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Abstract
Background: Evidence from network meta-analyses (NMAs) and real-world propensity score 
(PS) analyses suggest monoclonal antibodies (mAbs) offer a therapeutic advantage over 
currently available oral therapies and, therefore, warrant consideration as a distinct group 
of high-efficacy disease-modifying therapies (DMTs) for patients with relapsing multiple 
sclerosis (RMS). This is counter to the current perception of these therapies by some 
stakeholders, including payers.
Objectives: A multifaceted indirect treatment comparison (ITC) approach was undertaken to 
clarify the relative efficacy of mAbs and oral therapies.
Design: Two ITC methods that use individual patient data (IPD) to adjust for between-trial 
differences, PS analyses and simulated treatment comparisons (STCs), were used to compare 
the mAb ofatumumab versus the oral therapies cladribine, fingolimod, and ozanimod.
Data sources and methods: As IPD were available for trials of ofatumumab and fingolimod, PS 
analyses were conducted. Given summary-level data were available for cladribine, fingolimod, 
and ozanimod trials, STCs were conducted between ofatumumab and each of these oral 
therapies. Three efficacy outcomes were compared: annualized relapse rate (ARR), 3-month 
confirmed disability progression (3mCDP), and 6-month CDP (6mCDP).
Results: The PS analyses demonstrated ofatumumab was statistically superior to fingolimod 
for ARR and time to 3mCDP but not time to 6mCDP. In STCs, ofatumumab was statistically 
superior in reducing ARR and decreasing the proportion of patients with 3mCDP compared 
with cladribine, fingolimod, and ozanimod and in decreasing the proportion with 6mCP 
compared with fingolimod and ozanimod. These findings were largely consistent with recently 
published NMAs that identified mAb therapies as the most efficacious DMTs for RMS.
Conclusion: Complementary ITC methods showed ofatumumab was superior to cladribine, 
fingolimod, and ozanimod in lowering relapse rates and delaying disability progression among 
patients with RMS. Our study supports the therapeutic superiority of mAbs over currently 
available oral DMTs for RMS and the delineation of mAbs as high-efficacy therapies.
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Introduction
Multiple sclerosis (MS) is an autoimmune demy-
elinating disease of the central nervous system 
(CNS) that affects 2.8 million people world-
wide.1,2 Although the clinical course of MS can be 
a dynamic process, four MS clinical subtypes are 
generally recognized: clinically isolated syndrome, 
relapsing-remitting multiple sclerosis (RRMS), 
secondary progressive multiple sclerosis (SPMS), 
and primary progressive MS.3 The term relapsing 
multiple sclerosis (RMS) has been used to 
describe both RRMS and SPMS with superim-
posed relapses.4 More recently, MS has been 
described as a continuum from RMS to progres-
sive disease without stratification.5

The current treatment strategy for MS focuses on 
alleviating CNS inflammation, slowing disease 
progression, and reducing the recurrence of 
relapses, with an overall goal of improving long-
term outcomes.6 Multiple disease-modifying 
therapies (DMTs) are available for the treatment 
of MS, representing an opportunity for personal-
ized care. These therapies have been broadly 
sorted into moderate and high efficacy groups, 
though the groupings differ across jurisdictions 
and guidelines and are not consistently recog-
nized.7 Guidelines published by the American 
Academy of Neurology, a position statement 
from the Multiple Sclerosis Therapy Consensus 
Group, and Public Summary Documents (PSDs) 
from the Pharmaceutical Benefits Advisory 
Committee (PBAC) in Australia consider high-
efficacy monoclonal antibodies (mAbs; e.g. alem-
tuzumab, natalizumab, ocrelizumab, and 
ofatumumab) to be interchangeable with some 
oral therapies (cladribine and S1P receptor mod-
ulators) in their ability to manage relapse and dis-
ease progression.8–10 However, evidence from 
network meta-analyses (NMAs) using rand-
omized control trial (RCT) data suggests that 
these particular high-efficacy mAbs (e.g. alemtu-
zumab, natalizumab, ocrelizumab, and ofatu-
mumab) are therapeutically superior to the 
respective oral therapies (e.g. cladribine, fingoli-
mod, and ozanimod) for treating RMS.11–17 For 
example, two recently published NMAs for 
relapse and disability outcomes consistently 
ranked all included mAb therapies above oral 
therapies.11,18 Propensity score (PS) analyses and 
other studies using real-world data have also pro-
vided evidence supporting the superiority of mAb 
therapies over oral therapies.19–26 This distinction 
is reflected in treatment guidelines published by 

the Association of British Neurologists, which 
identify mAbs as high-efficacy therapies and sug-
gest their use for treating patients with frequent 
clinical relapses.27

