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Abstract

Background: SFHR (small fragment homologous replacement)-mediated targeting is a process
that has been used to correct specific mutations in mammalian cells. This process involves both
chemical and cellular factors that are not yet defined. To evaluate potential of this technique for
gene therapy it is necessary to characterize gene transfer efficacy in terms of the transfection
vehicle, the genetic target, and the cellular processing of the DNA and DNA-vehicle complex.

Methods: In this study, small fragments of genomic cystic fibrosis (CF) transmembrane
conductance regulator (CFTR) DNA, that comprise the wild-type and AF508 sequences, were
transfected into immortalized CF and normal airway epithelial cells, respectively. Homologous
replacement was evaluated using PCR and sequence-based analyses of cellular DNA and RNA.
Individual stages of cationic lipid-facilitated SFHR in cultured cell lines were also examined using
transmission electron microscopy (TEM).

Results: We demonstrated that the lipid/DNA (+/-) ratio influences the mode of entry into the
cell and therefore affects the efficacy of SFHR-mediated gene targeting. Lipid/DNA complexes with
more negative ratios entered the cell via a plasma membrane fusion pathway. Transfer of the DNA
that relies on an endocytic pathway appeared more effective at mediating SFHR. In addition, it was
also clear that there is a correlation between the specific cell line transfected and the optimal lipid/
DNA ratio.

Conclusions: These studies provide new insights into factors that underlie SFHR-mediated gene
targeting efficacy and into the parameters that can be modulated for its optimization.

Page 1 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2350/3/8
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Genetics 2002, 3

Background

Homologous replacement is a technology that can be
used to modify specific genes within chromosomal DNA
[1-6]. The potential of this type of strategy has obvious
implications for maintaining genomic integrity and cell-
specific expression. The direct conversion of mutant ge-
nomic sequences to a wild-type genotype, restoring the
normal phenotype, has clear advantages over therapeutic
cDNA. By preserving the integrity of the targeted gene, the
relationship between the coding sequences and regulatory
elements remains intact. Consequently, cell-specific ex-
pression is not altered. Small fragment homologous re-
placement (SFHR) involves the introduction of small
fragments (~500-bp) of DNA into cells. After entering the
cells, the fragment pairs with its genomic homologue and
replaces the endogenous sequence with the exogenous
fragment through an, as yet, undefined mechanism
[1,2,6].

SFHR has already been successfully used to correct AF508
mutation in the cystic fibrosis (CF) transmembrane con-
ductance regulator (CFTR) gene [1,2,7-10]. The AF508 is
the most common mutation associated with CF [11,12]
and demonstration of its correction has significant thera-
peutic implications. The studies showed that SFHR-medi-
ated replacement of mutant or wild-type genomic
sequences after the introduction of small DNA fragment
(491/488 nt) into cultured epithelial cells [7,10]. In some
studies, the fragment, also carried a silent mutation that
introduced a unique Xhol restriction site that could be
used as a secondary marker of SFHR-mediated correction
[7,8].

Recent in vivo studies have also indicated that SFHR could
be used to modify endogenous mouse CFTR in the lung
and in the intestine [9]. Not only was it possible to dem-
onstrate SFHR-mediated modification of the DNA, but
there was also a clear indication that the cells expressing
CFTR were modified [9]. However, there has been no de-
tailed SFHR optimization analysis as it relates to the be-
haviour of the DNA during and after SFHR uptake, the
intracellular distribution of the DNA, and long-term sta-
bility of SFHR using non-viral vehicles. In this study, dif-
ferent parameters that influence SFHR in human
epithelial cells were evaluated to determine whether SFHR
could be an effective strategy for gene therapy. These in-
clude the type of transfected cells, DNA fragment to lipid
ratio (+/-, respectively) and the time of harvest after initi-
ation of transfection (incubation time). Different DNA
transfection conditions were evaluated with respect to
their ability to modulate SFHR-mediated correction.

