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We recognize well the abilities of dendritic cells to activate effector T cell (Teff cell)
responses to an array of antigens and think of these cells in this context as pre-eminent
antigen-presenting cells, but dendritic cells are also critical to the induction of immuno-
logic tolerance. Herein, we review our knowledge on the different kinds of tolerogenic or
regulatory dendritic cells that are present or can be induced in experimental settings and
humans, how they operate, and the diseases in which they are effective, from allergic to
autoimmune diseases and transplant tolerance. The primary conclusions that arise from
these cumulative studies clearly indicate that the agent(s) used to induce the tolerogenic
phenotype and the status of the dendritic cell at the time of induction influence not only the
phenotype of the dendritic cell, but also that of the regulatoryT cell responses that they in
turn mobilize. For example, while many, if not most, types of induced regulatory dendritic
cells lead CD4+ naïve or Teff cells to adopt a CD25+Foxp3+ Treg phenotype, exposure of
Langerhans cells or dermal dendritic cells to vitamin D leads in one case to the downstream
induction of CD25+Foxp3+ regulatory T cell responses, while in the other to Foxp3− type
1 regulatory T cells (Tr1) responses. Similarly, exposure of human immature versus semi-
mature dendritic cells to IL-10 leads to distinct regulatoryT cell outcomes.Thus, it should be
possible to shape our dendritic cell immunotherapy approaches for selective induction of
different types ofT cell tolerance or to simultaneously induce multiple types of regulatoryT
cell responses.This may prove to be an important option as we target diseases in different
anatomic compartments or with divergent pathologies in the clinic. Finally, we provide an
overview of the use and potential use of these cells clinically, highlighting their potential
as tools in an array of settings.

Keywords: dendritic cell, tolerance, regulatoryT cell, immunoregulation, IL-10, retinoic acid,TGFβ, vitamin D

During the 1960s, it was thought that macrophages, with their
capacity to phagocytose antigens, were required to initiate immu-
nity to foreign substances (1). It was known that lymphocytes
were mediators of immunity, but we knew little about how
antigens from an invading pathogen would reach the lymph
node-sequestered naïve lymphocytes (2). There was a gap in the
understanding of the initiation of adaptive immunity, a gap that
Ralph Steinman and Zanvil Cohn set out to fill. When Stein-
man began to study the spleen and lymph nodes, he observed
new cells that were distinct from macrophages in appearance
and function. These dendritic cells, so named because of their

Abbreviations: AHR, airway hyperresponsiveness; APCs, antigen-presenting cells;
BAL, bronchoalveolar lavage; BDCA, blood dendritic cell antigen; CTLA4, cytotoxic
T lymphocyte antigen-4; DC10 or DC-10, semi-mature or immature, respectively,
IL-10-differentiated dendritic cells; DC-SIGN, dendritic cell-specific intracellular
adhesion molecule 3-grabbing non-integrin; Foxp3, the transcription factor fork-
head box P3; ICOS and ICOS-L, inducible costimulator and inducible costimulator
ligand, respectively; IDO, indoleamine-2,3-dioxygenase; ILT, immunoglobulin-like
transcript; iTreg, induced CD25+Foxp3+ regulatory T cells; MHC, major histocom-
patibility complex; nTreg, naturally-occurring CD25+Foxp3+ regulatory T cells;
OVA, ovalbumin; RALDH2, retinaldehyde dehydrogenase 2; Teff cell, effector T cell;
TLR, toll-like receptor; Treg cell, regulatory T cell.

dendrite-like projections, had few lysosomes and only moder-
ate phagocytic activity (3, 4), but they expressed high levels of
major histocompatibility complex (MHC) molecules required for
presentation of extra-cellular antigens (5). He also observed that
dendritic cells were highly potent immune stimulators (6), and
now we often speak of dendritic cells as the most proficient of
professional antigen-presenting cells (APCs). By 1991, we had
accumulated substantial knowledge on the role of the dendritic
cell in the induction of immunity, but we were just beginning
to recognize that extrathymic dendritic cells could also play cen-
tral roles in the induction of tolerance (7), and it was not long
before we began to understand more about tolerogenic dendritic
cells and their potential applications (8–10). We now appreciate
that there are numerous discreet populations of naturally occur-
ring regulatory dendritic cells, but focusing on understanding the
immunobiology of these cells within their individual niches has
given us substantial insights on how we can generate and employ
regulatory dendritic cells for immunotherapeutic applications.
While dendritic cells can activate either CD4+ or CD8+, or even
CD4−CD8− T, B, and NK cells to become regulatory cells, this
review will be confined to a discussion on tolerogenic DC in the
context of CD4+ T cells and their responses. We will first describe
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the populations of dendritic cells found in vivo and then look at
the major populations of regulatory dendritic cells that have been
induced ex vivo, as well as the effector molecules employed by these
cells.

OVERVIEW OF DENDRITIC CELL BIOLOGY
In general, dendritic cells express MHCII but lack T cell (CD3), B
cell (CD19), and NK cell (CD56) lineage markers (11); some sub-
sets of dendritic cells express the monocyte/macrophage (CD14)
or NK cell/neutrophil and monocyte/macrophage (CD16) lin-
eage markers, and others the CD4 and/or CD8 T cell subset
markers. Dendritic cells are formed from bone marrow prog-
enitors that in general give rise to circulating dendritic cell pre-
cursors (12, 13) that seed the peripheral tissues as immature
cells (14). As quiescent or immature cells, they express recep-
tors for, and have an innate capacity to respond to an array
of inflammatory signals, including ligands for toll-like receptor
(TLR), NOD-like receptors, and scavenger receptors, as well as
inflammatory mediators, cytokines, and chemokines. The various
sub-populations of dendritic cells can respond in a qualitatively
and quantitatively distinct fashion to such environmental trig-
gers and differentiate extensively to become immunocompetent
accessory cells, such that they provide a crucial link between
the innate and adaptive immune responses (15). They upregu-
late cell-surface expression of their antigen-presentation machin-
ery, including processed antigen peptide-loaded MHCII (16) and
co-stimulatory molecules as well as receptors for lymph node-
homing chemokines (e.g., CCR7), and they downregulate their
phagocytic activities and receptors for local inflammatory sig-
nals (e.g., CCR5, CCR6) (14, 17). As dendritic cells mature,
they lose their ability to process new peptides (18, 19) and
migrate to their tissue-draining lymphoid organ, where they
present their processed antigens to T cells in the context of
cell-surface MHC (APC signal 1) together with supporting co-
stimulatory molecules (e.g., CD40, CD86; APC signal 2) and
T cell-polarizing cytokine signals such as IL-12 (20) (APC sig-
nal 3), inducing the T cells to differentiate into antigen-specific
effector T cells (Teffs; e.g., Th1, Th2, or Th17 cells) (13). But
dendritic cells can also provide a fourth APC signal of sorts
to T cells, by which they direct the trafficking of the edu-
cated T cell. In the gut, retinoic acid and transforming growth
factor (TGF)-β produced by dendritic cells together induce T
cells to express the α4β7 and CCR9 gut-homing receptors (21),
while in the skin-draining lymph nodes vitamin D metabolites
released by the dendritic cell induce T cells to express CCR10,
such that they become responsive to the skin-homing chemokine
CCL27 (22).

Tissue-resident dendritic cells that acquire innocuous envi-
ronmental or self antigens in the absence of local inflammatory
responses similarly migrate to the draining lymph nodes but, as
more quiescent cells, overall they express lower levels of MHCII,
co-stimulatory molecules, and IL-12, and secrete instructional reg-
ulatory mediators such as IL-10 or retinoic acid (23, 24). In this
way dendritic cells that are presenting innocuous environmental
antigens activate one of several types of regulatory T cell (e.g., Treg,
Tr1, or Th3) responses that are associated with immune tolerance
(Figure 1).

