tokines, such as IL-1β and TNF-α, shown to activate NF-κB [241,250,253,273,274], are asso-
ciated with painful DD [153,275]. Downstream targets of NF-κB include numerous matrix-
degrading enzymes (MMP-1/-2/-3/-13, ADAMTS-4/-5), ECM proteins (asporin), inflamma-
tory mediators (iNOS, COX-2, prostaglandin E), and chemokines (MCP-1), supporting the
crucial role of this pathway in IVD and inflammation and degeneration [153,250,274–279].
In addition to specific NF-κB inhibitors such as ACHP (2-amino-6-[2-(cyclopropylmethoxy)-
6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile) or the NF-κB essential mod-
ulator (NEMO) binding domain peptide (NBD) [275,280], several natural drugs (e.g.,
curcumin [281], epigallocatechin gallate [255], or resveratrol [282]) have been described to
modulate NF-κB activity. Furthermore, NF-κB signaling can be altered by specific miRNAs
(e.g., miR-150 [283]), but NF-κB activation can also affect expression of numerous miRNAs
(e.g., miR-640 [284]). These findings offer new therapeutic approaches as miRNAs play a
crucial relevance in IVD ECM degradation, cell apoptosis, and inflammation, e.g., due to
their role as post-transcriptional regulators [285].

Wnt/β-Catenin represents another therapeutic target in DD. It is a highly conserved
pathway, involved in cell fate decisions during development, also regulating cell prolif-
eration and tissue growth and maintenance [286]. Interestingly, Wnt signals are often
only effective in localized areas between neighboring cells [287]. Activation of the Wnt/β-
Catenin pathway is initiated by binding of Wnt proteins to the so-called Frizzled receptors
on the cell surface, which allows the transcriptional co-regulator β-catenin to shuttle to the
nucleus, where it activates transcription of Wnt target genes [286,287]. Through mouse
models, Wnt signal activity could be demonstrated during IVD development in the AF
and the CEP [288], as well as early in life in the NP (likely associated with the postnatal
rapid growth phase). In contrast, it was found to be downregulated with age [289] and
DD [290,291], possibly through miR-532 [292]. Thus, activation of Wnt/β-Catenin may
have the potential to reverse age-related degenerative changes in the IVD [289,290]. In
fact, overexpression of Wnt in human herniated NP cells increased GAG release [293],
supporting the possible therapeutic potential of the Wnt/β-Catenin pathway. However,
Wnt/β-Catenin signaling was seen to induce senescence in IVD cells while also interacting
with TNF-α in a positive-feedback mechanism, potentially contributing to disease progres-
sion [210,294]. Therefore, activation of Wnt/β-Catenin will only become therapeutically
relevant when possible unwanted side effects are identified and controlled.

As illustrated in Section 3.2, PI3/Akt is a well-known cell survival pathway and also
regulates metabolism, proliferation, cell cycle progression, growth, and angiogenesis [295].
Due to its multifactorial role, PI3/Akt is tightly controlled, e.g., by its inhibitors as well
as by cross talk with NF-kB [296–298]. The PI3/Akt pathway is primarily activated by
cytokines [296] and GF [299–301] and is a critical player in DD [302]. GF activation, for
example, resulted in Akt-dependent aggrecan accumulation in bovine NP cells [303] as
well as reduced autophagy [302]. Akt has also been shown to positively regulate cell prolif-
eration [243] and counteract DD processes [300]. Natural drugs, such as epigallocatechin
gallate and resveratrol, can activate PI3/Akt under stress conditions, thus stimulating
important and therapeutically promising pro-survival mechanisms in IVD cells [304,305].
In line with that, inhibition of miR-4458 or miR-27a or stimulation of miR-21 may also have
therapeutic benefits through PI3K/Akt modulation [306–308].

In addition, membrane receptors known to play a role in multifactorial disc cell
regulation (see Section 3.1) are being investigated as therapeutic targets in DD. On the
one hand, TRP channels have emerged as drug targets [134], due to correlations with pain
intensity and duration [309]. On the other hand, toll-like receptors clearly hold promise
for the treatment of DD [164,310–312]. They are tightly associated with MAPK and NF-κB
signaling and, thus, with inflammation and catabolism. One of the downstream targets of
toll-like receptor 2 is NGF (nerve growth factor) [164], which plays a crucial role in IVD
innervation and pain development. Thus, anti-NGF therapeutics may have the ability to
manage pain in DD [167,185,313]. In this context, Link N, a naturally occurring peptide,
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could be of clinical relevance thanks to its inhibitory effect on NGF expression and to its
regenerative capacity [314].

4.2. Growth Factor-Based Strategies

A variety of GF have been studied for their capacity to encourage IVD regeneration,
including PDGF, IGF-1, and FGF18, although the majority of GF that have been studied
belong to the TGF superfamily [315]. Members of the bone morphogenetic protein (BMP)
(mainly BMP2, BMP7) family and of the TGFβ (TGFβ1 and TGFβ3) subfamilies have been
studied extensively, using in vivo models, to encourage anabolic activity in resident NP
cells and counteract pathology [315,316]. In vivo testing of BMP has been mixed, with
positive results shown for BMP2 and BMP7 in a small animal (rabbit) but negative results
in a large animal (goat and canine) models [317,318]. More encouraging and more recent
data have come from members of the growth differentiation factor (GDF) family (also part
of the BMP family). GDF has been shown to have anabolic effects on IVD cells with GDF6
(BMP13) also having potent chemoattractant properties for NP cells [319]. In vivo testing of
GDF6 has shown positive effects in sheep, rat, and rabbit models with decreased signatures
of degeneration and evidence of disc tissue restoration [320,321]. GDF5 (BMP-14), due to
promising preclinical studies [322], has been tested in two phase I/II clinical trials that are
now complete [323]. Unfortunately, the placebo-controlled phase II trial failed to show
efficacy; however, the patient sample size was small (N = 45). Although preliminary results
of this type of potential treatment are promising, there are still challenges facing GF-based
therapies. Firstly, they are inherently reliant upon the remaining degenerated disc cells
to be healthy and sufficient in number to synthesize ECM and ultimately regenerate the
disc tissue. Secondly, GF are often short-lived, limiting clinical use toward sustained
regeneration [324]; hence, recent works were investigating the use of microparticles as
a GF delivery vehicle [325–327]. Arguably, this is a likely contributing factor to the lack
of efficacy from the GDF5 clinical trial. Cell replacement therapy, on the other hand,
circumvents both of these challenges.