SFHR-mediated replacement at the appropriate genomic
locus and expression of the exogenous sequences was as-
sayed using polymerase chain reaction (PCR) amplifica-

http://www.biomedcentral.com/1471-2350/3/8

tion, restriction fragment length polymorphic (RFLP)
analysis and DNA sequencing. The intracellular fate of
transfected gold-labelled DNA fragments was monitored
by transmission electron microscopy (TEM). The results
presented here provide insight into the mechanisms un-
derlying SFHR-mediated correction of the most common
CF mutation, the AF508.

Methods

Cell cultures

Studies were carried out in CF tracheobronchial cells
transformed with an origin of replication defective simian
virus 40 (SV40) containing plasmid (pSVori-) [13-15].
The cell line, CFBE4 10, is homozygous for the AF508 mu-
tation (AF508/AF508). A wild-type airway epithelial cell
line 16HBE140-, also transformed with the pSVori- plas-
mid was used as representative of the normal cells [14-
16]. Cells were grown in Eagle's Minimal Essential Medi-
um (MEM) supplemented with 10% fetal bovine serum
(FBS) and antibiotics under humidified conditions at
37°C in 5% CO,. Stock cultures were grown in T75 flasks
coated with an extracellular matrix of collagen/fibronec-
tin/bovine serum albumin and subculture by trypsiniza-
tion as described previously [17].

Synthesis of DNA fragments

DNA fragments, 491-bp and 488-bp, that comprised exon
10 as well as the 3' and 5' flanking intron regions of the
wild-type (wt) and mutant (AF508) CFTR gene respective-
ly, were generated by PCR as previously described
[7,8,10]. Fragments were column purified (Qiagen) and
ethanol precipitated for subsequent use.

Preparation of lipid/fragment complexes

DNA-cationic lipid complexes were generated using the
GENEPORTER (Gene Therapy Systems, San Diego, USA)
liposome. The complexes were made at different charge
ratios (+/-), by increasing the concentration of the double
stranded DNA fragments and mixing with a constant
quantity of LIPID (22.5 pl) according to manufacturer's
specifications. The mixture was then incubated at room
temperature for 45 min and diluted to a final volume of 2
ml with serum-free MEM. DNA without lipid was used as
the control in all experiments.

Transfection protocol

Approximately 2.5 x 10° cells were seeded in T75 flask 24
h before treatment. Cells were incubated with lipoplexes
for 5 h in serum free medium at 37°C. After the initial 5 h
incubation, cell cultures were supplemented with medi-
um containing a final 10% FBS concentration. Cells were
harvested by trypsinization following removal of the cul-
ture medium and washing twice with cold Phosphate
Buffered Saline (PBS).
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Table I: PCR primers for SFHR DNA and RNA analysis
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Primer Sequence Location
CFIB (S) 5'-CCTTCTCTGTGAACCTCTATCA-3' Intron 9
CFé6 (A) 5'-CCACATATCACTATATGCATGC-3' Intron 10
CFI7 (S) 5'-GAGGGATTTGGGGAATTATTTG-3' Intron 9
CF22 (A) 5'-CTTGCTAAAGAAATTCTTGCTC-3' Intron |1
AFI (S) 5'-TCCTGGATTATGCCTGGCACC-3' Exon 10
AF2 (A) 5'-GGCATGCTTTGATGACGCTTC-3' Exon 10

Primer sequences are reported from ref. [7]

A

AF308
% Exon 10 b
— — p— g—
CFIB AF1 AF2 CF6
B AF508
Exon 9 Exon 10 Exon 11

— — —— —
CF17 AF1 AF2 CF22
Figure |

Localisation of primer pairs used for DNA (A) and RNA (B)
analysis protocols. AF508 position is showed. PCR products
length is of 771/768-bp, 373/370-bp and 97/94-bp for CFIB/
CFé6, CFIB/AF2 and AFI/AF2 oligonucleotide pairs respec-
tively.