FIGURE 1 | Induction of immunologic tolerance by regulatory dendritic
cells. Immature or semi-mature dendritic cells that are incubated with, or
differentiated in the presence of, tolerogenic factors (e.g., IL-10, vitamin D3,
corticosteroids, or retinoic acid) (1) adopt a regulatory phenotype. When
these converted regulatory dendritic cells are pulsed with antigen and
exposed to cognate naïve or effector T (Teff) cells (2), they present their
processed antigen peptides in the context of MHCII, and also lower levels
of co-stimulation (e.g., CD40, CD86) to the T cells, but at the same time
many types of tolerogenic cells also provide inhibitory receptor (e.g., ILT2,
ILT4) signaling to the T cell. Counter-signaling from the engaged T cell
activates dendritic cell production of polarizing mediators (e.g., IL-10, TGFβ),
which together instruct the T cell to adopt a regulatory phenotype. The
nature of the instructional signals from the dendritic cell to the T cell
determine whether it adopts an IL-10-secreting CD25+Foxp3+ Treg
phenotype or an IL-10/TGFβ-secreting Foxp3− Tr1 phenotype (3). These
regulatory T cells are able to suppress the responses of cognate or
by-stander naïve or effector T cells in their microenvironment (4) and also to
convert endogenous tissue dendritic cells to adopt a regulatory phenotype
through induction of infectious tolerance (5), and thereby reinforce the
tolerance phenotype.

NATURALLY OCCURRING POPULATIONS OF DENDRITIC
CELLS
A large number of reports have described an array of dendritic cell
types and subtypes in different organ systems and animals, and it is
almost undoubtedly true that more will be described as we explore
further. Many of these sub-populations are or can be tolerogenic as
they are found in their steady state (e.g., pulmonary plasmacytoid
or myeloid dendritic cells), but for most if not all of these there
are inflammatory signals that can override this tolerogenic pheno-
type, converting these cells to an immunostimulatory phenotype.
In some tissues (e.g., gut, liver) dominantly tolerogenic signals are
constitutively expressed at high levels, while in other sites that are
not routinely exposed to the external environment these signals
may be much more subtle.

DENDRITIC CELLS IN THE BLOOD
Several distinct types of dendritic cells can be identified
in human peripheral blood. There are two sub-populations
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of MHCII+CD11c+CD123lo myeloid dendritic cells, includ-
ing CD1c/blood dendritic cell antigen (BDCA)-1+ cells and
CD141/BDCA-3+ cells, as well as MHCII+CD1c−CD123hi plas-
macytoid dendritic cells that also express BDCA-2/CD303, BDCA-
4/CD304, IL-3RA,and ILT7 (11,25). The CD141+MHCII+CD11c+

myeloid dendritic cell is the human counterpart of the murine
CD8α+ dendritic cell (25). In the mouse, the identities of circu-
lating tissue dendritic cell precursor(s) have not been all that well
documented (26). We know that murine splenic and lymph node
dendritic cells are continuously replaced from a pool of blood-
borne precursors (27), that splenic CD8α+ dendritic cells most
likely gain access to this organ via the vasculature (28), and that
MHCIIloCD11clo pDC do accumulate in the blood of mice (13,
28). While immunostimulatory (29) and tolerogenic (30) den-
dritic cells can be readily differentiated ex vivo from peripheral
blood monocytes in humans, it was only recently that LPS stimu-
lation of murine monocytes was reported to induce dendritic cell
differentiation (31). These murine monocyte-derived dendritic
cells express CCR7 and dendritic cell-specific intracellular adhe-
sion molecule 3-grabbing non-integrin (DC-SIGN) and localize
to T cell areas of lymph nodes, where they are highly effective in
presenting and cross-presenting antigens (31).

In humans, the BDCA-1+ and -3+ myeloid dendritic cell
populations can be mobilized from the bone marrow with Flt3
ligand alone while optimal plasmacytoid dendritic cells mobiliza-
tion reportedly calls for use of Flt3 ligand and G-CSF (25). The
circulating BDCA-1+/CD1c+ myeloid dendritic cell can secrete
abundant IL-12 and prime cytotoxic T cell responses (32), while
BDCA-3+ myeloid dendritic cells and BDCA-2+ plasmacytoid
dendritic cells instead secrete IFNγ and IFNα, respectively, on acti-
vation (32). A minor population of tolerogenic IL-10-expressing
CD1c−CD303−CD14+ dendritic cells has recently been described
in human peripheral blood, although much of the data regarding
their tolerogenic activities has come from studies with an in vitro
analog of the circulating cell (33).

INTESTINAL DENDRITIC CELLS
The intestinal immune system routinely faces the challenge
of discriminating pathogens from harmless commensal organ-
isms and other (e.g., food) antigens, as a prelude to trig-
gering effector and regulatory T cell responses, respectively
(34). The gut-associated dendritic cells include those in the
mesenteric lymph nodes (MLNs), intestinal lamina propria,
and the isolated lymphoid follicles (35, 36). The lamina
propria contains two populations of CD11c+ mononuclear
cells, including CD11chiCD103+CD11b+CX3CR1- cells and
CD11cintCD103-CD11b+CX3CR1+ cells; the CD103+ cells are
bona fide dendritic cells while the latter CD103− cells are now
thought to be resident tissue macrophages (37). Under steady-
state conditions, the CD103+ dendritic cells express retinalde-
hyde dehydrogenase 2 (RALDH2) (23, 38), TGF-β (39), and
indoleamine-2,3-dioxygenase (IDO) (40), such that targeting of
antigens to these cells leads to tolerance outcomes, while gut
inflammation dampens TGFβ and RALDH2 expression in these
cells, such that they instead induce vigorous T and B cell responses
(41, 42). CD103, the α chain of the E-cadherin ligand αEβ7 inte-
grin (43), is expressed on almost all lamina propria dendritic cells

and a subset of MLN dendritic cells (44). It has been reported that
gut luminal bacteria recruit lamina propria CD103+ dendritic cells
into the gut epithelium, from which they extend filipodia into the
lumen to sample gut antigens (37). RALDH2 is an enzyme that cat-
alyzes the synthesis of retinoic acid, a vitamin A derivative, which
plays a major role in immunologic tolerance within the gastroin-
testinal tract (45). Expression of CD103 and retinoic acid together
induce gut T cells to express the gut-homing receptors CCR9 and
α4β7 (44, 46). CCR9 and its CCL25 ligand regulate recruitment of
lymphocytes to the vasculature of the small intestine (47), while
α4β7 integrin expression confines extravasation of these T cells to
the intestinal post-capillary venules (48). Retinoic acid and TGFβ

together promote the differentiation of Foxp3+ Treg from naive T
cells (39), while retinoic acid further reinforces tolerance by damp-
ening Th17 cell differentiation (49). Retinoic acid also fosters B cell
isotype switching to IgA antibodies as well as their expression of
CCR9 and α4β7 (50–52), and thereby contributes further to local
tolerance responses.

PULMONARY DENDRITIC CELLS
Pulmonary dendritic cells can be differentially positioned in either
the conducting airway or the interstitium of the lung (15, 53). In
mice, CD11chi myeloid cells are found in both compartments,
while CD11c− cells are reportedly confined to the airway mucosa
(53). The airway dendritic cells form a prototypical network of
interdigitating cells positioned beneath the epithelium (54–56),
with many of these cells extending dendritic processes into the
airway lumen to sample airway antigens (57), just as occurs in the
gut (37). In mice these airway cells express CD11c+, MHCII+,
and CD11b+, but not CD8α− (15); they also express CD103
and tight junction proteins (claudin-1 and -7, and zonula occlu-
dens protein 2), which would play important roles vis-à-vis their
positioning within the epithelium (43). After airway antigen sam-
pling and processing, these cells can activate cognate T cells in
their immediate environment (57, 58), but also migrate to the
lung-draining lymph nodes where they present to T cells in that
compartment (58). In rats the airway-associated dendritic cells
are somewhat more heterogeneous (53). Bronchoalveolar lavage
(59) and tissue digest (60) studies of the human lung have revealed
three populations of dendritic cells, including CD11c+CD1c+ and
CD11c+BDCA-3+ myeloid cells, and CD11c−BDCA-2+ plasma-
cytoid dendritic cells, and these are considered analogous to the
CD11b+CD103− and CD11b−CD103+langerin+ conventional
and plasmacytoid dendritic cell subsets, respectively, in mice (61).
Further analysis in chronically inflamed (e.g., COPD) lung tissues
have revealed langerin-positive and DC-SIGN-expressing den-
dritic cell sub-populations (31, 62) that were proposed to represent
the human equivalent of the murine CD11b−CD103+langerin+