4.3. Cell Therapy-Based Strategies

A wide range of potential cell-based therapies has been proposed for IVD regener-
ative strategies, and there have been extensive reviews on the use of cellular therapies
for regeneration of the IVD [328–331]. Cellular strategies have ranged from studies on
terminally differentiated chondrocytes [332–334] to more tissue-specific cell sources such
as native disc cells from mature NP tissues [335–337] or immature notochordal cells from
porcine discs [338,339]. There have been extensive studies using a number of stem cell
sources, including MSC from bone marrow or adipose tissues [340]. More recent studies are
exploring the potential of induced pluripotent stem cells in the treatment of DD [341–347],
and there are a number of ongoing clinical trials that use cellular injections into degenerated
IVD [348–351]. A number of recent reviews have been published proposing recommended
routes to develop these therapies [93,352], which highlight important considerations, par-
ticularly focused on the potential fate of cells injected into the harsh environment of the
degenerated discs [352–357]. The path to successful therapies is likely to combine cellular
therapies with molecular targets (see Section 4.1), to inhibit the degenerated niche, together
with biomaterial strategies to provide proper support for the cells during delivery.

4.4. Biomaterials and Nanotechnologies

Biomaterials serve a fundamental role in tissue engineering (TE) by acting as scaffolds
for in situ tissue replenishment as well as being carriers for cells and biological molecules.
A number of review articles provide summaries of the numerous and varied biomaterials
suitable for the IVD [358–360]. Often, the biomechanics of the native tissue is replicated as
closely as possible with the design of the biomaterial, along with the ability to encourage
adherence, growth, and/or differentiation of cells. Since the IVD is composed of inter-
connected regions, each with different physical properties, the appropriate biomaterial



Int. J. Mol. Sci. 2021, 22, 703 13 of 45

for one region is generally different to the other. The NP demands most TE strategies
to employ the use of hydrogels as they are hydrophilic [361]. Conversely, biomaterials’
research for AF TE targets rather fibrous organized constructs, often achieved through
electrospinning [362,363]. However, the natural complexity of the AF structure and com-
position is uniquely designed to resist an amazing variety of mechanical loads, both in
nature and magnitude, which makes AF TE particularly challenging [363,364]. Indeed,
integrated replacement strategies for the whole IVD are also commonly explored target-
ing both the NP and the AF, through highly hydrated composites [365–367]. Evidence
has been predominantly collected in vitro/ex vivo, whereas in vivo studies comprise a
far smaller proportion, which relates to the need for development of appropriate animal
models previous to clinical trials. Remarkably, appropriate animal models to test disc
regeneration strategies shall be conditioned by the existence of corresponding models for
DD, which remains a challenge per se [368]. Evidence of this shortcoming comes from a
2014 meta-analysis of in vivo and clinical studies for DD that reported only four clinical
studies that utilized biomaterials [369]. Hence, continued progress is required in the field of
IVD TE to increase translational research and the number of clinically approved biomaterial
options for patients. Table 1 summarizes both key biomaterials and the related evidence
that have been achieved for disc TE.

Table 1. The major natural and synthetic biomaterials that have been studied for their potential use for treating intervertebral
disc degeneration (DD). In the context of intervertebral disc (IVD) applications, potential strengths (+) and drawbacks (−)
for each material are provided as well as the IVD-specific studies accompanying them.

Hydrogels for IVD TE

Natural Hydrogels

Type Material
Biomechanical Properties IVD Studies

Alginate

+ Injectable, biocompatible, tailorable properties,
anionic properties attract cationic PG [358].

− Diminishing structural integrity over time in
calcium cross-linked hydrogels [370].

• In vitro/ex vivo: In situ gelation of calcium
carbonate cross-linked alginate hydrogel
showing ability to maintain disc height over
cyclic loading regime [371].

• In vitro: Porcine AF, NP, and transition zone
cells were cultured in sodium chloride
cross-linked alginate beads demonstrating IVD
relevant ECM expression but diminished
mechanical properties [370].

• In vitro: Bovine NP cells encapsulated in a
photo-cross-linkable alginate hydrogel showed
decrease cell viability over 14-d culture
period [372].

Fibrin

+ Biocompatible, gelation time control,
biodegradable, promotes matrix synthesis
stem cell-derived chondrocytes,
non-immunogenic [366].

− Soft in nature (however, can be modified to
overcome this) [373].

• In vitro/ex vivo: Fibrin-genipin hydrogel with
silk scaffold for AF and NP repair
demonstrated cytotoxicity to cells in vitro and
no recovery of disc height but matrix
comparable to healthy disc in bovine organ
culture [374].

• Ex vivo/in vivo: Fibrin-genipin adhesive
hydrogel tested in bovine organ culture and in
a mouse model for AF defect repair
demonstrating biocompatibility and
biomechanics’ restoration [375].

• Clinical: A phase II, randomized, double-blind,
placebo-controlled study. Assessment of safety
and preliminary efficacy of juvenile
chondrocytes delivered using a fibrin carrier
(NuQu®) for treating disc pain [376].
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Table 1. Cont.

Collagen

+ Good cell adhesion, biocompatibility, and
proliferation. Non-immunogenic. Major
component of IVD.