Clarifying the relative efficacy of mAbs and oral 
DMTs is important to inform treatment guide-
lines and allow patients with RMS to receive the 
best treatment for their individual needs. 
Currently, there are no RCTs comparing mAbs 
head-to-head and only a few RCTs comparing 
mAbs with oral therapies in RMS. Therefore, 
indirect treatment comparisons (ITCs) can be 
used to estimate the comparative efficacy of ther-
apies for which direct head-to-head evidence is 
not available. Previous ITCs of mAb and oral 
therapies have taken the form of NMAs, which 
permit the estimation of the relative efficacy 
between multiple therapies but rely on published 
summary-level trial data with the inherent 
assumption that the underlying populations are 
comparable.14,16,17,28 However, cross-study differ-
ences in patient and study characteristics (e.g. 
outcome definitions) can impact the treatment 
effect and potentially introduce bias when indi-
rectly comparing treatment efficacy. This can be 
addressed using ITC methods that use individual 
patient data (IPD) from RCTs to adjust for 
between-trial differences, such as PS analyses 
using inverse probability treatment weighting 
(IPTW) and simulated treatment comparisons 
(STCs).16,29,30 These methods are used in differ-
ent situations depending on the available data: PS 
analyses are used when IPD are available for trials 
for both therapies, whereas STCs are used when 
IPD are available from trials for one therapy and 
only summary-level data (SLD) are available for 
trials for the comparator therapy. Population-
adjustment techniques such as STC are increas-
ingly being used in health technology assessment 
(HTA) applications.31

In light of differing guideline recommendations 
and to ensure appropriate evaluation of DMTs by 
HTA authorities, the objective of this study was 
to take a multifaceted ITC approach to compare 
the efficacy of mAb therapies (with a focus on 
ofatumumab) with cladribine, fingolimod, and 
ozanimod (i.e. oral therapies considered by sev-
eral organizations to be interchangeable with 
mAb therapies in their efficacy) in the treatment 
of patients with RMS. Given the findings of pub-
lished NMAs and PS analyses for relapse and dis-
ability outcomes, we sought to test the hypothesis 
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that mAbs are more efficacious than oral thera-
pies. Outcomes of interest were annualized 
relapse rate (ARR), 3-month confirmed disability 
progression (3mCDP), and 6-month confirmed 
disability progression (6mCDP).

Methods

Literature review
A recently published systematic literature review 
(SLR) with an integrated NMA in RMS was used 
to identify key RCTs of interest.12 In brief, 
searches of biomedical databases, conference 
proceedings, and trial registries were conducted 
to identify RCTs for DMTs in RMS.12 The RCTs 
were included in the NMA if they met the follow-
ing criteria: population was ⩾75% RMS; inter-
ventions and comparators included DMTs 
approved or being reviewed for RMS by the 
United States Food and Drug Administration 
and/or the European Medicines Agency; out-
comes included at least one of ARR, 3mCDP, or 
6mCDP; trial duration was ⩾48 weeks; and a 
full-text pivotal trial publication was available.12

In 2007, natalizumab was the first DMT recog-
nized by the PBAC to demonstrate cost-effective-
ness compared with interferon beta-1b.32 
Subsequently, fingolimod was recommended for 
PBS listing in 2011 based on its cost-effective 
safety and efficacy compared with interferon 
beta-1a.33 Since then, alemtuzumab,34 ocreli-
zumab,35 cladribine,36 ozanimod,37 and ofatu-
mumab9 have been recommended for, and 
subsequently listed on, the Australian 
Government’s Pharmaceutical Benefits Scheme 
(PBS) for the treatment of RRMS via a series of 
cost-minimization PBAC submissions claiming 
non-inferior safety and efficacy compared with 
fingolimod and/or natalizumab. These DMTs 
form what is now considered by the PBAC to be 
the ‘high-efficacy’ group for RRMS treatment. 
For the purpose of the present objective, only piv-
otal RCTs including adults with RMS who were 
treated with one of the DMTs of interest (i.e. 
those considered by the PBAC to be ‘high-effi-
cacy’) versus a comparator (placebo and/or active 
comparator) and reported at least one outcome of 
interest (i.e. ARR, time to or proportion with 
3mCDP, and time to or proportion with 6mCDP) 
identified in the SLR were considered. The fol-
lowing RCTs were identified from the SLR and 
included in the present analyses: ASCLEPIOS I/

II38 for ofatumumab; FREEDOMS,39 FREEDOMS 
II,40 and TRANSFORMS41 for fingolimod; 
CLARITY42 for cladribine; and RADIANCE-B43 
and SUNBEAM44 for ozanimod. Whereas SLD 
were available for all trials, IPD were only availa-
ble for the ofatumumab (ASCLEPIOS I/II) and 
fingolimod (FREEDOMS, FREEDOMS II, 
TRANSFORMS) trials. Trials of other mAbs 
(alemtuzumab, natalizumab, and ocrelizumab) 
were not included due to the unavailability of 
IPD to the authors for comparisons using PS 
analyses or STCs. The RCTs included in the pre-
sent analyses are summarized in Supplemental 
Appendix A.

