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Abstract

Cyclic nucleotide signalling through cyclic adenosine monophosphate (cAMP) is thought to play an
important role in the transformation of the long slender (dividing) form to the short-stumpy
(arrested) form in the mammalian bloodstream but the role of cyclic nucleotides in the tsetse-based
part of the trypanosome life cycle is unknown. In a series of in vivo experiments, it was found that
cyclic guanosine monophosphate (cGMP) but not cAMP could induce significantly higher rates of
midgut infection in tsetse. Continuous feeding of either cGMP or cAMP to tsetse had no effect on
rates of maturation of established midgut infections suggesting that these two parts of the life cycle

in tsetse are not linked.

Findings

The short stumpy form of the trypanosome is thought to
be pre-adapted to life in the tsetse fly, the long slender
form maturing into the short stumpy form once a certain
density of infection is reached in the mammalian host [1].
Similar processes happen in the tsetse fly with trypano-
somes going through several transformations, starting in
the midgut of the fly as bloodstream forms, they trans-
form to procyclic forms before terminal differentiation
into mammalian infective forms in the salivary glands
(Trypanosoma brucei s.1.) or mouthparts (Trypanosoma con-
golense). A link between cAMP and cell cycle signalling in
the trypanosome life-cycle was suggested by addition of
cAMP analogues in vitro which promoted the long slender
dividing stage to form non-dividing short stumpy forms

[2].

In the present work Glossina morsitans morsitans were
infected with T. b. brucei (stock Buteba 135, see MacLeod
et al. [3]) on the day following the day of emergence from

the puparium. Infective feeds were given in vitro using
thawed stabilates of trypanosomes suspended in defibri-
nated ovine blood. To examine the effects of CAMP and
c¢GMP on midgut infection establishment, flies received to
a final concentration 1, 10 or 100 uM 8-Br-cGMP or 8-Br-
cAMP (Sigma, UK) with their infective bloodmeal (cyclic
nucleotides were dissolved in saline then added to the
bloodmeal while control flies received saline only).

To examine the effect of 8-Br-cGMP post-infection 100
uM 8-Br-cGMP was added to the bloodmeal 48, 72, 96 or
120 h post infection. Flies which did not take the infective
or supplemented feed were removed from the experiment.

To examine the effects of cyclic nucleotides on the matu-
ration of trypanosomes, all flies received a bloodmeal
containing 100 pM 8-Br-cGMP and were then either fed
100 uM 8-cAMP or 100 uM 8-Br-cGMP from the second
feed onwards. Flies which did not take the infective feed
were removed from the experiment.
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Following infection, flies were maintained at 25°C and
70% relative humidity and fed on defibrinated ovine
blood through an artificial membrane. To determine rates
of establishment, flies were dissected 10 d post-infection
(or 10 d post-treatment) and midguts were examined for
the presence of trypanosomes by phase-contrast micros-
copy (X400). To determine rates of maturation, flies were
dissected 28 d post-infection and midguts and salivary
glands were examined for the presence of trypanosomes
by phase-contrast microscopy (X400).

Generalised linear models with binomial errors were used
to examine the proportion of flies with midgut infections
(number of midgut infections/total number of flies dis-
sected) or proportion of midgut infections maturing into
mature infections (transmission of infectivity - TL
number of salivary gland infections/number of midgut
infections) when compared to control flies (see MacLeod
et al. [4]).

The effects of 8-Br-cGMP or 8-Br-cAMP on trypanosome
midgut infection rates in male G. m. morsitans are shown
in Figure 1. Addition of 8-Br-cGMP to the bloodmeal at
concentrations of 10 or 100 puM significantly (p < 0.001)
increased midgut infection rates from 16% control
(number of flies dissected, n = 95) to 51% (n = 106) and
92% (n = 86) respectively. Addition of 1 uM 8-Br-cGMP
resulted in midgut infection rates of 13% (n = 97) and was
not significantly different (p = 0.817) from the control.
There was no significant difference in infection rates
between male and female flies fed the same concentra-
tions of 8-Br-cGMP (data not shown).
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Figure |

Effect of 8-Br-cGMP or 8-Br-AMP on midgut infections of T.
b. brucei in male G. m. morsitans. Flies were infected at their
first feed, the bloodmeal containing 8-Br-cGMP or 8-Br-AMP
dissected 10 days later and midguts examined for trypano-
some presence by microscopy. Control flies were received
saline in their bloodmeal. Data presented as the mean S.E.M.
from three experiments. Significance: *** p < 0.001 versus
the corresponding control value.
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8-Br-cAMP had no significant (p = 0.131) effect on midgut
infection rates, which for the different doses were 11% (n
=111), 12% (n = 116) and 21% (n = 120) compared to
the control value of 12% (n = 119).