− Poor mechanical properties with high
degradation rate [361].

• In vitro: Dense collagen I hydrogel
demonstrating comparable functional
characteristics to NP [377].

• Ex vivo: Condensed collagen gel for NP
replacement showed disc height restoration but
extrusions of implant during stress
testing [378].

• Composites:
• In vitro: Human NP cells encapsulated type II

collagen-hyaluronic acid hydrogel crosslinked
1-ethyl-3 (3-dimethyl aminopropyl)
carbodiimide demonstrating cell proliferation
but no increase in matrix gene expression
compared with control gel [379].

• In vivo: Transplantation of HA/collagen
hydrogel into porcine nucleotomy model
causing localized annular damage and
inflammation [380].

Atelo-collagen

+ Low immunoreactivity, injectable due to
liquid–solid transition when warmed to body
temperature, support high-density cell cultures
[360].

• Ex vivo: Autologous MSC encapsulated in
atelocollagen II gel and transplanted into IVD
of rabbit disc degeneration model resulting in
disc height recovery and PG
accumulation [381].

• In vivo: Autologous MSC encapsulated in
atelocollagen II gel and injected into
degeneration-induced NP of rabbits resulting
in comparable PG accumulation to healthy
control [382].

Chitosan

+ Supports IVD cell encapsulation, cationic
properties retain PG, thermoresponsive [383].

− Cell adhesion and mechanical properties not
ideal for IVD [358].

• In vitro: Bovine IVD cells encapsulated in
chitosan hydrogel showed retention of
NP-produced PG within gel. Gel cytotoxic
towards AF cells [383].

• In vitro: Human MSC differentiation into
NP-like cells in a chitosan-glycerophosphate
hydrogel [384].

Gellan gum

+ Thermo-reversible gel properties, acid and
heat resistant, non-cytotoxic, gelation without
the need of harsh reagents, supports
chondrocyte ECM deposition [360,385].

− Mechanically weak, requires high gelling
temperatures, and lacks anchorage sites for
adherent dependent cells [386].

• In vitro: Ionic and photo-cross-linked
methacrylated gellan gum showed lower water
uptake ability but improved mechanical
properties than gellan gum alone in the context
of NP repair [385].

• In vitro/In vivo: Encapsulated MSC in gellan
gum hydrogel show cell viability in vitro and
signs of chondrogenesis in mouse
subcutaneous implant [387].

• In vitro: Gellan gum hydrogels reinforced with
nanocellulose demonstrated AF biomechanical
properties and bovine AF cell support [388].
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Hyaluronan
(hyaluronic acid)

+ Retains water, non-immunogenic,
anti-inflammatory, and low cost. Bioactive by
binding with cell surface receptors and ECM
proteins, which promotes cell infiltration [358].

− Osteogenic properties and cytotoxic at high
concentrations [361].

• In vivo: MSC injected into rat IVD using 15%
hyaluronic acid hydrogel. Initial significant cell
loss followed by proliferation. An increase in
disc height was shown [389].

• In vivo: Injection of hyaluronic acid hydrogel
in rat tail disc degeneration model
demonstrating signs of pain marker reduction
and attenuation of inflammation [390].

• Clinical: Prospective, multicenter,
double-blinded, controlled phase 2 study.
Safety and efficacy assessment of allogenic
MSC injected with hyaluronic acid in disc
degeneration patients (no results posted) [391].

• Composites:
• Ex vivo: Bovine NP cells cultured in a

fibrinogen-hyaluronic acid-based hydrogel
showed maintenance of some NP markers and
disc height recovery in ex vivo organ
culture [392].

Synthetic Hydrogels

Type Material
Biomechanical Properties IVD Studies

Poly N-isopropyl-
acrylamide

(pNIPAM)-based
hydrogels

Laponite crosslinked pNIPAM-co-DMAc:

+ Thermo-responsive hydrogel injectable above
body temperature and solidifies upon cooling
to 37 degrees C. [393], supports differentiation
of human MSC into NP cells [394], excellent
biocompatibility [395]

• In vitro: Assessment of hMSC to NP cell
differentiation in pNIPAM hydrogel in
normoxia and hypoxia [394].

• Ex vivo: Human MSC and bovine NPs
encapsulated in pNIPAM hydrogel and
injected into papain-induced bovine disc
degeneration model [393].

• In vitro: Laponite cross-linked
pNIPAM-co-DMAc encapsulation of hMSC
showed NP differentiation was not affected by
catabolic culture conditions [356].

• In vitro/ex vivo: HA-pNIPAM hydrogel
seeded with autologous human NP cells and
implanted in intact human IVD explant,
demonstrating matrix synthesis [337].

HA-pNIPAM hydrogel:

+ Solidifies beyond 32 ◦C and is injectable at
room temperature [130]

• In vitro/ex vivo: Improved NP-like
differentiation of hMSC in vitro in
HA-pNIPAM hydrogel with GF compared to
alginate hydrogel. Direct implantation of
hMSC/HA-pNIPAM into bovine organ culture
better than pre-differentiating hMSC [396].

• In vitro/ex vivo NP cell support and ECM
deposition in HA-pNIPAM hydrogel compared
to alginate beads, in vitro. Implanted
cell-hydrogel construct in bovine disc organ
culture showed cell viability [397].
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Polyethylene
glycol (PEG)-based

hydrogels

+ Non-cytotoxic, easily synthesized, PEG-based
hydrogels have high hydration properties.
Photo-polymerizable composites [358].

− Low biorecognition of cells, which affects cell
adhesion properties, non-biodegradable [358].

Composites:

• In vitro: PEG-hyaluronic acid hydrogel screen
for porcine AF and NP cell proliferation and
sGAG production identified lower molecular
weight hyaluronic acid gels were most suitable
for the IVD [398].

• In vitro: Porcine NP cell 2D and 3D culture in
photo-crosslinked PEG-laminin 111 hydrogel
showed support of cell viability and matrix
deposition [399].