Feasibility assessment
To assess the feasibility of different ITC 
approaches and similarity of included studies of 
interest, we considered the type of data available 
for RCTs of interest, their connectivity in an evi-
dence network based on the availability of com-
mon comparators, and the degree and potential 
impact of cross-trial heterogeneity. Elements of 
study design, patient eligibility criteria, baseline 
patient characteristics, and outcome definitions 
were qualitatively assessed to determine compa-
rability between trials. Recent publications have 
used similar methods to evaluate the feasibility of 
ITCs.45–47

As the goal of the present study was to compare 
the relative efficacy of mAbs to currently available 
oral DMTs, an assessment of the feasibility of 
ITCs between different mAbs was considered out 
of scope. Where feasible, ITCs were conducted to 
evaluate the comparative efficacy of ofatumumab 
versus oral therapies for the treatment of MS using 
IPD from pivotal trials for these therapies. 
Methodological details for these ITC analyses are 
provided in the next section.

Indirect treatment comparisons
Variables for covariate adjustment. A previously 
published STC analysis between ofatumumab and 
ocrelizumab in RMS was used to identify impor-
tant variables for adjustment.48 Briefly, clinicians 
identified a subset of variables from a master list 
comprising the minimum number of variables 
required for adjustment to ensure clinical validity 
(hereafter referred to as Tier 1; the remaining vari-
ables are referred to as Tier 2). Fourteen variables 
were identified: six Tier 1 variables and eight Tier 2 
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variables. Tier 1 variables included age, body mass 
index, normalized brain volume, number of gado-
linium-enhancing T1 lesions, and volume of T2 
lesions. Although the number of T2 lesions was 
also identified as a Tier 1 variable, the number of 
T2 lesions was not available at baseline from 
ASCLEPIOS I/II and, therefore, could not be 
included. However, because the number and vol-
ume of T2 lesions are correlated with each other,49 
it was assumed one could serve as a proxy for the 
other.

Tier 2 variables included Expanded Disability 
Status Scale (EDSS) score at baseline, number of 
relapses in the past year, prior DMT experience, 
sex, race/ethnicity, and time since diagnosis. 
Additional Tier 2 variables that were identified 
included prior exposure to a high-efficacy therapy 
(i.e. alemtuzumab and natalizumab) and comor-
bidities. However, these variables were not 
included as they were not available from the 
RCTs. For example, prior experience with alem-
tuzumab was an exclusion criterion for 
ASCLEPIOS I/II but not the fingolimod or clad-
ribine trials, and prior experience with either 
alemtuzumab or natalizumab was an exclusion 
criterion for the ozanimod trials. Only variables 
that were reported for the pairs of trials to be 
compared were adjusted for.

Standardized mean differences (SMDs) were 
used to assess imbalances between trials for each 
variable.50 In the base case analysis for each out-
come, Tier 1 and Tier 2 variables were collec-
tively adjusted for in accordance with National 
Institute for Health and Care Excellence guid-
ance.51 An unadjusted analysis, referring to a 
comparison without adjusting for baseline char-
acteristics (i.e. Tier 1 or Tier 2 variables) across 
populations, was also conducted for ITCs for 
each outcome.

The specific list of variables adjusted for in each 
ITC analysis is provided in Supplemental 
Appendix B.

Statistical analysis
Propensity score analyses using IPTW. PS 

analyses using IPTW were used to compare ofa-
tumumab to fingolimod by balancing the trial 
populations through weighting. The PS analyses 
used pooled ASCLEPIOS I/II IPD for ofatu-

mumab and pooled FREEDOMS, FREEDOMS 
II, and TRANSFORMS IPD for fingolimod. 
As time to 6mCDP was not reported for the 
TRANSFORMS trial, pooled IPD from FREE-
DOMS and FREEDOMS II for fingolimod were 
used instead to assess this outcome.

The PS is a balancing score defined by Rosenbaum 
and Rubin as the probability of treatment assign-
ment conditional on observed baseline covari-
ate.52 IPTW uses the PS to remove the effects of 
measured confounding when estimating the 
effects of treatment on the outcome (i.e. balance 
baseline characteristics between patient popula-
tions).53 PS scores were derived using a logistic 
regression with a binary treatment variable as the 
dependent variable and baseline covariates as 
explanatory variables.

The estimated PS values were then used to derive 
average treatment effect in the control (ATC) 
weights for each patient. In this case, ATC was 
the average treatment effect in the fingolimod 
population. Patients in the ofatumumab cohort 
were assigned a weight of (1−p)/p, where p is the 
PS predicting the inclusion in the ofatumumab 
cohort and patients in the fingolimod cohort were 
kept as observed (i.e. assigned a weight of one). 
That is, patients in the treated (ofatumumab) 
cohort were reweighted to become more similar to 
the control (fingolimod) population, where par-
ticipants with similar characteristics received 
larger weights. The degree of balance achieved 
was assessed by calculating the SMD for each fac-
tor, where an SMD ⩽0.2 was considered a small 
difference.50 The effective sample size was calcu-
lated to assess the impact of weighting on the IPD.

Average treatment effect in the fingolimod popu-
lation weighting allowed for the estimation of the 
relative treatment effect in a population similar to 
the comparator population. This approach aligns 
with STCs, which calculate the relative treatment 
effect in comparator population (see next section 
on STC analyses).

