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	 Material/Methods:	 Gene expression data series of GSE19804, GSE101929, and GSE33532 were downloaded from the Gene 
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the above 3 data series. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEEG) were used 
to analyze the biological functions and signal pathways of DEGs. The protein–protein interaction (PPI) was an-
alyzed thorough Search Tool for the Retrieval of Interacting Gens (STRING). The relationship between the ex-
pression of hub genes and the prognosis of patients was analyzed by Kaplan-Meier Plotter online software.

	 Results:	 Twenty-nine DEGs were identified, with 22 upregulated genes and 7 downregulated genes. The enriched bi-
ological processes were mainly related to diet-induced thermogenesis and actin filament binding. The KEGG 
pathways were enriched in calcium signaling, regulation of lipolysis in adipocytes, and PPAR signaling. Two 
downregulated genes (MMP1 and SPP1) were identified as hub genes by Cytohubba. Twenty-two dysregulated 
genes were correlated with patient prognosis.
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Background

Lung cancer, including non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC), is the leading cause of malignant 
tumor-related mortality [1]. Epidemiological studies show that 
more than 1 million new cases of lung cancer and more than 
800 000 deaths occur every year [2,3]. The lung cancer epidemi-
ology data from China demonstrate that the overall incidence of 
lung cancer in China is high, especially in Tianjin city in Dagang 
province and Xuanwei city in Yunnan province. The incidence 
of lung cancer in the above 2 areas is significantly higher than 
the overall global level [4,5]. It is reported that 75–80% of lung 
cancer is NSCLC, whose biological behavior and treatment meth-
ods are different from those of small cell lung cancer. At pres-
ent, the molecular mechanism of the occurrence, development, 
invasion, and metastasis of NSCLC is still unclear.

In recent years, with the development of gene expression pro-
filing chip and second-generation high-throughput sequenc-
ing technology, the amount of data on lung cancer expres-
sion profiles has greatly expanded, which provides the basis 
for the comprehensive study of differentially expressed genes 
and their biological functions in lung cancer [6]. In this study, 
3 gene expression profiles of lung cancer were selected from 
the GEO (https://www.ncbi.nlm.nih.gov/geo/) [7] database, and 
we explored the function of DEGs in the development of lung 
cancer and its relationship with patient prognosis.

Material and Methods

Microarray data screening

Three gene expression data series – GSE19804 [8], 
GSE101929 [9], and GSE33532 [10] – relevant to lung can-
cer from the GEO database were identified and included for 
the present analysis. The original microarry data of the 3 data 
series were download. For GSE19804, 120 lung cancer speci-
mens with 60 cancer tissues and paired 60 normal lung tissues 
were recognized with the platform of GPL570[HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array. A total of 41 
non-small cell lung cancer cases were inlcuded in the data series 
of GSE101929 and the gene expression was detected by GPL570 
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array. For GSE33532, individual primary tumors and matched 
distant normal lung tissues (N) from 20 patients were used to 
establish gene expression patterns captured by GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

Data processing

The microarray data of the included 3 data series were first ana-
lyzed using R 3.4.4 statistical software (https://www.r-project.org), 

then the identified dysregulated genes were further analyzed to 
find the overlapped genes of the 3 data series.

Biological function enrichment and pathway analysis

The biological function enrichment and pathways analysis were 
performed using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID, http://david.ncifcr.gov) [11]. This 
analysis included 2 aspects: one is gene ontology (GO) [12, 13] 
and the other is Kyoto Encyclopedia of Genes and Genomes 
(KEEG) [14]. The GO enrichment includes biological process 
(BP), cellular component (CC), and molecular function (MF).

Protein–protein network analysis and hub gene 
identification

The protein–protein network was built by the Search Tool for 
Retrieval of Interacting Genes (STRING) database with the cri-
teria of: minimum required interaction score of 0.4 and active 
interaction sources of text mining, experiments, databases, 
co-expression, neighborhood, gene fusion, and co-recur-
rence. The target hub gene was selected with the criteria of 
top 10 genes according to 5 Cytohubba ranking method using 
Cytoscape software (https://cytoscape.org/) [15].

Survival analysis

The survival analysis of patients relevant to gene expression 
was expressed by the database of Kaplan-Meier Plotter (http://
kmplot.com/analysis/index.php?p=background) [16] through 
survival curves. According to the median expression of each 
gene in cancer tissues, the patients were divided into a high-
expression group and a low-expression group. The overall sur-
vival (OS) was compared between the 2 groups for each in-
cluded gene.