• In vitro/in vivo: PEG-albumin hydrogel tested
with human disc cells by comparing 2D, 3D,
and mouse subcutaneous implant culture.
Significantly higher SOX9 and HAS expression
but not of aggrecan or collagen types I/II [400].

• Ex vivo: Injection of the photo-polymerizable
PEG dimethacrylate nano-fibrillated cellulose
composite hydrogel into a bovine organ model
of IVD resulting in disc height restoration [401].

• In vitro: Bovine NPs cultured in
high-molecular-weight hyaluronic acid
cross-linked with PEG-amine showed reduced
pro-inflammatory markers [402].

Polyvinyl alcohol
(PVA)-based

hydrogels

+ Mechanical properties easily tailorable to IVD
via PVA concentration adjustments [403,404].
−Non-degradable and expensive, limited
biological testing for IVD applications [361].

• In vitro: PVA cryogel biomechanical testing
found 3% PVA concentration with 3
freeze-thaw cycles was optimum for mimicking
compression properties of the NP [404].

• In vitro: Elastic modulus similar to native
articular cartilage was attained from the
fabrication of PVA and bacterial cellulose
nanofiber nanocomposite however, not directly
compared to IVD biomechanical
properties [405].

Composites:

• In vitro: PVA containing laponite and bacterial
cellulose nanocomposites were mechanically
tested showing tailorable stiffness. Wear and
fatigue properties were enhanced with
nanofiller adjustments and two-component
PVA hydrogel could be tailored to mimic IVD
compression properties [406].

• Ex vivo: PVA-polyvinyl pyrrolidone composite
hydrogel showed good fatigue properties and
restored compressive stiffness in human
cadaver models [403].

• In vitro: PVA-silk composite cyrogel showing
silk improved cell adhesion and survival of
rabbit adipose stem cells over culture period.
No proliferation was observed or capacity to
encourage NP differentiation [407].
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Self-assembling
peptide hydrogels

(SAPH)

+ Provide the advantages of natural and
synthetic biomaterials while overcoming their
individual disadvantages, easily tunable
biomechanics via peptide sequence
modifications, biodegradable and
biocompatible, chemically defined, self-healing
[408,409].

+ Functionalization: Functionalize the peptide
with motifs that replicate useful biological
molecules, e.g., BMP [410]. Graphene
incorporation can act as delivery vehicles for
biological factors [411]. Graphene oxide is
biocompatible and promotes cell adhesion
[412].

− Stability and variable immunogenic concerns
remain a challenge [408].

• In vitro: Good cell viability of 3D cultured,
de-differentiated human NP cells in FEFEFKFK
SAPH. NP phenotype (except aggrecan) and
GAG synthesis was significantly higher at days
7 and 14 compared to day 1 of 3D culture [413].

• In vitro: 3D culture of rabbit NP cells in
KLD-12 SAPDH demonstrating increased cell
viability and GAG release into media
compared to hydrogel only control [414].

• In vitro: Rabbit NP cells showed greater cell
viability, inward migration, and ECM synthesis
in RLN functionalized RADA16 compared with
pure RADA16 [415].

• In vitro: Human degenerated NP cells 3D
cultured in RKP (BMP7 motif) functionalized
RAD16-I SAPH showed increased migration,
proliferation, and expression of NP marker
genes compared to RADA16-I alone [416].

• In vitro: Graphene oxide flakes incorporated
into FEFEFKFK self-assembling peptide
hydrogel mechanically similar to NP and
supports bovine NP cells [417].

Scaffolds for IVD TE

Natural Polymers

Type Material
Biomechanical Properties IVD Studies

Silk fibroin

+ Compressive and tensile strength, slow
degradation, cytocompatible, modifiable with
covalent attachment of additional peptides
[360].

• In vitro: Bovine AF cells seeded onto porous
silk RGD-modified scaffolds demonstrating cell
support and ECM deposition and higher
collagen II and aggrecan expression than
nonmodified scaffold [418].

• In vitro: Porcine AF and chondrocyte cells
seeded onto biphasic silk scaffold for AF and
fibrin/hyaluronic acid for the NP. Increase in
GAG and collagen over four-week
culture [419].

• In vitro/in vivo: Porcine AF cells and hMSC
show cell viability and appropriate
differentiation toward AF phenotype on
multi-layered silk scaffold compared to native
AF cells. Subcutaneous mouse implant showed
negligible immune response [420].

Alginate

+ Biocompatible, biodegradable, anti-microbial,
cheap, high porosity, support cell adhesion and
growth [360].

− Poor native mechanical strength needs to be
overcome with cross-linking strategies [421].

Composites:

• In vitro: Alginate-chitosan scaffold showed
fiber alignment similar to AF and supports
canine AF cell growth and ECM (collagen,
aggrecan) deposition [422].

• Human NP cells cultured on alginate scaffold
demonstrated a fall in cell number over the
21-day culture period [423].
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Atelo- collagen

+ Low-immunogenic derivative of collagen, safe
and biocompatible, supports stem cell and disc
cell regeneration of the IVD [424].

• In vitro: Rabbit NP cells seeded on
atelocollagen types I and II scaffolds
supplemented with BMP demonstrating
anabolic gene and protein expression in type II
but not type I scaffolds, compared with
control [424].

• In vivo: Rabbit AF cells cultured on
atelocollagen honeycomb-shaped scaffold and
transplanted into rabbits showed cell
proliferation and production of hyaline-like
cartilage [425].

Synthetic Polymers

Type Material biological and mechanical properties IVD Studies

Poly-urethane (PU)

+ Biocompatible, biodegradable, decomposes to
water and carbon dioxide and high
biomechanical properties [358].

• In vivo: PU mass transfer device transplanted
into punctured porcine AF showed similar
biomechanical properties to control group as
well as enhanced energy production [426].