and monocyte-derived inflammatory dendritic cells, respectively
(31, 62). The CD103+ dendritic cells that comprise the bulk
of the dendritic cells found in the lung-draining lymph node
migrate there from the lung mucosa under the influence of
lymph node-homing chemokines that signal via the CCR7 (43).
In humans, the lung plasmacytoid dendritic cells express CD123
and BDCA-2, while the mouse plasmacytoid dendritic cell is
B220hiLy6ChiGr1loCD11b−CD11clo (63). Plasmacytoid dendritic
cells, which contribute importantly to tolerance responses to
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innocuous airway antigens (64), also express CD45RA, Ly49Q,
BST2/tetherin [or murine plasmacytoid dendritic cell anti-
gen (mPDCA)], sialic acid-binding immunoglobulin-type lectin
(siglec)-H, inducible costimulator ligand (ICOS-L), programed
death 1 ligand (PD-L)-1, and IDO (65), but produce copious
amounts of IFNα in response to viral challenge (66). Under
tolerogenic conditions, the CD103− and CD103+ dendritic cells
reportedly are specialized in presenting antigen to CD4+ ver-
sus CD8+ T cells, respectively (67, 68). However, under viral
challenge the CD103+ dendritic cells efficiently migrate to the
draining lymph nodes where they cross-present viral antigens to
CD8+ T cells, while the CD103− cells tend to remain within the
lung parenchyma, where they present to CD4+ T cells in a pro-
inflammatory manner (67, 68). This separation of function is also
observed in asthmatic animals,wherein the CD103− dendritic cells
present allergen to parenchymal CD4+ T cells, while the CD103+

subset presents allergen in the draining lymph node (69).
It is clear that the pulmonary dendritic cell contributes not only

to the induction of asthma, but also to allergen-tolerance. Whole-
sale depletion of CD11c+ cells abolishes disease onset following
allergen exposure in experimental animals (70), but plasmacy-
toid dendritic cell depletion in animals challenged with otherwise
innocuous aeroallergens leads to development of allergen-specific
asthmatic responses (64). Steady-state plasmacytoid dendritic cells
express an immature/semi-mature phenotype, with low levels of
MHCII and co-stimulatory molecules and intermediate levels of
PDL-1 (15, 71), which would contribute to their tolerogenic phe-
notype, but IDO expression by these cells also strongly inhibits T
cell proliferative responses (72). Nevertheless, CD103+ dendritic
cells from the lungs of allergen-tolerant mice would also affect
tolerance, inasmuch as they express RALDH and secrete retinoic
acid, which contributes together with TGFβ to local induction of
Foxp3+ regulatory T cells (73). Finally, it is important to note the
contributions of other populations within the lung to tolerance.
Tissue-resident (74) and alveolar (75) macrophages both express
TGFβ and RALDH under steady-state conditions, such that they
can also induce CD4+ T cells to which they present innocuous
antigens to convert into Foxp3+ Treg. Alveolar macrophages can
also suppress the immunostimulatory properties of steady-state
lung-resident dendritic cells (76) and thereby further contribute
to steady-state tolerance in the lung.

CUTANEOUS DENDRITIC CELLS
As with the intestinal tract and lungs, the skin is constantly
exposed both to pathogens, which require induction of pro-
tective Teff responses, and to innocuous environmental agents
for which tolerance is the desired outcome. There are at least
three subsets of skin-derived dendritic cells, including the self-
renewing epidermal langerin+CD103− Langerhans cell (77), and
the langerin+CD103+ (78, 79) and langerin−CD103− (80) der-
mal subsets; others have reported that the dermis contains five
distinct subsets of dendritic cells (81). The epidermal Langer-
hans cell is probably the best known dendritic cell – as in other
interfaces with our environment, these superficial cells form a
contiguous network of interdigitating cells that are well posi-
tioned to detect and respond to cutaneous insults (82). In gen-
eral, skin dendritic cells that acquire local antigens for lymph

node presentation downregulate their E-cadherin epithelial recep-
tors and upregulate CCR7, thereby acquiring responsiveness to
chemokines expressed in the T cell zones of the draining lymph
nodes (e.g., CCL19, CCL21) (14). In the lymph node, the den-
dritic cell presents its processed antigen peptides to the T cell,
along with its co-stimulatory and polarizing signals. In addition,
vitamin D3 metabolites expressed by the antigen-presenting den-
dritic cell induces T cell upregulation of CCR10, the receptor for
the skin-homing chemokine CCL27 (22).

Langerin+ migratory skin dendritic cells (i.e., CD103+ dermal
dendritic cells and Langerhans cells) can promote T cell tolerance
responses to self antigens (83). The Langerhans cell appears to be
unique in some respects, however, such that exposure to potent
inflammatory adjuvants by itself does not override their innate
tolerogenicity (84), perhaps in part because they do not express
a number of important microbial pattern recognition receptors
(e.g., TLR2, TLR4, or TLR5) (85). They are also unique in that,
even while in a tolerogenic mode, they strongly express APC co-
stimulatory markers and express IL-12. Nevertheless they fail to
effectively activate NF-κB (i.e., translocate RelB into the nucleus)
following adjuvant exposure (84), which is critical to induction of
the immunostimulatory phenotype in dendritic cells (86). While
dermal dendritic cells can effectively induce anti-bacterial immune
responses, and would need to do so in situations where micro-
bial organisms successfully penetrate the epithelial barrier, the
default function of the Langerhans cell instead leads to regu-
latory T cell responses, perhaps as a means of preventing the
integrity of the epidermal barrier from being compromised (85).
Indeed, Langerhans cell depletion (e.g., by UV-B light exposure)
has long been recognized to augment pathology in multiple con-
tact sensitivity settings (87, 88). The Langerhans cell is efficient
at capture and presentation of contact irritants, but this process
can culminate in anergy and/or deletion of responding CD8+ T
cells, with induction of ICOS+CD4+Foxp3+ regulatory T cell
responses (89). The resident CD141+ dermal dendritic cell in
humans can also effect tolerance through their expression of the
inhibitory receptor ILT3 and of IL-10, which together upregulate
CD25+ regulatory T cells that protect against allograft rejection
(90). Migratory CD103+langerin+ dermal dendritic cells can also
induce CD25+Foxp3+ Treg outgrowth from naïve T cells, at least
in part through their expression of TGFβ (91).

HEPATIC DENDRITIC AND OTHER TOLERANCE-PROMOTING CELLS
It is well recognized that operational tolerance occurs more fre-
quently with liver transplants than with other organs, suggesting
that this organ may have a unique tolerogenic capacity (92).
Human liver dendritic cells comprise most prevalently BDCA-1+

DC that, unlike blood dendritic cells, secrete substantial amounts
of IL-10 on TLR ligation, and this contributes to their high level
induction of CD25+Foxp3+ Treg (11). It has also been reported
that, in the steady state, hepatic myeloid and plasmacytoid den-
dritic cells can both induce tolerogenic T cell responses, although
by distinct mechanisms – the myeloid cells express a mature phe-
notype and produce high levels of regulatory factors such as IL-10,
IL-27, retinoic acid,and prostaglandin E2 (93–96),whereas hepatic
plasmacytoid dendritic cells express a more immature phenotype
and secrete high levels of IL-10 (97, 98). The non-parenchymal
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hepatic stellate cell, the major storage site for retinol in the body
(99), would potentially also play a role in hepatic tolerance through
provision of retinoic acid and thereby by-stander contributions to
hepatic regulatory T cell induction (100, 101). Another factor to
consider in hepatic tolerance is the resident liver macrophage, the
Kuppfer cell. Kuppfer cells are present in very large numbers in the
liver and express MHCII and co-stimulatory molecules, although
as quiescent cells they only poorly present antigen. Nevertheless,
just as the hepatic stellate cells are a rich source of retinoic acid,
Kuppfer cells constitutively express abundant prostaglandin E2
and 15d-prostaglandin J2, which strongly inhibit T cell responses
to immunostimulatory dendritic cells (102). Thus, there are mul-
tiple mechanisms that may contribute to the innate tolerogenic
phenotype of the liver.