The addition of 100 uM 8-Br-cGMP to the bloodmeal at
the second feed 48, 72 or 96 h post-infection significantly
increased midgut infection rates of male G. m. morsitans
from control values of 6% (n = 101), 14% (n = 99) and
22% (n =97) to 73% (n = 105), 52% (n = 99) and 40%
(n =99) respectively (48 h: p < 0.001; 72 h: p < 0.001; 96
h: p = 0.005). The addition of 100 uM 8-Br-cGMP 120 h
post-infection produced midgut infection rates of 10% (n
= 83) which was not significantly different from the con-
trol value of 14% (n=79; p = 0.391)

The continual addition of 100 uM 8-Br-cGMP had no sig-
nificant effect on midgut infection rates (male: p = 0.600;
female: p = 0.885) or on maturation (male: p = 0.373;
female: p = 0.174) of midgut infections when compared to
those receiving 100 uM 8-Br-cGMP as a single dose with
the infective bloodmeal. In male flies midgut infection
rates and TI rates for those fed 100 uM 8-Br-cGMP contin-
ually were 92% (n = 118) and 49% (n = 109) respectively
compared to those which received only one dose of 100
UM 8-Br-cGMP which were 96% (n = 112) and 50% (n =
107) respectively. In female flies midgut infection rates
and TI rates for those fed 100 uM 8-Br-cGMP continually
were 95% (n = 83) and 24% (n = 79) compared to those
which received only one dose of 100 uM 8-Br-cGMP
which were 96% (n = 94) and 16% (n = 90) respectively.

The addition of 100 uM 8-Br-cAMP from the second feed
after the infection with 100 uM 8-Br-cGMP had no signif-
icant effect on midgut infection rates (male: p = 0.603;
female: p = 0.986) or on rates of maturation (male: p =
0.826; female: p = 0.491) of midgut infections when com-
pared to those receiving 100 uM 8-Br-cGMP with the
infective bloodmeal. In male flies midgut infection rates
and TI rates for those fed 100 uM 8-Br-cAMP from the sec-
ond bloodmeal were 91% (n = 58) and 51% (n = 53)
compared to those which received one dose of 100 uM 8-
Br-cGMP which were 96% (n = 74) and 49% (n = 71)
respectively. In female flies midgut infection rates and TI
rates for those fed 100 uM 8-Br-cAMP from the second
feed were 99% (n = 87) and 16% (n = 89) compared to
those receiving a single dose of 100 uM 8-Br-cGMP which
were 99% (n = 89) and 20% (n = 87) respectively.

In the present work, results show that cAMP does not
appear to be involved in either the establishment of mid-
gut infections or the maturation of established midgut
infections in tsetse. This contrasts with in vitro work where
cAMP signalling was shown to be involved in transforma-
tion of the replicating long-slender form to the cell
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arrested short-stumpy [2]. However, we have shown that
cGMP has a major effect on the susceptibility of tsetse flies
to establishment of midgut trypanosome infections. There
are two systems that the cyclic nucleotide could affect: the
trypanosome and/or the tsetse fly. It has been suggested
that treatment of malpighian tubules in vitro with cGMP
modulates expression of anti-microbial peptides in Dro-
sophila [5] and it has been reported that the antimicrobial
peptide, attacin, is involved in trypanosome clearance
from tsetse [6]. On the trypanosome side, although the
genomes of T. brucei |7], Trypanosoma cruzi |8] and Leish-
mania major [9] did not show the presence of a typical gua-
nylate cyclase, a cGMP dependent enzyme has been found
in Leishmania [10] and a protein kinase has been shown to
function through cGMP in T. brucei [11]. Previous studies
found guanylate cyclase activity in T. cruzi [12] and it was
suggested this activity was involved in cellular motility
[13]. More recently guanylate cyclase activity has been
found in Leishmania donovani [14].

8-Br-cGMP has been shown to induce both RNA and pro-
tein changes in cultured procyclic trypanosomes, indicat-
ing that cGMP signalling may be important in
trypanosome biology [15]. We have shown that cGMP can
"rescue" dying trypanosome infections up to four days
after trypanosomes have entered the tsetse fly midgut; by
contrast glutathione was only able to rescue such infec-
tions within two days post-infection [3], suggesting that
the majority of trypanosomes normally die within two
days of ingestion.

Unlike the continual feeding of glucosamine to infected
tsetse (which decreased rates of trypanosome maturation
[16]), in the present work continual feeding of 8-Br-cGMP
had no effect on maturation rates of infected tsetse.

In conclusion the current work has shown that the guany-
lyl cyclic nucleotide, cGMP, increases susceptibility of
tsetse flies to trypanosomes. Whether or not this effect
works through the fly and/or the trypanosome is as yet
unclear.
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