• Ex vivo: Implantation of biphasic PU scaffold
into nucleotomy bovine whole organ culture
model demonstrated restoration of disc height,
cytocompatibility with native cells, and
downregulation of catabolic and upregulation
of anabolic genes [427].

Polylactic acid
polyglycolic acid

(PGA)

Copolymer:
polylactic-co-
glycolic acid

(PLGA)

+ Biocompatible and biodegradable, approved
by FDA for in-human use [358].
− Potentially encourages nerve in-growth in
the disc [428].

• In vivo: Sheep AF cells seeded onto PLGA
scaffold and implanted in mice demonstrating
collagen I expression [429].

Composites:

• In vitro: Human MSC cultured on a biphasic
polyL-lactic acid nanofibrous outer scaffold
and inner hyaluronic acid hydrogel to mimic
the architecture of AF and NP, respectively.
Increased IVD ECM protein accumulation in
both regions over 28d culture period [430].

• In vivo: PLGA-fibrin gel plugs implanted into
empty disc defects resulting in increased nerve
ingrowth than empty disc controls [428].

Poly D,L-lactide
(PDLLA)

+ Supports adhesion, infiltration, and
proliferation of MSC [431].

− Has been shown to encourage osteogenic
differentiation of MSC [431].

• In vitro: Human AF cells cultured within
PDLLA/Bioglass® foam demonstrated
proliferation over 4-week culture period and
increased PG and collagen deposition than no
Bioglass® foam control [432].

Composites:

• In vitro: b-TCP and calcium carbonate particles
loaded into acrylic-terminated
oligo[D,L-lactide-co-(ε-caprolactone)].
Biomechanical tests were performed,
demonstrated that the addition of fillers aided
achieving properties similar to the IVD [433].
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Poly-ε-
caprolactone

(PCL)

+ Biodegradable, FDA approved for in-human
use, controlled decomposition time through
alternative polymer combinations, high
elasticity [358].

• In vitro: Electrospun PCL scaffold (AF)
combined with cell-seeded hydrogel for rat disc
replacement showed effective cell
infiltration [434].

• In vitro: Bovine MSC seeded onto nanofibrous
anistropic PCL scaffold demonstrating collagen
deposition and alignment comparable to native
bovine AF [435].

• In vitro: PCL fibrous scaffold fabricated by
wet-spinning showed rabbit AF cell adherence,
proliferation, and increased collagen and
aggrecan expression over 3-week culture [436].

Microparticles (MP) are another type of biomaterial employed in IVD TE strategies.
MP have long been explored within the pharmaceutical industry for use in drug deliv-
ery [437]. By tailoring their design, controlled temporal and dose release of biologicals
can be achieved, e.g., to reach the biological targets reviewed in Section 4.1. Furthermore,
controlled administration of biologicals is extremely valuable for IVD TE, where cell and/or
growth factor therapeutics would rely on single surgical procedures rather than on repeated
delivery. In vitro, delivery of GDF6 through MP was demonstrated to be more efficient
than repeated exogenous delivery to differentiate adipose stem cells into NP cells [327],
which provides a promising direction for single surgical procedure approaches. MP have
also been used to release the anti-inflammatory factor cyclooxygenase-2 in a canine dog
model of DD [438], leading to encouraging results of preventing disease progression and
reducing the inflammatory signature prostaglandin E2, a crucial nociception mediator.

More recently, the advancements of nanomaterial technologies have lent themselves
to IVD applications [439], allowing the tissue architecture to be replicated at a much finer
scale than before, hopefully leading to biomaterials eventually indistinguishable from
native tissue. Examples include poly L-lactic acid combined with nanofibrous scaffold to
mimic the AF [430] and PGA-chitosan nanocomplex for NP regeneration [440]. Further-
more, nanomaterials are also being applied for growth factor delivery, such as assembling
nanoparticles loaded with bFGF (basic fibroblast growth factor) onto microspheres for
discogenic differentiation of MSC [441]. There is no doubt that the ever-advancing field of
biomaterials will play a key role in providing solutions for DD in the future, whether that
is supporting cell/drug delivery or acting purely as structural support for innate tissue
regeneration.

5. Systems’ Modeling for the Exploration of IVD Degenerative and Regenerative
Mechanisms

Successful IVD treatment/regeneration strategies rely on a holistic understanding of
the highly multifactorial (patho)physiological dynamics of the disc system, to be under-
stood at different time and length scales. In this sense, theoretical and computer modeling
offers unique possibilities (Figure 3).
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Figure 3. In silico multiscale/integrative modeling as an objective in IVD research. (A) Organ level:
3D finite element modelling. Deformable nonlinear geometry, heterogeneous assembly of tissues.
(B) Tissue level: 3D finite element modelling. Composition-dependent multiphysics and anisotropic
behavior of the tissues, transport of solutes through tissue matrices. (C,D) Multicellular levels:
agent-based modeling in regions of interest. Prediction of cell responses to multifactorial (micro-)
environments. (E) Cell/subcellular levels: network modeling. Single cell stimulation, multiple states.

For musculoskeletal joints commonly affected by highly prevalent disorders such
as osteoarthritis, efforts in model developments have spanned over the scales, from the
multibody musculoskeletal system to cell regulation networks, passing through detailed
knee joint finite element models [442]. Even if the systematic integration of models of
different nature at different scales is still incomplete, developments use to be much more
modest as far as the IVD and DD are concerned. Indeed, model developments to simulate
and virtually explore the pathophysiology of DD have long remained largely limited to the
tissue and organ scales [443]. Only very recently, cell-scale models have finally emerged
out of novel integrations of knowledge in IVD cell biology and computer methods in
systems biology [35]. Arguably, the holistic modeling of the heterogenous IVD system and
the degeneration thereof is a tremendous challenge that will surely contribute to further
progress in the development of in silico tools and medicine in other fields of rheumatology.