Results

Identification of differentially expressed genes

Datasets of GSE19804, GSE101929, and GSE33532 from the 
GEO database were inclued in our study. The DEGs were fist 
screened form each dataset, and 40 overlaping differentially 
expresed genes ID were identified (Figure 1). However, the 40 
gene IDs correspond to 30 genes with 10 duplicate genes, 
and 1 gene ID had no gene name. Finally, 29 genes were inl-
cued for further analysis, of which 22 were upregulated and 
7 downregulated (Table 1). The differentially expressed genes 
between cancer tissue and lung normal tissue are repressented 
in a heat map in Figure 2.
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GO and KEGG analysis

The 29 dysregulated genes had gene ontology enrichment in 
terms of biological process (BP), cellular component (CC), and 
molecular function (MF). The enriched biological process was 
mainly related to diet-induced thermogenesis, ventricular car-
diac muscle tissue morphogenesis, and brown fat cell differ-
entiation. For the cellular component, the 29 genes were en-
riched in extracellular space, neuron projection, and plasma 
membrane. In the aspect of molecular function, only 1 term 
of actin filament binding was enriched. KEGG pathway anal-
ysis showed that the 29 dysregulated genes were enriched 

in calcium signaling pathway, regulation of lipolysis in adipo-
cytes, and PPAR signaling pathway (Table 2).

PPI network analysis of the 29 genes

The STRING database was used for PPI network analysis, 
showing 79 nodes and 336 edges, with the average node de-
gree of 8.51 (Figure 3), and the local clustering coefficient was 
0.648. We also use Cytohubba to select the hub genes, show-
ing that 2 downregulated genes (MMP1 and SPP1) were hub 
genes (Figure 4).
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Figure 1. �(A–D) Identification of differentially expressed genes from GSE33532, GSE19804, and GSE101929 data series (A: Volcano plot 
of of GSE33532; B: Volcano plot of GSE19804; C: Volcano plot of GSE101929).
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Survival analysis

The prognostic significance of the 29 genes for NSCLC was an-
alyzed in the Kaplan-Meier Plotter database. The significant 
difference in overall survival (OS) between upregulated and 
downregulated genes is shown in Figure 5. Twenty-two dysreg-
ulated genes were correlated with patient prognosis (Table 3).

Discussion

With the rapid development of bioinformatics, more and more 
microarrays and sequencing data can be publicly accessed [17]. 
These data are collected and stored in corresponding data-
bases, such as GEO (http://www.ncbi.nlm.nih.gov/geo), TCGA 
(http://www.tcga.org/), Kaplan-Meier Plotter, and STRING. 

Gene ID Gene symbol
Mean logFC 
(GSE19804)

209612_s_at ADH1B 3.36491817

229309_at ADRB1 3.21379367

210081_at AGER 3.21379367

206209_s_at CA4 3.86942117

232578_at CLDN18 4.16088183

213317_at CLIC5 3.45981

204320_at COL11A1 –3.32311183

225681_at CTHRC1 –3.193161

204273_at EDNRB 3.190866

203980_at FABP4 3.7473685

209074_s_at FAM107A 3.4444825

205866_at FCN3 3.40527367

238222_at GKN2 3.25140117

209469_at GPM6A 3.61581183

230030_at HS6ST2 –3.390935

Table 1. �The 29 included differentially expressed genes overlapping in GSE33532, GSE19804, and GSE101929 data series.

Gene ID Gene symbol
Mean logFC 
(GSE19804)

204475_at MMP1 –3.04218817

204580_at MMP12 –3.17540267

239650_at NCKAP5 3.105129

230469_at RTKN2 3.4138185

205725_at SCGB1A1 3.38117033

214387_x_at SFTPC 3.2855315

242009_at SLC6A4 3.59241617

213456_at SOSTDC1 3.38619867

206239_s_at SPINK1 –3.33911383

209875_s_at SPP1 –4.503354

230560_at STXBP6 3.6274755

219230_at TMEM100 3.56547367

209904_at TNNC1 3.11718933

204712_at WIF1 3.77360267

Figure 2. �Heat map of the differentially expressed genes between cancer tissue and lung normal tissue.

4336
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Huang H. et al.: 
Integrated bioinformatics analysis of NSCLC

© Med Sci Monit, 2019; 25: 4333-4341
LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



Figure 3. �Protein–protein interaction (PPI) network of the 29 dysregulated genes.

Category Term Count P-value

GOTERM_BP_DIRECT Diet-induced thermogenesis 2 9.9E-3

GOTERM_BP_DIRECT Ventricular cardiac muscle tissue morphogenesis 2 3.4E-2

GOTERM_BP_DIRECT Brown fat cell differentiation 2 4.2E-2

GOTERM_CC_DIRECT Extracellular space 6 7.7E-3

GOTERM_CC_DIRECT Neuron projection 3 1.3E-2

GOTERM_CC_DIRECT Plasma membrane 8 2.5E-2

GOTERM_CC_DIRECT Extracellular region 4 3.0E-2

GOTERM_CC_DIRECT Collagen trimer 2 7.5E-2

GOTERM_MF_DIRECT Actin filament binding 2 6.3E-2

KEGG_PATHWAY Calcium signaling pathway 3 3.0E-2

KEGG_PATHWAY Regulation of lipolysis in adipocytes 2 7.7E-2

KEGG_PATHWAY PPAR signaling pathway 9.7E-2

Table 2. GO and KEGG analysis of the differentially expressed genes between cancer tissue and lung normal tissue.
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Clinical information (e.g., disease type, age, sex, and survival 
rate) and gene expression data can be freely downloaded or 
analyzed online, providing a reliable data platform for further 
data mining, analysis, and solving clinical problems [18,19].