EXPERIMENTAL APPLICATION OF TOLEROGENIC DENDRITIC
CELLS
STEADY-STATE AND IMMATURE DENDRITIC CELLS
For practical reasons it is unlikely that steady-state dendritic cells
freshly purified from donor tissues would be used clinically, but
investigations into such cells have provided substantial insights
into the immunobiology of tolerogenic dendritic cells. Steady-state
dendritic cells from lymphoid organs (103, 104) and non-inflamed
tissues (91, 104, 105) express a relatively immature phenotype – in
general, such cells are tolerogenic (105, 106). For example, treat-
ment with small numbers of antigen-pulsed steady-state CD8α+

splenic dendritic cells can induce asthma tolerance in mouse mod-
els, reversing the asthmatic animals’ bronchial hyperresponsive-
ness and airway eosinophil and Th2 cytokine recall responses to
allergen challenge; expression of IL-10, TGFβ, and IDO, as well as
direct dendritic cell–Teff cell contact each contribute to the tolero-
genic activities of these cells (107). It is important to their activity
that such steady-state dendritic cells remain quiescent while being
purified or manipulated ex vivo, as even overnight exposure of
CD8α+ dendritic cells to GM-CSF, for example, converts them
into potent inducers of cytotoxic CD8+ T cell responses (108).
Steady-state CD8α+ dendritic cell signaling leads to attenuated
IL-2 expression by T cells and increased apoptosis, at least in part
through the dendritic cell’s expression of FasL (109–111).

Tissue dendritic cells that acquire antigens in situ in such a way
that they do not become activated also remain tolerogenic. Thus,
as noted, steady-state airway mucosal dendritic cells routinely
migrate to the draining lymph nodes and present innocuous
allergens in a tolerogenic fashion – indeed, this is the default
mechanism by which ≈80% of the human population remains
allergen-tolerant (112). Similarly, targeting antigens to dendritic
cells with anti-DEC205, for example, does not activate the cells and
thus leads to antigen-specific tolerance in multiple models (113–
115). And dendritic cells that phagocytose apoptotic cells remain
in a largely quiescent state and thus are also tolerogenic (116, 117),
at least in part via induction of TGFβ expression in the draining
lymph nodes with consequent activation of Foxp3+ Treg (118).

There is also a large body of data regarding the tolerogenic prop-
erties of immunologically immature dendritic cells that have been
generated in vitro from bone marrow or blood of mice or humans.
These cells tend to express low levels of MHCII and co-stimulatory
markers and have thus been thought of as largely ineffective

in activating T cells through the classical TCR signaling path-
ways (119–122), although it has also been suggested that PD-L1
and PD-L2 expression by these cells contributes to their tolero-
genic activities (123). There are ≈100 genes that are differentially
expressed in immature versus immunostimulatory mouse bone
marrow-derived dendritic cells, including a number of cytokines
(e.g., Flt3L, TNF), chemokines (e.g., MIP2, RANTES), chemokine
receptors (e.g., CCR2, CCR5), and other (e.g., RP105, Ax1) mark-
ers (124). Passive transfer of antigen-pulsed immature dendritic
cells has been shown to induce tolerance either in vivo or in vitro in
numerous experimental models and with human cells (125–132).
An important caveat with use of immature dendritic cells to treat
overtly inflammatory conditions is that the pro-inflammatory
environment they face in vivo can activate these cells, such that
they activate pathogenic (e.g., Th1, Th17) as opposed to regulatory
T cell responses (133, 134), as discussed below.

INDUCED TOLEROGENIC DENDRITIC CELLS
Some of the first insights into the induction of a tolerogenic phe-
notype within dendritic cells arose from the studies of Langerhans
cells that had been exposed to either ultraviolet B radiation (8)
or IL-10 (8, 9). Dendritic cells from IL-10-expressing melanoma
tumors (135) and IL-10-exposed immature monocyte-derived
dendritic cells (136) were then also shown to be tolerogenic. This
potential for using tolerogenic cells, whether dendritic cells or
subsequently induced regulatory T cells, to dampen pathogenic
responses has burgeoned into a field of immunology into itself.
We now know that a large array of mediators can induce a tolero-
genic phenotype within dendritic cell populations. These include
IL-10 (9, 30, 33, 135–149) and other cytokines (150–158), corti-
costeroids (143, 159–162), vitamin D3 (160, 163–172), rapamycin
(143, 160, 173–175), and neuropeptides (176, 177) (Table 1),
each of which we will discuss. Although we will not discuss the
following populations, it has been reported that dendritic cells
can also be rendered tolerogenic by exposure to: anti-CD3 (178);
Aspergillus oryzae protease (162); aspirin (179); atorvastatin (180);
butyric or mycophenolic acids (181); the α7β0 isoform of C4b-
binding protein (182); the FasL decoy receptor, decoy receptor-3
(183); galectin-1 (184, 185); growth-related oncogene (GRO)-
gamma (186); intravenous immunoglobulin (IVIg) (187, 188);
protein kinase C inhibitors (189); or retinoic acid (190–193),
or by inhibition of miRNA let-7i (194). IL-10-, vitamin D3-,
dexamethasone-, and rapamycin-induced tolerogenic dendritic
cells stand out as populations that have had been particularly
well-studied in mouse and/or human systems, so we will con-
centrate our discussions on these cells, with the interested reader
referred to the cited reports for these alternate populations. Fur-
thermore, given the potential ethical issues with use of dendritic
cells transfected with viruses that express tolerogenic molecules
(e.g., IL-10, CTLA4Ig) or that suppress stimulatory molecules (e.g.,
co-stimulatory, immunostimulatory, or pro-apoptotic molecules,
such as CD80, IL-12, or TRAIL, respectively (195)), we will not
devote significant discussion to these approaches at this time.

INTERLEUKIN-10-INDUCED REGULATORY DENDRITIC CELLS
As noted, IL-10 was one of the first mediators shown to induce
human dendritic cells to adopt a tolerogenic phenotype (8, 9, 122,
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Table 1 | Phenotypes of human tolerogenic dendritic cells differentiated using different agents.

Agent DC DCreg markers Effector Mechanisms of

tolerance (outcomes)

Treg induced Reference

Nil Immature MDDC ↓ Co-stim, MHCII, IL-12 ↓ Co-stim,

MHCII

Induction of T cell

anergy

N.D. (119–122)

Apoptot. cells Immature MDDC ↓ Co-stim, MHCII, IL-12 ↓ Co-stim,

MHCII

Induction of T cell

anergy

Foxp3+ Treg (116, 118)
↑TGFβ

IL-10 Semi-mature MDDC

(“DC10”)

↓ Co-stim, MHCII, IL-12 IL-10 and

contact-depend

↓ Autol. T cell prolif. CD25+Foxp3+

Treg

(30, 143,

196–198)↑ IL-10, ILT-2, -3, and -4,

PD-L1 and -L2, GILZ

Immature MDDC ↓ Co-stim, MHCII N.D. ↓ Allo. T cell prolif. N.D. (136, 158, 164)

↑ ILT3, IL-10, GILZ, TLR2

Immature MDDC

(“DC-10”)

↓ Co-stim, MHCII IL-10, ILT4,

HLA-G

↓ Allo. T cell prolif. Tr1 (33)
↑ ILT-2, -3, -4, HLA-G ↑Tr1

Vit D3 Immat. MDDC ↓ Co-stim and CD83, MHCII N.D. ↓ Allo. T cell prolif. Not CD25+

Foxp3+ Treg

(160)
↑ HLA-DR

MDDC+LPS Intermed co-stim/MHCII PD-L1 ↓ Allo. T cell prolif.,

Teff > IL-10 Treg

CD25+Foxp3+

Treg or ND

(163, 170–172,

199)↑ IL-10, TNF, PD-L1 and ILT3

MDDC+TLR stim. hMDDC, LPS maturation LPS� IL-10 med ↓ Allo. T cell prolif. N.D. (164)

MDDC+LPS ↑ Surface TNF Surface TNF ↑Treg induction N.D. (167)

↓ Secr. TNF

Dermal DC N.D. IL-10 ↓ Allo. T cell prolif. Tr1 cells (200)

Langerhans cells N.D. TGFβ ↓ Allo. T cell prolif. CD25+Foxp3+

Treg

(200)

CD141−CD1c+ blood

DC

↑ CD83 IL-10 CD25+Foxp3+

Treg

(90)
↑ CD141, CD14, ILT3, MØ

mann. R

Dex Immat. MDDC ↑ CD86, MHCII IL-10 ↓ Allo. T cell prolif. N.D. (160)

CD83 med

MDDC+LPS Intermed co-stim/MHCII

↑ IL-10

N.D. ↓ Allo. T cell prolif.,

Teff > IL-10 Treg

IL-10-secreting,

contact-depend.