On the one hand, the process of model construction and assessment against evidences
provides important clues about the minimum hypotheses and quantitative factors essential
to reproduce known phenomena in health and disease. On the other hand, the huge
capacity for parametrical studies turns in silico models into unique virtual laboratories to
design new hypotheses and experiments. Eventually, model predictability, even in terms
of relative analyses of simulation results, i.e., semiquantitative predictability, is definitively
cornerstone to enable mechanistic explicability and better control of patient stratification
and treatment prognosis. Significant progress in IVD modeling has been made during the
last years at multiple scales and is summarized below, along with relevant findings about
IVD regulation, DD, and possible therapies.
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5.1. Organ- and Tissue-Scale Simulations of the IVD Biophysical Regulation

IVD tissues can be considered as biphasic materials, i.e., a combination of solid and
liquid phases, at the millimetric scale. The porous solid phase corresponds to the tissue
ECM, i.e., mostly collagen and PG. The liquid phase is mainly composed of water and
solutes that flow through the pores of the solid phase. Biphasic mixture theory and Biot
poroelastic theory allow to model IVD tissues and discriminate the respective roles of the
solid and the fluid [444,445], especially in terms of mechanically coupled solute transport
to the cells, for further simulations of cell activity [443]. The effect of mechanically coupled
solute transport on cell activity has been referred to as indirect mechanotransduction,
which depends on the capacity of the IVD tissues to deform [132] and control both the
diffusion distances and the porosity, i.e., water content, in the disc [446]. Obviously, the
whole process depends on tissue composition, i.e., on the effective condition of the IVD.

Composition-based tissue models were developed for the articular cartilage [447] and
were later applied to the IVD [448]. Implemented into detailed finite element models of
the whole IVD, these models included the osmotic pressure in the disc tissues, controlled
by PG, collagen, and water contents as explicit model parameters. Strain energy density
calculations in the AF further considered the anisotropy induced by the oriented collagen
type I. Composition-dependent tissue modeling has paved the way to map the relative
effects of local ECM depletion, in the NP, the AF, and the CEP, on the biphasic behavior of
the IVD and on the indirect mechanotransduction phenomena [37,68]. Such tissue models
were also coupled to phenomenological direct mechanotransduction theories, initially
developed to predict the fate of bone MSC in endochondral bone healing, to calculate the
likely long-term IVD remodeling after spine surgery [449]. The effect of PG and fixed-
charge density contents on the diffusion of antibiotics from the vasculature to the IVD was
also assessed through finite element mechano-transport simulations [450,451].

The hypothesis that impaired diffusion of metabolites across the IVD might accelerate
DD through cell nutritional stress [2,34] has motivated experimental measurements of cell
viability in function of local pH and glucose concentrations in a diffusion chamber [207]
and the establishment of empirical relationships between the oxygen, glucose, and lactate
metabolism by IVD cells [98]. These works have been instrumental for the implementation
of the aforementioned mechano-transport models, to couple IVD tissue mechanics, IVD
morphology, local cell metabolism, and cell death [443]. Such simulations revealed that
water contents in the disc, especially in the NP, largely control the effective diffusion of
solutes, as well as the diffusion distances, under physiological mechanical loads [446,452].

The diffusion process in the disc ECM is relatively low and disc cell populations can
withstand adverse nutritional environments during several hours to a few days before
dying [207]. Accordingly, model simulations point out that the effect of molecule mechano-
transport on IVD cell activity becomes remarkable under sustained rather than under
transient mechanical loads [446]. Furthermore, mechano-transport simulations suggested
that indirect mechanotransduction on the long term, i.e., decades, might explain natural
aging in the IVD [36]. Interestingly, a collection of patient-specific IVD models showed that
large lumbar discs, i.e., higher than 14 mm, might be prone to spontaneous degeneration
in contrast to average seize IVD, i.e., 8–12 mm high, because diffusion distances were too
large to allow the nutrients to reach the cells in the center of the NP [453].

Remarkably, models and simulations have proven great ability to identify specific risk
factors and multifactorial mechanisms. Endplate obstruction because of sclerosis/calcification
has been long suspected to be responsible for nutritional disturbances in the IVD [454–456].
However, micro-modeling of vertebral endplate specimens coupled with full IVD finite
element simulations suggests that the variability of the calcified endplate structure and
porosity with aging and degeneration is unlikely to generate any barrier able induce
nutritional stress in the IVD [457]. In contrast, the use of a composition-based IVD model
showed that the early depletion of CEP in terms of PG and collagen type II increases the
overall permeability of the endplate, with a specially high influence of the loss of PG [37].
Such a permeability increase was also measured with aging [59], and simulations indicated
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that it might provoke a chronic dehydration of the NP, down to water contents characteristic
of Pfirrmann grade III degenerated discs, under daily physiological loads. This reduction of
water largely reduced the capacity of the nutrients to reach NP cells located in the anterior
part of the IVD, close to the AF. Interestingly, these results may provide mechanistic
explanations of the severity of endplate-driven DD and LBP, as eventually revealed by
Modic changes and vertebral endplate defects, in the general population [21,458,459]. Yet,
such level of modeling cannot explain the pathophysiology of the CEP degeneration, per
se, for which it is necessary to go down the scale.

5.2. IVD Cell Models and Integration of Experimental Cell Stimulation Data

As reflected through Sections 3 and 4, experimental studies at a cellular level in-
creased our understanding of anabolic or catabolic processes by IVD cells, and biochemical,
metabolic, and mechanical stimuli that affect cell activity could be revealed. However,
critical interactions within the multifactorial environment to which a cell is exposed over
long periods of time are difficult to capture experimentally or clinically, pointing out the
need for in silico approaches down to the cell level.