For ARR, a negative binomial regression model 
was used with log link to the number of relapses. 
The natural log of the time in study in years was 
used as an offset to annualize the relapse rate. 
Weights were applied for the adjusted compari-
son. Variance was estimated using a robust 
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sandwich variance estimator. Results were 
reported as a rate ratio (RR) with its respective 
95% confidence interval (CI).

CDP was assessed as time to 3mCDP and time to 
6mCDP. This was in alignment with best prac-
tices for PS analyses (i.e. using Cox regression for 
IPD–IPD comparisons). A Cox proportional haz-
ards model (with weights applied for the adjusted 
comparison) was used to derive a hazard ratio 
(HR) and its respective 95% CI. The variance 
was estimated using a robust sandwich variance 
estimator. All analyses were performed using R 
(version 3.6.1).54

STC analyses. Unanchored STCs were con-
ducted to compare ofatumumab to fingolimod, 
cladribine, and ozanimod by fitting a regression 
model to the outcome. The STCs used pooled 
ASCLEPIOS I/II IPD for ofatumumab and SLD 
for each individual RCT for fingolimod (FREE-
DOMS, FREEDOMS II, TRANSFORMS), clad-
ribine (CLARITY), and ozanimod (pooled CDP 
data were used for the RADIANCE-B and SUN-
BEAM ozanimod trials because these data were 
not reported for SUNBEAM alone). As 6mCDP 
was not reported by TRANSFORMS, an STC for 
6mCDP was not possible using this trial.

Multivariable regression models were specified 
using available baseline characteristics as covari-
ates and were fit using IPD from ASCLEPIOS I/
II. The models permitted outcomes to be esti-
mated for the hypothetical situation where an 
average patient from the comparator trial received 
ofatumumab instead of the comparator (cladrib-
ine, fingolimod, and ozanimod) by predicting 
outcomes at the means of the covariates reported 
in the comparator trial. These predicted out-
comes were then compared with published out-
comes from the comparator trial to derive point 
estimates of ofatumumab relative to the compara-
tor. Since the model can predict values outside of 
the reported ranges in the comparator trial, differ-
ences in eligibility criteria were adjusted by repre-
senting matching criteria as covariates in the 
model. To adjust for imbalances in baseline char-
acteristics, the linear predictions for a typical 
patient from the comparator population were 
derived by substituting means and proportions of 
baseline characteristics from the comparator 
study into the fitted equation.

ARR was obtained by fitting a negative binomial 
regression model with log link function to the 
number of relapses. The natural log of the time-
in-study was used as an offset to annualize the 
relapse rate. Results were reported as an RR with 
its respective 95% CI.

CDP was assessed as the proportion of patients 
with 3mCDP and proportion of patients with 
6mCDP. This was in alignment with previously 
published STCs and NMAs of DMTs in 
RMS.16,48 A binomial model with a complemen-
tary log–log (cloglog) link function was used to 
account for the variable treatment duration 
among ASCLEPIOS I/II patients. An offset was 
applied to adjust the hazard rate estimated for 
ASCLEPIOS I/II to the follow-up time of the 
comparator trial. Results were reported as an HR 
with its respective 95% CI.

Regression models were evaluated based on their 
model fit using common diagnostics such as the 
Akaike Information Criterion and the Bayesian 
Information Criterion. All analyses were per-
formed using R (version 3.6.1).54

Sensitivity analyses. For each outcome for 
each ITC approach, two sensitivity analyses 
were conducted to assess the impact of variables 
included in the model. The first analysis adjusted 
for only Tier 1 variables, whereas the second anal-
ysis adjusted for only Tier 2 variables.

Results

Feasibility assessment
In general, all RCTs considered for the ITC anal-
yses were comparable in terms of study design 
characteristics, patient eligibility criteria, baseline 
patient characteristics, and outcome definitions 
(Supplemental Appendix A). One or more trials 
for all therapies of interest reported ARR, 
3mCDP, and 6mCDP, which meant ITCs were 
possible for these outcomes.

Considering the availability of IPD for both ofa-
tumumab trials (ASCLEPIOS I/II) and all three 
fingolimod trials (FREEDOMS, FREEDOMS 
II, TRANSFORMS), a PS analysis was identified 
as an appropriate ITC method. Considering the 
availability of IPD for both ofatumumab trials 
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(ASCLEPIOS I/II) and SLD for each of the three 
fingolimod trials (FREEDOMS, FREEDOMS II, 
TRANSFORMS), cladribine trial (CLARITY), 
and ozanimod trial (RADIANCE-B and 
SUNBEAM), STCs were also considered to be 
appropriate. Specifically, unanchored STCs were 
required due to the lack of a common comparator 
between ASCLEPIOS I/II and the trials for clad-
ribine, fingolimod, and ozanimod. The use of 
unanchored STCs between ofatumumab and 
each of fingolimod, cladribine, and ozanimod 
also offered consistency with a previously pub-
lished STC evaluating efficacy outcomes between 
the mAb therapies ofatumumab and ocreli-
zumab.48 The lack of IPD for alemtuzumab, 
natalizumab, and ocrelizumab RCTs meant that 
PS analyses were not possible between these 
mAbs and the three oral DMTs of interest, and 
STCs were not possible for comparisons with 
cladribine and ozanimod. Although IPD were 
available for fingolimod trials, given the lack of 
equivalent data for cladribine and ozanimod, we 
did not indirectly compare alemtuzumab, natali-
zumab, and ocrelizumab to fingolimod using 
STCs.