Treg

(171)

MDDC±TLR stim. Intermed co-stim/MHCII N.D. ↓ Allo. T cell prolif. (164)

ILT3+, IL-10+, GILZ+, TLR2+

DC2.4 cells ↓ IL-12 N.D. ↓ Allo. T cell prolif. CD25+Foxp3+

Treg

(201)

Steroid MDDC GILZ+ N.D. N.D. (202)

VitD3+Dex MDDC ↓ Co-stim and CD83, MHCII IL-10 ↓ Allo. T cell prolif. Tr1 or N.D. (165, 203)

> CD14, HLA-DR, CD80,

CD273

↓ CD25+Foxp3+ Treg
↑Tr1 and Breg

VIP-DC Immature MDDC ↓ Co-stim, MHCII

↑ IL-10

N.D. Weak naïve allo T cell

activation

Tr1 and CD4+

CD28−CTLA4+

Treg

(176, 204)

Rapamycin Immat. MDDC ↓ Co-stim med. MHCII IL-10? ↓ Allo. T cell prolif. CD25+Fopx3+

Treg

(160, 205, 206)
↑ Foxp3+CD25+ Treg
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135, 136, 141, 148, 150, 209–212). These reports together indi-
cated that IL-10-differentiated monocyte-derived dendritic cells
display reduced levels of MHCII and co-stimulatory markers, and
can induce Teff cell anergy. Sometime later it was shown that
IL-10-induced semi-mature CD14+ monocyte-derived dendritic
cells (DC10) from atopic asthmatic individuals suppress specific
allergen-driven proliferative and Th2 cytokine responses of autol-
ogous peripheral blood CD4+CD25−/loFoxp3− Teff cells, and
convert these Teff cells into regulatory T cells (30). The maturation
status of these DC10 was attributable to their exposure during dif-
ferentiation to a stimulatory cocktail containing IL-1β, TNF, IL-6,
and PGE2, in addition to IL-10 (30), but these cells are resistant
to further, LPS-induced, maturation (209). DC10 express low lev-
els of MHCII, co-stimulatory markers, 4-1BBL and OX40L, but
they strongly express DEC205, IFNα1, CCR7, ILT2 (an inhibitory
HLA-G receptor), as well as IL-10 (Table 2). They induce Teff
cells to differentiate into IL-10-secreting CD25+Foxp3+LAG-
3+CTLA4+ regulatory T cells, which in turn suppress allergen-
driven responses of autologous Teff cells in a contact-dependent
fashion (30). Others found that similar semi-mature IL-10-
differentiated dendritic cells express high levels of ILT3, ILT4,
PD-L1, and PD-L2, that they (but not immature cells) respond
strongly to the lymph node-homing chemokine CCL19 (143), and
that they induce regulatory T cells that also suppress allogeneic
T cell responses in a contact, but not IL-10- or TGFβ-dependent
fashion (196). These DC10 also express glucocorticoid-induced
leucine zipper (GILZ), which is both necessary and sufficient
for expression of IL-10, ILT3, and PD-L1 by these cells – GILZ
silencing eliminates their tolerogenic activities (197, 198). IL-10-
differentiated human monocyte-derived dendritic cells that have
never been exposed to maturation-inducing agents are also tolero-
genic (33, 148, 212). As noted above, a minor population of IL-10-
producing circulating dendritic cells, called DC-10, was recently
identified in humans (33), and those investigators also generated

an analogous population of immature IL-10-differentiated den-
dritic cells (DC-10) that similarly express IL-10 (Table 2), as well
as the inhibitory receptors ILT2, ILT3, ILT4, and HLA-G (33).
Others have noted that such cells also express signaling lympho-
cyte activation molecule (SLAMF1, CD150) (148), which inhibits
CD40-mediated signal transduction (213), and would therefore
interfere with two-way dendritic cell-T cell conversations. These
cells have been reported to suppress Teff cell responses in a man-
ner that is contact-dependent, and independent of any role for
secreted soluble mediators (148), although others note that IL-10
secretion and cell-surface inhibitory receptors are both important
to the regulatory activities of such immature IL-10-differentiated
dendritic cells (33). It is very intriguing that exposure of semi-
mature human dendritic cells to IL-10 leads to their induction of
classical CD25+Foxp3+ Treg (30, 196), while exposure of imma-
ture human dendritic cells to IL-10 leads to induction of Foxp3−

Tr1 cells (33). It will be interesting to determine whether expo-
sure of such immature regulatory dendritic cells to inflammatory
(i.e., maturation-promoting) conditions would qualitatively or
quantitatively affect their immunobiology.

Murine DC10 can prevent the onset of asthma in exper-
imental mice, as well as reverse the asthmatic phenotype in
severely affected animals (137, 138, 140, 214–216), just as do
dendritic cells that have been virally transfected to express very
high levels of IL-10 (146). These DC10, which are not exposed
to maturational stimuli during differentiation, display low lev-
els of cell-surface MCHII and co-stimulatory markers, are avidly
phagocytic and chemotactically responsive to MIP-1α, and express
elevated levels of IL-10, TGFβ (137, 138, 215), and PD-L1 (Li
et al., unpublished observation). They are highly effective ther-
apeutically in mouse models of ovalbumin (OVA) – (138, 140,
214–216) and house dust mite – (137) asthma. In both set-
tings, DC10 abrogate airway hyperresponsiveness (AHR) within
3 weeks of treatment and dampen the allergic Th2 phenotype

Table 2 | Impact of phenotype on the levels of IL-10 secretion by regulatory dendritic cells.

Differentiating agent DC (IL-10 levels) Reference

NON-REGULATORY DENDRITIC CELLS

TNF Semi-mature MDDC (≈35 pg/ml) (30)

Nil semi-mature MDDC (LPS, >700 pg/ml; CD40L, >2 ng/ml) (207)

TOLEROGENIC DENDRITIC CELLS

Vitamin D3/dexamethasone MDDC (9 ng/ml) (203)

C1Q MDDC (5 ng/ml) (208)

Vasoactive intestinal peptide MDDC (LPS, ≈5 ng/ml) (176)

Galectin-1 MDDC (LPS, ≈500 pg/ml) (185)

Vitamin D3 Dermal DC (CD40L, ≈300–700 pg/ml) (90)

MDDC (unstim or LPS, ≈100 pg/ml) (160, 164)

MDDC (LPS or CD40L, ≈2 ng/ml) (167)

MDDC (CD40L, 4 ng/ml) (163)

IL-10 Immat. MDDC (unstim, 200–750 pg/ml; CD40L, 1.5 ng/ml) (33, 143, 163, 164)

Semi-mature MDDC (unstim, 300 pg/ml; LPS, 7 ng/ml) (30, 158)

Dexamethasone Immat MDDC (unstim, 25–200 pg/ml) (143, 159, 160, 198)

MDDC (LPS or CD40L, 0.5–3 ng/ml) (159–161, 198)

Rapamycin MDDC (unstim or LPS, 50–100 pg/ml) (143, 160)