Recently, a first agent-based modeling approach was proposed to simulate the behav-
ior of NP cells in multicellular systems depending on biochemical microenvironments [35].
The model uses experimental findings to estimate cell viability and cell activity in terms
of relative mRNA expressions of collagen types I and II and aggrecan and of MMP and
ADAMTS proteins, based on user-defined nutritional factors and on inflammation. It
exploited network modeling approaches from systems biology [460], to integrate the re-
spective effect of different micro-environmental cell cues on effective cell activities. It was
then further developed to integrate direct mechanotransduction, i.e., load magnitude and
frequency, effects [461]. On the one hand, such an approach informed about the likely
differential behavior of non-inflamed and inflamed NP cells in similar microenvironments.
On the other hand, simulations captured the expected relative influence of different me-
chanical load regimes on the capacity of NP cells to retain a full anabolic activity or provoke
ECM depletion.

Complex interactions at a (sub)cellular level can be approached through different
modeling formalisms such as Boolean or Bayesian networks, Petri nets, constraint-based,
rule-based, or agent-based models, differential equations, process algebra, interacting
state machines, or cellular automata [462]. Still incipient in IVD research, models in
systems biology often focus on one type of network, mainly metabolic-, signaling- and
gene-regulatory networks, facing limitations in interconnecting these networks toward
holistic representations of cell simulations [462]. Future developments shall couple systems
biology approaches and organ/tissue-scale finite element models (Section 5.1). As such, the
multiscale dynamics that control the IVD fate, and the mechanisms that lead to different
phenotypes of IVD failure, will be represented, thereby allowing the mechanistic identi-
fication of new therapeutical targets. Furthermore, integrating cell regulation pathways
into single and collective cell behavior models could uniquely bridge the gap between
IVD tissue phenotypes and the intracellular machinery to explain the apparent links with
different genetic variants [57,463].

5.3. Cell Signalling Pathway Models and Integration of Multi-Omics Data

As exposed in Section 3, cell signaling (or signal transduction) is the process that
describes how cells communicate with their environment and how they respond to external
or internal stimuli [464]. Signal transduction pathways describe the transformation of a
stimulus into a biochemical signal often starting with ligand-receptor binding, followed
by an intracellular cascade of protein–protein interactions and resulting in a cellular re-
sponse/cell fate decision such as expression of a certain gene, apoptosis, proliferation, etc.
Signal transduction plays a fundamental role in cellular behavior and the high complexity
of cell signaling has led to many mathematical modeling approaches in order to better
understand the underlying dynamics and deduce quantifiable conclusions [465]. In general,
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signaling pathways can be described as node-edge graphs (directed or undirected) with
the proteins as the nodes and the edges as the interactions between the proteins. These
protein–protein interaction networks are stored in several publicly available databases
and aim to represent the existing knowledge of the scientific literature about either the
entire interactome or the structure of specific pathways. Some of the popular databases
are presented in Table 2, which can serve as a starting point for the creation of signal
transduction pathways.

Table 2. Publicly available databases on signaling pathways and protein–protein interactions.

Title Content Size Address

KEGG

Integrated database resource
consisting of 18 databases

including systems, genomic,
chemical, and health

information on the molecular
interaction networks in

biological systems

KEGG Pathway: 536
pathways https://www.genome.jp/kegg/

[466]

Reactome
Pathway database with

interactive web visualization
tool

2272 pathways, 10,833
proteins, 12,505 interactions https://reactome.org/

[467]

STRING Protein–protein interaction
networks

5000 organisms, 24.6 mio
proteins, >2000 mio

interactions
https://string-db.org/

[468]

WikiPathways Pathways of different species
stored in wiki format 2785 pathways, 28 species https://wikipathways.org/

[469]

Pathway Commons

Biological pathway data
extracted from various

databases with visualization
tool

4700 pathways, 2.3 mio
interactions https://pathwaycommons.org/

[470]

Omnipath
Literature-curated

mammalian signaling
pathways from >50 databases

10,934 proteins, 53,542
interactions http://omnipathdb.org/[471]

MatrixDB

Database focused on
interactions established by

extracellular matrix proteins,
PG and polysaccharides

106,453 associations from
38,921 experiments http://matrixdb.univ-lyon1.fr/

[472]

After extraction of the pathways of interest, prior-knowledge network (PKN) can be
modeled with various mathematical approaches. The most widely used ones are either
logic modeling employing Boolean or fuzzy-logic formalisms [473–475] or ordinary differ-
ential equation models [476,477]. Whereas the former ignores time-dependent behavior
and assumes instantaneous state changes of the system, the latter can describe transient
behavior at a cost of a high number of reaction parameters that are difficult to identify
experimentally. Interestingly, methodologies as presented by Mendoza and Xenarios [460]
and Krumsiek et al. [478] use a generalized formulation to transfer discrete node-edge
graphs into continuous systems, to include dynamics into logic models.

Although considerable effort has been put to create databases on protein interaction
and cell signaling pathways, the existing information has and will always have limitations,
e.g., biases (well-known proteins are studied more often than under-reported players),
assumptions during the data mining algorithms, and ambivalent behavior of individual
protein pairs (stimulation and inhibition). The best approach to overcome this intrinsic
limitation is to fit the PKN structure to our own experimental data. On this front, various
massive parallel sequencing platforms can be used to provide systematic molecular profil-
ing of human cells, which will be tackled in the next few years by the European Innovative
Training Network Disc4All in IVD research [479]. The technologies are summarized under

https://www.genome.jp/kegg/
https://reactome.org/
https://string-db.org/
https://wikipathways.org/
https://pathwaycommons.org/
http://omnipathdb.org/
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the term ‘omics’, considering, e.g., genomics, proteomics, metabolomics, lipidomics, and
other high-throughput technologies [480].