PS analyses using IPTW
Comparative efficacy estimates for ofatumumab 
versus fingolimod in the PS analysis using IPTW 
for each outcome of interest are summarized in 
Figure 1 and the results of covariate balancing for 
each outcome are summarized in Supplemental 
Appendix C.

Ofatumumab versus fingolimod. For ARR, ofatu-
mumab was significantly favored with a 40% 
reduction in this outcome relative to fingolimod 
[RR: 0.60 (95% CI: 0.45–0.81)] after IPTW 
adjustment. For time to 3mCDP, ofatumumab 
was significantly favored with a 46% reduced risk 
of progression [HR: 0.54 (95% CI: 0.29–0.99)] 
after adjustment. For time to 6mCDP, ofatu-
mumab had a 41% reduced risk of progression 
[HR: 0.59 (95% CI: 0.31–1.12)] after adjust-
ment, but this was not statistically significant.

STC analyses
Comparative efficacy estimates for ofatumumab 
versus cladribine, fingolimod, and ozanimod for 
each outcome of interest are summarized in 
Figure 1.

Ofatumumab versus cladribine. For ARR, the RR 
for ofatumumab versus cladribine was 0.74 (95% 
CI: 0.56–1.00) after multivariate adjustment, sig-
nificantly favoring ofatumumab (the upper 95% 
CI value to three decimal places was 0.996). For 
the proportion with 3mCDP, the HR for ofatu-
mumab versus cladribine was 0.61 (95% CI: 0.40–
0.92) after adjustment, significantly favoring 
ofatumumab. For the proportion with 6mCDP, 
the HR for ofatumumab versus cladribine was 
0.75 (95% CI: 0.44–1.26) after adjustment.

Ofatumumab versus fingolimod. For ARR using 
the FREEDOMS trial, the RR for ofatumumab 
versus fingolimod was 0.58 (95% CI: 0.41–0.82) 
after multivariate adjustment, significantly favor-
ing ofatumumab. Using the FREEDOMS II trial, 
the RR for ofatumumab versus fingolimod was 
0.51 (95% CI: 0.34–0.76) after adjustment, sig-
nificantly favoring ofatumumab. Using the 
TRANSFORMS trial, the RR between ofatu-
mumab and fingolimod was 0.66 (95% CI: 0.44–
0.98) after adjustment, significantly favoring 
ofatumumab.

For the proportion with 3mCDP using the 
FREEDOMS trial, the HR between ofatumumab 
and fingolimod was 0.39 (95% CI: 0.24–0.63) 
after multivariate adjustment, significantly favor-
ing ofatumumab. Using the FREEDOMS II trial, 
the HR between ofatumumab and fingolimod 
was 0.29 (95% CI: 0.17–0.49) after adjustment, 
significantly favoring ofatumumab. Using the 
TRANSFORMS trial, the HR between ofatu-
mumab and fingolimod was 0.63 (95% CI: 0.35–
1.12) after adjustment.

For the proportion with 6mCDP using the 
FREEDOMS trial, the HR between ofatumumab 
and fingolimod was 0.45 (95% CI: 0.27–0.75) 
after multivariate adjustment, significantly favor-
ing ofatumumab. Using the FREEDOMS II trial, 
the HR between ofatumumab and fingolimod 
was 0.49 (95% CI: 0.28–0.84) after adjustment, 
significantly favoring ofatumumab. The 6mCDP 
outcome was not reported in the TRANSFORMS 
trial.

Ofatumumab versus ozanimod. Comparative 
ARR efficacy estimates for ofatumumab and oza-
nimod were calculated with unanchored STCs 
using each of the two ozanimod trials (RADI-
ANCE-B and SUNBEAM) separately. Using the 
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RADIANCE-B trial, the RR between ofatu-
mumab and ozanimod was 0.57 (95% CI: 0.42–
0.78) after multivariate adjustment, significantly 
favoring ofatumumab. Using the SUNBEAM 
trial, the RR between ofatumumab and ozanimod 
was 0.54 (95% CI: 0.38–0.78) after adjustment, 
significantly favoring ofatumumab.