The GEO database was established by the US National Library 
of Medicine in 2000. It is dedicated to the construction of 
gene expression databases and online analysis resources [20]. 
It mainly contains gene chip data and partial sequencing data 
of various tissues. At present, it is one of the most important 
databases in the field of bioinformatics data mining [7,21]. 
Fang et al. [22] performed integrative bioinformatics analysis, 
revealing potential long non-coding RNA biomarkers and anal-
ysis of function in non-smoking females with lung cancer. In 
that study, the authors found that 2 DEGs (LINC00968 and 
TBX5-AS1) were associated with unfavorable prognosis in 
never-smoking female lung cancer patients.

In our present work, we selected data on 3 gene chips rele-
vant to differential expression between lung cancer tissues and 

Figure 4. Hub gene identified by Cytohubba.

normal lung tissues of NSCLC patients in the GEO database. 
We finally identified 29 differentially expressed genes in 3 da-
tasets and further analyzed them for biological function en-
richment, pathways, and survival analysis. These 29 included 
dysregulated genes are mainly enriched in the biological func-
tion of diet-induced thermogenesis, ventricular cardiac muscle 
tissue morphogenesis, and actin filament binding. The KEGG 
pathway analysis showed that the 29 dysregulated genes were 
enriched in calcium signaling and regulation of lipolysis in ad-
ipocytes and in the PPAR signaling pathway. Further analy-
sis showed that 2 genes (MMP1 and SPP1) were hub genes. 
Matrix metalloproteinase-1 (MMP-1) is part of a cluster of 
MMP genes localized to chromosome 11q22.3. MMP-1 is in-
volved in the breakdown of extracellular matrix, which may 
play an important role in tumor metastasis by breaking down 
interstitial collagens types I, II, and III [23,24]. However, SPP1 
seems to have no correlation with cancer in terms of biologi-
cal function enrichment [25,26].
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Figure 5. �Survival curve of non-small cell lung cancer according to low and high expression of included genes.
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Gene ID Gene symbol HR (95% CI) p-Value

209612_s_at ADH1B 	 0.67	 (0.59–0.76) 4.5E-10

229309_at ADRB1 	 0.68	 (0.58–0.80) 5.2e-6

210081_at AGER 	 0.76	 (0.67–0.86) 2.3e-5

206209_s_at CA4 	 1.03	 (0.9–1.165) 0.69

232578_at CLDN18 	 0.75	 (0.66–0.86) 1.4E-5

213317_at CLIC5 	 0.68	 (0.59–0.77) 1.3e-9

204320_at COL11A1 	 1.2	 (1.02–1.42) 0.028

225681_at CTHRC1 	 1.11	 (0.94–1.31) 0.21

204273_at EDNRB 	 0.72	 (0.36–0.81) 2.5e-7

203980_at FABP4 	 1.02	 (0.9–1.16) 0.78

209074_s_at FAM107A 	 0.80	 (0.71–0.91) 0.00078

205866_at FCN3 	 0.99	 (0.87–1.12) 0.88

238222_at GKN2 	 0.83	 (0.70–0.98) 0.028

209469_at GPM6A 	 0.74	 (0.65–0.84) 2.9e-6

230030_at HS6ST2 	 0.75	 (0.64–0.89) 0.00071

204475_at MMP1 	 1.07	 (0.94–1.21) 0.30

204580_at MMP12 	 1.52	 (1.34–1.73) 9.1e-11

239650_at NCKAP5 	 0.64	 (0.54–0.76) 1.6e-7

230469_at RTKN2 	 1.02	 ()0.86–1.20 0.85

205725_at SCGB1A1 	 0.81	 (0.71–0.92) 0.0012

214387_x_at SFTPC 	 0.81	 (0.71–0.92) 0.0011

242009_at SLC6A4 	 0.74	 (0.63–0.87) 0.00035

213456_at SOSTDC1 	 1.07	 (0.94–1.21) 0.32

206239_s_at SPINK1 	 0.765	 (0.67–0.86) 1.5e-5

209875_s_at SPP1 	 1.32	 (1.16–1.49) 1.9e-5

230560_at STXBP6 	 0.77	 (0.65–0.91) 0.0017

219230_at TMEM100 	 0.62	 (0.54–0.71) 1.2e-13

209904_at TNNC1 	 1.28	 (1.13–1.45) 0.00014

204712_at WIF1 	 0.67	 (0.59–0.76) 3.2e-10

Table 3. Survival analysis of the 29 included genes.

Our survival analysis indicated that 22 of the 29 included dys-
regulated genes were correlated with patient prognosis, sug-
gesting that these 22 genes could be used as biomarkers for 
patient prognosis.

Conclusions

Twenty-nine differently expressed genes were identified in the 
present work, which were enriched in the biological functions 

of diet-induced thermogenesis, actin filament binding, and 
PPAR signaling pathway. Dysregulatd genes were correlated 
with NSCLC patient survival and might be useful as biomark-
ers of prognosis. However, this conclusion needs further con-
firmation by laboratory experiments.
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