An attractive techniques allowing protein detection with high sensitivity and speci-
ficity as well as relatively simple experimental protocols are multiplexed ELISA immunoas-
says on magnetic beads [481]. This technique allows the simultaneous measurement of
phosphoprotein activity and cytokine abundance (several dozens in one sample) after stim-
ulation of biological samples [482]. This high-dimensional data serves as a starting point
to optimize and fit the developed signaling pathway models. Here, either genetic algo-
rithms [483] or integer linear programming formulations [484] are viable approaches to sys-
tematically fit node-edge graphs to the experimental data. In particular, the CellNOpt [485]
and SigNetTrainer that is part of the CellNetAnalyzer toolbox [486] offer user-friendly ways
to perform such optimization routines. A recently developed alternative is DoRoTHea [487]
that creates signal transduction graphs based on gene expression measurements taken,
for example, from microarray studies. In the end, these pathways models can be used to
investigate the overall dynamics of the system, identify the most influential nodes, or focus
on the specific parts of the signal transduction network to see the effect of various stimuli
and/or knockouts [465].

Many pathways are involved in IVD cell regulation [187] and their individual analysis
has been performed in the past in a vast amount of studies [488–491]. Until now a holistic
representation of pathways in the IVD is still missing and a possible approach to tackle
this obstacle might follow the strategy described above, as proposed in the Disc4All
project [479]. Especially, the requirement of high-quality experimental data (ideally from
relevant in vitro models) is one of the major challenges, in order to capture the mechanisms
of multifactorial diseases such as DD. However, the falling costs of high-throughput
technologies will lead to increasing amounts of publicly available molecular information.
The rapid developments in computational biology tools might then bridge the gap between
information and mechanistic knowledge in DD and IVD regenerative therapies.

6. Conclusions

This review provides an integrative view of the current knowledge about the non-
degenerated and degenerated IVD at the tissue, cell, and molecular levels and of current
disc regeneration strategies. It further summarizes recent modeling approaches that illus-
trate the capacity of in silico models to simulate complex interactions over different time
and length scales and supports improved identification of risk factors and the effect thereof
at the molecular level, for improved targeted therapies.

At the tissue level, sophisticated interactions among PG, water, and different types
of collagen are crucial to keep the IVD mechanically competent, also ensuring proper
cues at the cell level for optimal tissue maintenance, regardless of the harsh mechanical,
osmolar, metabolic, and pH environments. Despite the highly elaborated responses of IVD
cells to their adverse microenvironment, IVD homeostasis is fragile, and multifactorial
perturbations of cellular cues might trigger a cascade of catabolic responses, such as
increased synthesis of catabolic cytokines, matrix-degrading enzymes, or neurotropic and
angiogenic factors, which gradually affects ECM integrity.

Those responses are triggered by complex and interconnected cell signaling pathways,
the detail of which becomes better known, based on multiple controlled experiments
that exploit gene-editing techniques, among others. Such understanding is of utmost
importance to develop new molecular treatments and is being exploited in regenerative
strategies based on pharmacological solutions. The challenge resides, however, in the
proper anticipation and control of the differential expression of the pathways and cross
talks, when the IVD cells are subjected to complex cocktails of stimuli, part of which depend
on top-down mechanical, nutritional, and chemical spatiotemporal events.

Cellular therapies for IVD regeneration have been widely studied with several poten-
tial cell sources investigated. However, given the harsh conditions within a degenerated
IVD and the need to control mechanotransduction effects, combined cell therapy, molecular
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targets, and biomaterials approaches shall be the most promising approaches. Because of
the complexity to thoroughly apprehend the effect of such combinations, holistic under-
standing of top-down and bottom-up propagations of the consequences of (non-)altered
cell activities shall be necessary.

In silico modeling approaches were shown to have great potential to simulate multi-
factorial mechanisms and identify the effect, down to the cell level, of specific risk factors
across the scales. These approaches are still relatively recent and even incipient (e.g., at
the molecular and cell scales) in IVD research. Yet, ongoing studies are providing robust
proofs of concepts of the exploitability of computer models and simulations and open
new horizons in IVD science, by simulating multicellular systems through network- and
agent-based modeling. The control of these calculations from the tissue and organ scales
can be described through multiphysics and finite element modeling. Latest explorations
in this sense targeted mechanotransport and indirect mechanotransduction phenomena
and results pointed out the importance of different spatio-temporal events that involve the
entire IVD. Eventually, models and simulations can stand for virtual labs, thereby allowing
us to virtually test numerous regeneration approaches that will be difficult to anticipate or
extremely costly otherwise.
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Abbreviations

ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs
AF Annulus fibrosus
BMP Bone morphogenetic protein
CEP Cartilage edplate
DD IVD degeneration
ECM Extracellular matrix
ER Endoplasmatic recticulum
ERK Extracellular signal-regulated kinase
FA Focal adhesion
FGF Fibroblast growth factor
GAG Glycosaminoglycan
GDF Growth differentiation factor
GF Growth factor
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HIF Hypoxia inducible factor
IGF Insulin-like growth factor
IL Interleukin
IVD Intervertebral disc
JNK c-Jun NH2terminal kinase
LBP Low back pain
MAPK Mitogen-activated protein kinase
MMP Metalloproteinase
MP Microparticle
MSC Mesenchymal stromal cell
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor kappa B
NGF Nerve growth factor
NP Nucleus pulposus
p38 p38 MAPK
PCL Poly-ε-caprolactone
PDGF Platelet-derived growth factor
PDLLA Poly D,L-lactide
PEG Polyethylene glycol
PG Proteoglycan
PGA Polyglycolic acid
PKN Prior-knowledge-network
PLGA Polylactic-co-glycolic acid
PNIPAM Poly N-isopropylacrylamide
PU Polyurethane
TE Tissue engineering
TGF Transforming growth factor
TNF-α Tumor necrosis factor alpha
TonEBP Tonicity-responsive enhancer binding protein
TonEBP/NFAT5 Tonicity-responsive enhancer binding protein/nuclear factor of activated T-cells 5
TRP Transient receptor potential
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