Comparative 3mCDP and 6mCDP efficacy esti-
mates for ofatumumab and ozanimod were calcu-
lated with unanchored STCs using the pooled 
data reported for ozanimod from the 
RADIANCE-B and SUNBEAM trials. For the 
proportion with 3mCDP, the HR between ofatu-
mumab and ozanimod was 0.56 (95% CI: 0.37–
0.85) after multivariate adjustment, significantly 
favoring ofatumumab. For the proportion with 
6mCDP, the HR between ofatumumab and oza-
nimod was 0.54 (95% CI: 0.33–0.90) after adjust-
ment, significantly favoring ofatumumab.

Sensitivity analyses
For both the PS and STC analyses, the results of 
sensitivity analyses adjusting for Tier 1 variables 
only or Tier 2 variables only were consistent with 
the results of the base case (Supplemental 
Appendices C and D).

Summary of ITC results
The base case results of the PS analyses using 
IPTW and the unanchored STC analyses are 
summarized in Table 1. This table also included 
results from a recently published NMA12 that was 
identified as part of the ITC feasibility assessment 
that reported comparative efficacy estimates 
between mAbs other than ofatumumab and the 
oral DMTs of interest where PS and STC analy-
ses were not feasible.

Reporting guidelines
The STROBE checklist was used for reporting 
this study (Supplemental Appendix E).

Discussion
Treatment guidelines27 and findings from 
NMAs11–17 and real-world evidence studies19–26 
suggest that the currently available mAbs offer a 
therapeutic advantage over oral therapies and, 
therefore, warrant consideration as a distinct 
group of DMTs for patients with RMS. However, 

some jurisdictions, payers, and guidelines do not 
currently differentiate DMTs by their relative 
efficacy. There is a paucity of head-to-head trials 
for mAbs and oral therapies in RMS. Since it is 
impractical to assess all these DMTs in a single 
RCT, robust statistical methods are required to 
compare the relative efficacy of these therapies. 

(a)

(b)

(c)

Figure 1. Summary of base case results of PS (using IPTW) and STC 
analyses for ofatumumab versus oral therapies of interest for (a) ARR, (b) 
3mCDP, and (c) 6mCDP.
An RR or HR below 1.0 indicates an improved outcome for ofatumumab relative 
to comparator. Time to 6mCDP was not reported for TRANSFORMS. Only pooled 
RADIANCE-B and SUNBEAM ozanimod trial data were available for 3mCDP and 
6mCDP.
ARR, annualized relapse rate; 3mCDP, 3-month confirmed disability progression; 
6mCDP, 6-month confirmed disability progression; CI, confidence interval; CLA, 
cladribine; FIN, fingolimod; HR, hazard ratio; IPD, individual patient data; IPTW, 
inverse probability of treatment weighting; NS, not significant; OMB, ofatumumab; 
OZA, ozanimod; PS, propensity score; RR, rate ratio; STC, simulated treatment 
comparison.
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We conducted PS and STC analyses to generate 
comparative efficacy data for DMTs of interest, 
which were then contextualized to the results of a 
recently published NMA.12 Our analyses sug-
gested that the mAb ofatumumab was superior to 
the oral therapies cladribine, fingolimod, and oza-
nimod in lowering ARR and delaying both 
3mCDP and 6mCDP in patients with RMS, 
based on both PS and STC analyses.

The unavailability of IPD to the authors for alem-
tuzumab, natalizumab, and ocrelizumab RCTs 
meant that advanced pairwise ITC methods, such 
as PS or STC analyses were not possible between 
these mAbs and all three oral DMTs of interest. 
As such, using a recently published NMA12 that 

included all mAb and oral therapies of interest 
and analyzed ARR, 3mCDP, and 6mCDP was 
pre-emptively identified via an ITC feasibility 
assessment as the most suitable ITC approach for 
these comparisons. This NMA12 and several oth-
ers11,13,16,18 demonstrated the superior efficacy of 
ofatumumab over oral therapies, albeit not always 
at a statistically significant level. Further, these 
NMAs demonstrated that the most efficacious 
DMTs for RMS were ofatumumab and other 
mAb therapies, not oral therapies. These pub-
lished findings aligned with the results of our 
study. Unlike the PS and STC analyses, an NMA 
does not adjust for cross-trial differences in base-
line patient characteristics. Although an NMA is 
considered a robust analysis because it can use 

Table 1. Summary of ITC results.

Outcome Ofatumumab versus 
cladribine

Ofatumumab versus fingolimod Ofatumumab versus ozanimod 

STC (base 
case)

Published 
NMA12

PS analysis 
(base case)

STC (base case) Published 
NMA12

STC (base case) Published 
NMA12

ARR [RR 
(95% CI/CrI)]

Ofatumumab 
is 
statistically 
superior
CLARITY:
0.74
(0.56–1.00a)

Non-
significant
0.70
(0.45–1.12)

Ofatumumab 
is statistically 
superior
0.60
(0.45–0.81)

Ofatumumab is 
statistically superior
FREEDOMS:
0.58
(0.41–0.82)
FREEDOMS II:
0.51
(0.34–0.76)
TRANSFORMS:
0.66
(0.44–0.98)

Non-
significant
0.70
(0.51–1.03)