TGFβ MDDC (unstim, 200 pg/ml; LPS, ≈2 ng/ml) (143, 158)
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in an allergen-specific fashion (137, 138, 140, 215). This sup-
pression of allergen-induced airway eosinophil and Th2 cytokine
responses and circulating allergen-specific IgE and IgG1 levels is
progressive, such that at 8 months after a single DC10 treatment
these parameters are at near background levels (138), although
four DC10 treatments bring the asthma phenotype to near back-
ground within 2 months (138). Cell tracking studies indicate that
DC10 that are delivered intraperitoneally accumulate maximally
in the lungs and lung-draining lymph nodes within 1 week, but
few, if any, DC10 can be detected within any anatomic compart-
ment at 3 weeks post-treatment (214). This indicates that while
tolerance induced by DC10 is long-lived, most of its impact is
realized only after the treatment cells have disappeared from the
body. That is consistent with the observation that DC10 treat-
ments induce CD4+CD44hiCD69hiCD62LloCD25loFoxp3− Teff
cells to transdifferentiate into CD4+CD25+Foxp3+ Treg, with
maximal Treg activation occurring at 3 weeks after DC10 treat-
ment (215). Human DC10-induced CD25+Foxp3+ Treg express
LAG3 and CTLA3 (30), while the analogous Treg in DC10-treated
asthmatic mice express LAG3, cytotoxic T lymphocyte antigen-4
(CTLA4) (137, 215), ICOS, PD-1, GITR (215), and neuropilin-
1, but lower levels of Helios (217). Infectious tolerance is also
evident in these animals, as the endogenous pulmonary CD11c+

dendritic cells of DC10-treated asthmatic animals also take on a
regulatory phenotype (Li et al., unpublished observation). While
DC10 engage CD4+CD25+Foxp3+ natural (n)Treg in a pro-
ductive fashion and these T cells have a modest role in the
asthma tolerance within DC10-treated animals, DC10-induced
CD25+Foxp3+ (i)Treg are many-fold more effective than naturally
occurring CD25+Foxp3+ regulatory T cells (nTreg) of identical
TCR specificity in suppressing the asthma phenotype (217).

IL-10 expression by immature or otherwise quiescent dendritic
cells has been reported numerous times to be important to tol-
erance induced by these cells (24, 107, 218), and DC10 (as well
as DC-10) express yet higher levels of this regulatory cytokine
(30, 33, 137, 138, 140, 215, 216) (Table 2). Indeed, expression
of IL-10 by DC10 is critical (140, 214) although not sufficient
for tolerance induction, inasmuch as MHCII-knock-out DC10,
which expresses otherwise therapeutic levels of IL-10, do not
induce tolerance (214). Moreover, combined IL-10 and MHCII
expression by DC10 is still not sufficient for full expression of tol-
erance – allergen-presenting CD80/CD86 double knock-out (214)
or CD40-knock-out (W. Dawicki, H. Huang and J.R. Gordon,
unpublished observations) DC10 still do not induce tolerance at
levels equivalent to wild-type DC10 (214). This underscores that
conversion of Teff cells to regulatory T cells by DC10 requires not
only delivery of tolerogenic signals to the T cell, but also productive
feedback from the engaged T cell to the DC10.

VITAMIN D3-INDUCED REGULATORY DENDRITIC CELLS
Vitamin D and its metabolites would appear to have a signif-
icant influence within the immune system, such that there is
substantial evidence of an unrealized potential for its use in an
array of immunologic disorders [reviewed in Ref. (219, 220)].
It is clear that vitamin D3 can induce differentiation of tolero-
genic dendritic cells (DC-VitD3) (163, 170, 221, 222). Addition of
vitamin D3 to mouse bone marrow (177, 223, 224) or human

monocyte-derived (164, 170, 172, 225) dendritic cell cultures
induces cells that express low levels of MHC II and co-stimulatory
molecules, and produce IL-10 instead of IL-12 (Table 2). Semi-
mature monocyte-derived DC-VitD3 express augmented levels of
TNF and PDL-1, and this PDL-1 is reportedly critical to their
induction of IL-10-expressing contact-dependent Treg (171), as
is expression of membrane-bound TNF by these dendritic cells
(226). As with IL-10-differentiated dendritic cells, DC-VitD3 only
respond to the lymph node-homing chemokine CCL19 if they
have been exposed to maturational stimuli (143). This again raises
the question of whether such chemokine-dependent lymph node
homing might reasonably be expected to contribute, if not be
critical, to the tolerogenic activities of regulatory dendritic cells.
Addition of vitamin D3 to cultures of human skin Langerhans
cells leads to expression of TGFβ by these cells and thereby down-
stream induction of CD25hiCD127loFoxp3+ cells (i.e., classical
inducible Treg) (200). It similarly induces CD141−CD1c+ human
blood dendritic cells to differentiate into IL-10-expressing dermal
dendritic cell-like CD141+CD14+ILT3+ cells that induce develop-
ment of CD25hiCTLA4+Foxp3+ Treg responses (90). In contrast,
addition of vitamin D3 to cultures of human dermal dendritic
cells upregulates expression of IL-10 and their induction of IL-
10-expressing Foxp3− Tr1 cells (200). This highlights again that
exposure of different dendritic cell populations to the same medi-
ator can have very divergent outcomes in terms of the type(s)
of regulatory T cells so induced. DC-VitD3 have been shown to
be tolerogenic in vivo as well. Treatment of diabetic mice with
pancreatic islet antigen-pulsed DC-VitD3 prior to pancreatic islet
transplantation significantly decreases subsequent islet rejection
(166), while sensitization of mice with H-Y antigen-pulsed DC-
VitD3 leads to prolongation of male skin grafts in female recipients
(177, 223, 224).

DEXAMETHASONE-INDUCED TOLEROGENIC DENDRITIC CELLS
The anti-inflammatory and immunosuppressive properties of cor-
ticosteroids have been known and employed clinically since their
discovery some 75 years ago (227). While glucocorticoid treat-
ments have significant clinical benefits in terms of suppressing
inflammation, and it has been shown that they increase the num-
bers of CD4+CD25hi cells and Foxp3 expression levels in multiple
inflammatory settings, these increases are not necessarily asso-
ciated with augmented Treg activity (228). Corticosteroids do
induce immature dendritic cells to adopt a tolerogenic pheno-
type and thereby contribute to the anti-inflammatory properties
of these agents (159, 229, 230), but the fact that mature dendritic
cells undergo apoptosis in response to in vitro or in vivo dex-
amethasone treatment suggests that its effects on dendritic cells
are somewhat more complex (231). Dendritic cells that are dif-
ferentiated in the presence of dexamethasone (DC-Dex) express
low levels of co-stimulatory markers and MHC II, produce ele-
vated levels of IL-10 and less IL-12 (159, 161, 164, 171, 229,
230, 232), and express modestly elevated levels of ILT2 (198) and
ILT3, but high levels of GILZ (164). As with semi-mature IL-
10-differentiated dendritic cells, GILZ expression by DC-Dex is
critical to their expression of IL-10, ILT3, and B7-H1/PDL-1 (197);
both populations also maintain their immunosuppressive pheno-
type even after stimulation with TLR4 agonists (209, 233, 234).
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The similarities between DC10 and dexamethasone-conditioned
dendritic cells extends further – dexamethasone-exposed DC2.4
dendritic cells also induce Foxp3+ Treg differentiation in vitro
(201), while use of DC-Dex immunotherapy for experimen-
tal corneal allografts similarly leads to increased tissue levels of
intragraft Foxp3+ T cells, reduced levels of graft inflammatory
cell infiltrates, and prolonged graft survival (235). And others
have reported that repetitive stimulation of T cells with DC-Dex
induces the T cells to adopt a contact-dependent regulatory T
cell phenotype (171). DC-Dex treatment of murine recipients
of MHC-mismatched heart transplants leads to delayed rejec-
tion of the allografts (234) although, oddly, DC-Dex treatments
reportedly accelerate antibody-mediated graft rejection responses
to transplanted MHC-mismatched pancreatic islets in rats (236).
Interestingly, the contact-dependent regulatory T cells induced by
DC-Dex, but not those induced by DC-VitD3, reportedly suppress
T cell responses in an antigen-independent fashion (171),although
others have shown that, as a general feature, activated regulatory
T cells readily suppress by-stander Teff cell responses (237, 238).

VITAMIN D3 AND DEXAMETHASONE-INDUCED TOLEROGENIC
DENDRITIC CELLS
While vitamin D3 and dexamethasone each can induce a tolero-
genic phenotype in dendritic cells, some investigators have further
assessed the regulatory activities of cells generated in the presence
of both vitamin D3 and dexamethasone (DC-Dex/VitD3). DC-
Dex/VitD3 produce much high levels of IL-10 (i.e., 9 ng/ml) (203)
than either DC-VitD3 or DC-Dex (i.e., 0.1–4 ng/ml) (Table 2)
(143, 159, 160, 163, 164, 167, 198), and thus display a higher IL-
10/IL-12 expression ratio and poorly stimulate allogeneic T cell
proliferation responses (165). They reportedly cannot effectively
prime naïve CD8 T cells but, interestingly, while a single DC-
Dex/VitD3 treatment drives expansion of memory CD8 T cells, any
subsequent DC-Dex/VitD3 exposure leads to collapse of the CD8+

T cell populations (239). DC-Dex/VitD3 have been shown to be
somewhat effective in suppressing colitis pathology in a mouse
model, apparently also in an antigen-independent manner (240).

NEUROPEPTIDE-INDUCED TOLEROGENIC DENDRITIC CELLS
Vasoactive intestinal peptide (VIP) is a 28-amino acid
immunomodulatory neuropeptide that binds to B-class G-
protein-coupled receptors such as the VPAC1 and VPAC2 (241,
242). VIP treatments induce regulatory T cell responses in exper-
imental animals and with human Teff cells (243). For example,
VIP treatment of mice with TNBS-induced colitis induces tol-
erance responses, dampening TLR2- and TLR4-induced inflam-
mation and increasing expression of Foxp3 and TGFβ (244), as
it does in a rat model of collagen-induced arthritis (245). But
VIP can act directly on the Teff cells – culture of CD25−Foxp3−

Teff with VIP induces their differentiation into CD25+Foxp3+

Treg that express high levels of IL-10 and CTLA4 and are pro-
tective in a mouse model of graft versus host disease (GVHD)
(246). Nevertheless, VIP can also induce dendritic cells to adopt
a regulatory phenotype and thereby affect tolerance by this
means. Differentiation of human dendritic cells in the presence
of VIP (DC-VIP) or the neuropeptide pituitary adenylate cyclase-
activating polypeptide (PACAP) induces the development of cells

that secrete of high levels of IL-10, and strongly induce regula-
tory T cell responses. DC-VIP treatments dampen pathology in a
number of experimental settings, including experimental allergic
encephalomyelitis (EAE), rheumatoid arthritis (247), bone mar-
row transplant-induced GVHD (248), and colitis (249). While
a number of reports indicate that DC-VIP induce Tr1 pheno-
type regulatory cells, as determined by secretion of IL-10/TGFβ,
but not IFNγ, IL-2, IL-4, or IL-5 (204, 250–252), other reports
indicate that DC-VIP instead induce CD4+CD25+Foxp3+ Treg
responses (253–255) in some of the same model systems. DC-
VIP can also induce IL-10-secreting CD28−CTLA4+CD8+ Treg
(176, 252). VIP-secreting VIP-lentivirus-transfected DC are simi-
larly tolerogenic in mouse models of acute and chronic EAE and
cecal ligation-and-puncture sepsis (177). It has been speculated
that DC-VIP would be more effective therapeutically when target-
ing Th1 rather than Th2 responses (176), ostensibly because VIP
skews Th1 or Th17 T cells to a Th2 phenotype (256). This raises
an important question in dendritic cell immunotherapeutics, and
that is whether the specific type of regulatory cell to be employed
(e.g., DC-Dex versus DC-VIP) needs to be carefully matched with,
for example, the Th1, Th2, or Th17 nature of the target disease in
order to ensure optimized outcomes.

RAPAMYCIN-INDUCED TOLEROGENIC DENDRITIC CELLS
Rapamycin is a macrolide immunosuppressive agent that dampens
dendritic cell maturation through binding to the serine/threonine
protein kinase mammalian target of rapamycin (mTOR). Signal-
ing via mTOR has broad-ranging effects in many systems, includ-
ing the nervous system, nutrition, and others, where it regulates
cell growth, proliferation, motility, and survival (257). Antigen
recognition by naïve CD4+ and CD8+ T cells activates mTOR and
thereby fosters cellular progression to a committed Foxp3− Teff
phenotype (205), while suppression of mTOR with rapamycin
leads instead to induction of fully functional CD25+Foxp3+

Treg (258). Thus it was reported some time ago that rapamycin
increases the regulatory activities of CD4+CD25+Foxp3+ Treg
(206). Clinically, rapamycin has been widely used to prevent allo-
graft rejection, particularly in renal transplant patients (206),
although the potential for rapamycin-related adverse cutaneous
manifestations in these patients has limited its broad applicability
(259). Rapamycin affects both T cells and dendritic cells, although
it displays divergent effects on myeloid and monocyte-derived
dendritic cells, augmenting the allostimulatory capacity of the for-
mer cells but markedly dampening the immunostimulatory phe-
notype of monocyte-derived dendritic cells (260). In experimen-
tal systems rapamycin treatments impair Flt3L mobilization of
murine dendritic cells, their upregulation of co-stimulatory mole-
cule and inflammatory cytokine expression, and their allostimula-
tory activity (261), even after exposure to activating agents such as
LPS or anti-CD40 (262). Mouse dendritic cells that are differenti-
ated in the presence of rapamycin (DC-Rap) induce naïve T cells
to differentiate into CD25+Foxp3+ Treg (263). Moreover, such
DC-Rap enhance apoptotic death among alloreactive CD8 T cells
(264), further contributing to the tolerance response of transplant
recipients. DC-Rap treatment of murine heart transplant recipi-
ents similarly induces outgrowth within the transplants of Foxp3+

Treg and, as a consequence, long term organ survival (262), just
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as has been shown in numerous other studies (173, 206, 261, 262,
265, 266).

IMPACT OF DELIVERY ROUTE AND INFLAMMATION ON
THERAPEUTIC OUTCOMES
SELECTING THE CORRECT DELIVERY ROUTE FOR TOLEROGENIC
DENDRITIC CELLS
Not all routes for delivery of tolerogenic dendritic cells will neces-
sarily provide the desired outcomes. For example, we reported that
CD45.2+ DC10 that are delivered intraperitoneally to congenic
CD45.1+ mice with a severe asthma phenotype appear within
the lungs and airways of recipient mice within 2 days of delivery,
achieve maximal numbers in this compartment by 7 days and then
wane thereafter. DC10 appear in the lung-draining (mediastinal)
lymph node of these animals in lower numbers, but with approx-
imately the same kinetics, and also in the spleen but not cervical
nodes, MLNs, blood, bone marrow, or liver. Within 3 weeks of
delivery the treatment cells are no longer detectable in the lungs
or mediastinal lymph nodes (214), suggesting that the natural
lifespan of such DC10 may be 2–3 weeks. We know that DC10
treatments correct ~50% of the pathognomic bronchial hyperre-
sponsiveness seen in asthma phenotype mice within 2 weeks of
treatment and that by 3 weeks this airway response is completely
normalized (138). Moreover, the time of maximal activation of
regulatory T cells in the lungs of these animals is 3 weeks after
DC10 delivery, but it was not determined whether the primary
site within which the DC10 induce Teff cells to differentiate into
regulatory T cells was in situ in the lungs or in the mediastinal
lymph nodes (or both) (215). This remains an important, but
unanswered question.

We also assessed the relative effects of intraperitoneal (i.p.),
transtracheal (t.t.), subcutaneous (back skin; s.c.), or intravenous
(i.v.) DC10 delivery to asthmatic animals and found that i.p. or t.t.
delivery were equally effective, fully reversing bronchial hyperre-
sponsiveness, and rapidly dampening airway eosinophil and Th2
cytokine responses to allergen challenge and circulating allergen-
specific IgE and IgG1 levels (138). The s.c. DC10 treatments
dampened the airway recall responses to allergen challenge, but not
bronchial hyperresponsiveness, nor did they significantly reduce
systemic IgE levels (138). On the other hand, multiple investiga-
tors have reported that s.c. delivery of tolerogenic dendritic cells
is protective in rat models of EAE (267–271), which suggests that
the anatomic site of the target pathology in immunotherapeu-
tic applications may be important in selecting the delivery route
for the treatment dendritic cells. Intravenous delivery of DC10
has no discernible impact of the disease phenotype in a mouse
model of asthma (138, 272) or a rat model of EAE (271), but in
mouse models of cardiomyopathy (147), experimental immune
myocarditis (149, 273), and diabetes (274, 275) i.v. delivery of
tolerogenic dendritic cells significantly reduces local pathology
and induces tolerance. Similarly, i.v. infusion of DC-VitD/IL-10
in a rhesus macaque model of allogeneic kidney transplanta-
tion significantly prolonged survival relative to control animals
(rapamycin/CTLA4Ig treatment, but no dendritic cells) (276).
There has not been a sufficient number of comprehensive studies
on the impact of the route of dendritic cell delivery on tolerance
outcomes to generate specific guidelines at this point in time, but it

does appear that the disease or compartment being targeted may
be an important consideration. Certainly, we would expect that
the cells should be migration-competent (i.e., express appropriate
chemokine receptors), such that they are able to travel to the dis-
ease target site or its draining lymph nodes in order to best interact
with the cognate Teff cells.