Ofatumumab is statistically 
superior
RADIANCE-B:
0.57
(0.42–0.78)
SUNBEAM:
0.54
(0.38–0.78)

Non-
significant
0.69
(0.47–1.07)

3mCDP [HR 
(95% CI/CrI)]

Ofatumumab 
is 
statistically 
superior
CLARITY:
0.61
(0.40–0.92)

Non-
significant
0.67
(0.38–1.19)

Ofatumumab 
is statistically 
superior
0.54
(0.29–0.99)

Ofatumumab is 
statistically superior
FREEDOMS:
0.39
(0.24–0.63)
FREEDOMS II:
0.29
(0.17–0.49)
TRANSFORMS:
0.63
(0.35–1.12)

Ofatumumab 
is 
statistically 
superior
0.62
(0.38–1.00)

Ofatumumab is statistically 
superior
RADIANCE-B +  
SUNBEAM:
0.56
(0.37–0.85)

Non-
significant
0.59
(0.32–1.09)

6mCDP
[HR (95% CI/
CrI)]

Non-
significant
CLARITY:
0.75
(0.44–1.26)

No 
difference
0.99
(0.50–1.97)

Non-
significant
0.59
(0.31–1.12)

Ofatumumab is 
statistically superior
FREEDOMS:
0.45
(0.27–0.75)
FREEDOMS II:
0.49
(0.28–0.84)

Non-
significant
0.79
(0.45–1.45)

Ofatumumab is statistically 
superior
RADIANCE-B + SUNBEAM:
0.54
(0.33–0.90)

Non-
significant
0.52
(0.25–1.14)

aValue to three decimal places is 0.996.
NMA results are for the main analysis (random effects model), with CrIs used instead of CIs because the NMA employed a Bayesian framework.
ARR, annualized relapse rate; 3mCDP, 3-month confirmed disability progression; 6mCDP, 6-month confirmed disability progression; CI, confidence interval; CrI,  
credible interval; HR, hazard ratio; IPTW, inverse probability of treatment weighting; ITC, indirect treatment comparison; NMA, network meta-analysis; PS, propensity 
score; RR, rate ratio; STC, stimulated treatment comparison.

https://journals.sagepub.com/home/tan


N Riley, C Drudge et al.

journals.sagepub.com/home/tan 9

trial data for multiple treatments to inform indi-
rect comparisons, this also increases the level of 
uncertainty associated with comparisons, particu-
larly when analyses are based on sparse networks 
and therapies being compared are distantly con-
nected in a network. Specific limitations of NMAs 
for therapies in RMS have been described previ-
ously.12 Reflecting the greater uncertainty, the 
NMA results had wider credible intervals com-
pared to the CIs for the STCs, and point esti-
mates did not always align. Overall, the results of 
the recently published NMA numerically (albeit 
non-significantly) favored mAbs over oral thera-
pies, and ofatumumab was statistically superior to 
fingolimod in the time to 3mCDP analysis.12 This 
NMA and several others also showed that treat-
ment with mAb therapies was associated with the 
greatest reduction in ARR and delay of 3mCDP 
and 6mCDP. For example, analyses by Chen  
et al.18 and the Institute for Clinical and Economic 
Review found that all included mAb therapies 
were ranked above oral therapies in NMAs for 
ARR and CDP outcomes.11 Collectively, across 
multiple analytical approaches, ITC evidence 
suggests that mAbs have a therapeutic advantage 
over oral therapies in the treatment of patients 
with RMS and should be considered as a distinct 
group of high-efficacy DMTs.

PS analyses are used when IPD are available for 
trials for both treatments, with or without a com-
mon comparator.55 They improve the validity of 
inferences compared to methods that rely on SLD 
(e.g. NMA), provide intuitive diagnostics for 
assessing the similarity of patient populations, 
and allow adjustment for a single scalar (i.e. the 
PS) rather than a full set of covariates. Weighting 
is commonly used in causal inference; unlike cer-
tain forms of matching, weighting uses the full 
patient population, with individual patients con-
tributing variable information to the estimated 
treatment effect depending on their similarity or 
dissimilarity to the target population. IPTW cre-
ates weights for each patient, allowing for all 
patients to be included in the analysis, preventing 
selection bias that can happen with PS matching. 
As with other adjustment methods, IPTW is 
dependent on adequate adjustment for factors 
that differ across trials. Notably, for the PS analy-
ses in this study, several patient characteristics 
varied slightly (i.e. had SMDs ~0.15–0.20) 
between the ofatumumab and fingolimod patient 
populations, even after adjusting for Tier 1 and 
Tier 2 variables. Specifically, the ofatumumab 

population had a higher T2 lesion volume, lower 
normalized brain volume, and higher number of 
relapses in the past year compared with the fin-
golimod population, suggesting the ITCs could 
be biased against ofatumumab. Regardless, the 
PS analyses showed that ofatumumab is superior 
to fingolimod for the outcomes of ARR, 3mCDP, 
and 6mCDP.

An important strength of this study was the use of 
complementary ITC methods to evaluate the rel-
ative efficacy of mAb therapies versus oral thera-
pies, which included the use of IPD for multiple 
trials in both ofatumumab (a mAb) and fingoli-
mod (an oral therapy). These data were used to 
inform PS and STC analyses, which adjusted for 
differences in patient characteristics between tri-
als. Many baseline patient characteristics were 
available for adjustment in these analyses. For the 
STCs, the cloglog link function was used to 
account for the variable treatment duration 
among ASCLEPIOS I/II patients, helping to 
align treatment duration between trials being 
compared. Although an NMA can be used to 
compare multiple therapies simultaneously, it is 
more susceptible to bias introduced by variability 
across the patient populations of trials informing 
the analysis. Notably, relative efficacy estimates 
for ofatumumab versus fingolimod could be com-
pared across three ITC approaches; PS and STC 
analyses were reported here, and a recent NMA 
that included this treatment comparison was also 
considered.12

As with any study, our analyses had some limita-
tions. Although many baseline characteristics 
were adjusted for in the PS and STC analyses, 
these analyses were limited in that some charac-
teristics (e.g. number of T2 lesions, prior experi-
ence with a high efficacy therapy, comorbidities, 
and race) were not consistently available for the 
trials of therapies being compared. Consequently, 
it was not possible to adjust for these covariates. 
More broadly, RCTs are preferable to ITCs given 
the potential for between-trial differences to bias 
indirect comparisons. However, RCTs compar-
ing ofatumumab with cladribine, fingolimod, and 
ozanimod were not available at the time of this 
study, necessitating the use of ITCs. Second, for 
3mCDP and 6mCDP outcomes, time-to-event 
data were used for the PS analyses and previously 
published NMAs, whereas the proportion of 
patients with CDP was used for the STCs. 
Although this approach aligns with best practices 
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for PS analyses (i.e. using Cox regression for 
IPD–IPD comparisons) and with previously pub-
lished STCs48 and NMAs12,14,16,17 of DMTs in 
RMS, comparisons across ITCs may be influ-
enced by the difference in outcome measure. 
Third, the RCTs for cladribine and fingolimod 
used for the ITC analyses were published roughly 
a decade prior to the RCTs for ofatumumab, and 
there is evidence that ARR has been decreasing in 
RCTs over time.56,57 Finally, although STCs 
allow for inclusion of all patients in fitting the 
regression models, diagnostic assessments of 
post-adjustment improvements are not available. 
Additionally, STCs rely on mutually available 
patient characteristics across RCTs to balance 
patient populations which may result in certain 
characteristics unadjusted if not available in both 
cohorts. Results of an unanchored STC are also 
susceptible to residual confounding if patient 
characteristics are unbalanced across trials with 
respect to unmeasured prognostic factors and 
treatment effect modifiers. Since unanchored 
STCs are a population-adjustment technique, 
there is also an assumption of conditional con-
stancy of absolute effects, which assumes that all 
relevant prognostic factors and treatment effect 
modifiers are known and that treatment effects 
are constant at any level of prognostic factors and 
effect modifiers. Nevertheless, unanchored STCs 
are valuable in that, unlike an NMA, they permit 
adjustment for available prognostic factors and 
treatment effect modifiers and are not constrained 
by the limitations of a sparse extended network of 
treatments.

Treatment goals of DMTs for RMS include alle-
viating CNS inflammation, preventing and/or 
reducing relapses, and slowing disease progres-
sion. However, multiple factors must be consid-
ered when choosing a therapy for RMS, including 
safety and tolerability, convenience, preferred 
method of administration, likelihood of adher-
ence, and access. Although ofatumumab and 
other mAbs showed superior efficacy for the three 
efficacy outcomes assessed in this study, compari-
sons based on other outcomes may help to further 
clarify the delineation between mAbs and other 
DMTs. As additional RCTs are conducted, their 
results can be incorporated into future ITCs to 
better understand the changing landscape of 
RMS treatments. Although NMAs continue to be 
an important source of data to inform decision 
making by healthcare stakeholders, population-
adjusted ITC methods that use IPD, such as PS 

and STC analyses, can also continue to contrib-
ute to the totality of comparative evidence for 
DMTs in RMS.51

Conclusion
In conclusion, the introduction of mAbs has revo-
lutionized the treatment landscape of MS by 
offering a targeted mechanism, potent efficacy, 
and a manageable safety profile (which is also 
quite favorable for anti-CD20 therapies). As new 
mAbs and other treatment options continue to 
emerge for patients with RMS, there will be a 
growing need for comparisons of relative efficacy 
to ensure patients and clinicians can make well-
informed treatment decisions. In our study, the 
mAb ofatumumab showed superiority to the oral 
therapies cladribine, fingolimod, and ozanimod 
in reducing relapse rates and delaying disability 
progression among patients with RMS. Our study 
adds to a growing body of literature confirming 
that mAb therapies are the most efficacious 
DMTs for ARR, 3mCDP, and 6mCDP and chal-
lenges the notion that oral therapies achieve simi-
lar efficacy to mAbs.
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