USE OF TOLEROGENIC DENDRITIC CELLS IN INFLAMMATORY SETTINGS
An important consideration in clinical use of tolerogenic dendritic
cells, particularly when targeting inflammatory diseases (e.g., col-
itis, inflammatory bowel disease), is whether pre-existing adverse
conditions that these cells might encounter after delivery can alter
or ablate their tolerogenic activity. If so, could an inflammatory
milieu convert the treatment dendritic cells into immunostimu-
latory populations that might exacerbate rather than ameliorate
disease severity? While immature dendritic cells can have substan-
tial tolerogenic activities, we know that exposure of these cells (133,
134) or even some populations of semi-mature dendritic cells (133,
134) to inflammatory environments can induce them to differen-
tiate into potently immunostimulatory cells that augment disease
severity. With this in mind, many investigators have assessed the
impact of maturation-provoking (30, 90, 143, 165, 197) or other-
wise inflammatory (163, 164, 167, 170, 171, 177, 222) signals on the
tolerogenic phenotype of their differentiated dendritic cells. Den-
dritic cells express receptors for and can be activated by a number
of pro-inflammatory cytokines (e.g., IL-1, TNF, IFN, TSLP) (277)
and they can express numerous pattern recognition receptors [e.g.,
protease-activated receptors (PARs), TLR, C-type lectin receptors
(78, 164, 278–281)], retinoic acid-inducible gene-1 (RIG-1) and
the melanoma differentiation-associated gene-5 (MDA-5) (281),
through which they interact with microbial and non-microbial
agents. For example, a number of “natural” allergens (e.g., house
dust mite) trigger inflammatory responses through their abilities
to activate cells via PAR2 (282, 283) or C-type lectin receptors
such as DC-SIGN and dectin-2 (284), while TLR signaling can
potently activate expression of inflammatory signals by immature
or mature dendritic cells. There have been a number of excellent
reviews that address the expression of TLR by human and mouse
dendritic cells [e.g., Ref. (281)], such that we will not address this
issue herein.

Toll-like receptor signaling within tolerogenic dendritic cell
populations does not always have a detrimental outcome. For
example, BDCA-1+ human liver dendritic cells secrete substan-
tial amounts of IL-10 on TLR ligation, and this contributes to
their high level induction of CD25+Foxp3+ Treg (11). Human
DC10, DC-Dex, and DC-VitD express the same panel of TLR
as monocyte-derived dendritic cells, such that all are responsive
to Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and flagellin
(164), but the tolerogenic populations uniquely upregulate expres-
sion of TLR2 on TLR engagement (164). Moreover, TLR2 or TLR4
signaling in human DC-VitD3 and DC-Dex induces expression of
the tolerance-promoting cytokines IL-10 and IL-27 (160, 285).
Others have reported that human DC-Dex are refractory to chal-
lenge with an array of heat-killed gram-negative bacteria (e.g.,
Escherichia coli, Protheus mirabillis, Klebsiella pneumoniae, Sal-
monella thyphimurium) (286), while DC-Rap (160) and DC-VIP
(252) are resistant to reversal of their tolerogenic phenotype by
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LPS challenge. Interestingly, while isolated LPS challenge induces
an IL-12 response by immature monocyte-derived dendritic cells,
simultaneous exposure of these cells to LPS and IFNγ reportedly
leads to a transient IL-12 response that is replaced within 24–48 h
with a robust IL-10 response (287).

Finally, while we may well be able to design and generate tolero-
genic dendritic cells that are resistant to reversal of phenotype
by inflammatory environments, it is clear that the tolerance they
induce is also dependent on transference of that phenotype to the
regulatory T cells with which they interact. Moreover, infectious
tolerance also involves the conversion of endogenous tissue den-
dritic cells into tolerogenic populations by the induced regulatory
T cells (226, 288). Indeed, it has been suggested that a defect in such
infectious tolerance processes may contribute to the development
of an asthma phenotype in affected individuals (289). The desired
outcome in dendritic cell immunotherapy is the induction of reg-
ulatory T cells that can reverse pathogenic Teff cell responses, but
at least some populations of regulatory T cells can be converted
into pathogenic Teff cells in the context of inflammatory environ-
ments – it has been shown that Foxp3+ Treg can convert to Th17
cells in animals with colitis (290, 291), but we seem to have only
scant evidence regarding the extent to which other populations of
regulatory cells (e.g., Tr1 or Th3 cells) can be enticed to such rever-
sal of phenoytpe in vivo. In considering whether inflammatory
environments may differentially affect the phenotype of regula-
tory T cells (or dendritic cells), we query whether the regulatory
T cells that are naturally associated with a specific compartment
(e.g., Th3 cells in the gut) might be more resistant to reversal of
phenotype by challenges they would routinely encounter in that
compartment than other regulatory T cells (e.g., Treg, Tr1). Finally,
we raise the issue of whether in some specific settings, it might be
advisable to activate multiple types of regulatory T cell responses,
such that the tolerance so induced might be less susceptible by
reversal by subsequent coincidental inflammatory events.

CLINICAL APPLICATION OF TOLEROGENIC DENDRITIC CELLS
The first tolerogenic dendritic cell study in humans was
undertaken by Ralph Steinman’s lab. They demonstrated that
s.c. administration of antigen-loaded immature dendritic cells
(2× 106 cells/subject) was well tolerated by the study subjects and
also that the treatments could suppress antigen-specific CD8+ T
cell responses (128) for≤6 months (127). More recently a clinical
trial was undertaken with 10 subjects with type 1 diabetes, each of
whom was given 1× 107 autologous dendritic cells intradermally
four times at 2 week intervals; the treatment cells had been trans-
duced with anti-sense oligonucleotides to silence co-stimulatory
molecules (i.e., CD40, CD80, and CD86), although efficacy data
on that silencing was not reported (292). The authors had devel-
oped their silencing protocols in a mouse model of type 1 diabetes
and shown that the dendritic cell treatments had had statistically
significant, though quite modest, disease-sparing effects (293). As
with the earlier study by Steinman (127,128), there were no adverse
events related to the dendritic cell treatments in this latter study,
but there were few if any immunologically discernible tolerance
outcomes attributable to the dendritic cell treatments (292).

There have been a large number of in vitro studies performed
as proof of principle that tolerogenic dendritic cells can efficiently

reduce Teff cell responses in humans. As noted above, it was
shown that semi-mature IL-10-differentiated dendritic cells (i.e.,
DC10) generated from atopic asthmatic donors can suppress
the responses of autologous T cell to specific allergen. More-
over, the DC10 induce the outgrowth of immunosuppressive
CD4+CD25+Foxp3+LAG3+CTLA4+ Treg from the peripheral
blood Teff cell pool (30). Others have reported that DC-VitD/Dex
from individuals with rheumatoid arthritis (294) or DC-VitD3
from subjects with relapsing-remitting multiple sclerosis (295)
are both able to suppress autologous CD4+ Teff cell responses
to specific antigen-presenting mature dendritic cells.

In conclusion, it is clear that multiple mediators can induce a
tolerogenic phenotype in dendritic cells, and that these substan-
tially influence the conversations that occur between the dendritic
cell and naive or Teff cells. These tolerogenic dendritic cells employ
both secreted mediators (e.g., IL-10, retinoic acid) and inhibitory
receptors to drive regulatory T cell induction, but can also provide
additional signals (e.g., integrins) to direct these nascent Treg to
the appropriate anatomic compartment (Figure 1). A major chal-
lenge we will face in the application of such tolerogenic dendritic
cells for immunotherapy will be to carefully match or optimize
the type(s) of tolerogenic dendritic cells to be employed with the
clinical targets and desired endpoints.
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