DNA analysis

Genomic DNA from transfected cells was initially PCR
amplified with primers (CF1B/CF6) located outside the
region of homology defined by the 491/488 bp transfec-
tion fragment (Fig. 1A). These primers localize the ampli-
fication to genomic DNA and inhibit amplification of free
fragment. A secondary amplification was carried out with
primers CF1B and AF2 with the primary amplification
product as template. Primer AF2 is located inside the re-
gion of homology. A schematic representation of primer
localization is depicted in Fig 1A. The product from the
secondary PCR amplification was extracted from agarose
gel (Millipore Ultrafree-DA, Bedford MA USA) and then
subjected to a final round of radioactive PCR amplifica-
tion with primers (AF1/AF2). These PCR products were
sized by polyacrylamide gel electrophoresis (Storm 860,
Molecular Dynamics, Little Chalfout, UK). The gel was ex-
posed autoradiographically and then analyzed densito-
metricly to compare the relative intensity of the two bands
(97 and 94 bp). These two bands correspond to the wild-
type and mutant sequence, respectively. Oligonucleotide
sequences are reported in Table 11.

RNA analysis

Total RNA was extracted by using RNeasy Mini kit (Qia-
gen, Germany). Reverse Transcriptase PCR (RT-PCR) am-
plification of total RNA was carried out using Superscipt™
I RNAse H- Reverse Transcriptase (Gibco BRL Life Tech-
nologies, Gaithersburg, USA) to generate first strand cD-
NA. The ¢DNA was initially amplified with primers
external from the homology region (CF17/CF22) and
then with primers (CF17/AF2) (Fig. 1B). The PCR product
from this secondary amplification was extracted from the
agarose gel as above and subjected to a final round of PCR
amplification with primers (AF1/AF2). The amplicons
were sized and analysed by densitometric analysis. Results
are presented as the standard error of the mean. Oligonu-
cleotide sequences are reported in Table 11.

Transmission electron microscopy analysis (TEM) of gold-
labelled DNA fragments

DNA fragments were gold-labelled with photoactive bi-
otin (Pierce, Illinois, USA), and Auroprobe EM streptavi-
din G10 (Amersham, United Kingdom), as previously
described [13]. The CFBE410- and 16HBE140- cells were
transfected with different amounts of labelled DNA/ lipid
complex at varying charge ratios and analyzed at different
times of transfection. Gold-labelled fragments (not com-
plexed with lipid) were also transfected as controls. Cells
were fixed for 1 hour at 4°C with 2.5% glutheraldheyde in
0.1 M Millonig's phosphate buffer (MPB) containing 2%
sucrose. Samples were then post-fixed for 1 hour at 4°C
with 1% OsO, in MPB, dehydrated in ascending ethanol
concentrations and embedded in Spurr epoxy resin (Agar
Scientific LTD, Stanted, Essex, UK). Ultrathin sections
were stained with uranyl acetate and lead citrate and ob-
served under a Philips CM 12 transmission electron micro-
scope (Philips, Philips Electronics, NV).

Results

Correction efficiency as function of lipid to DNA charge
ratio (+/-): DNA analysis

The lipid/DNA ratios, based on charge ratio, were opti-
mized using gel electrophoresis [18-20]. Complete neu-
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Figure 2

DNA analysis performed on CFBE4|o- transfected cells har-
vested 120 hrs after transfection. (A) PCR analysis of wild-
type (WT) and AF508 alleles as a function of lipid to DNA
charge ratios in CFBE4lo- cells. Replacement was indicated
by the presence of the WT-allele for lipid/DNA ratios rang-
ing from 42+/1- to |+/1- corresponding to lanes from | to 7.
DNA from untrasfected cells was amplified in lane 8 as nega-
tive control; (B) Densitometric analysis revealed that the
maximum correction efficiency is reached with a ratio of
lipid/DNA 6+/1-. No correction was observed at |+/1- ratio.

tralization of the negative DNA charge was achieved at a
lipid to DNA charge ratio (+/-) of 2.2/1. A number of dif-
ferent lipid/DNA ratios were used to transfect (AF508/
AF508) CFBE410- cells with wild-type 491 bp fragment.
Fig. 2A shows allele-specific PCR analysis as a function
varying the lipid/DNA ratio. A faint 97-bp amplification
product, corresponding to the wild-type allele was evident
at the highest lipid/DNA ratio. A more intense wild-type
specific band was detectable up to 2.2+/1- ratio. The auto-
radiographic signal of the 97-bp band increased in inten-
sity as the amount of DNA fragment in the lipid/DNA
complex increased. Consequently, the overall charge of
the lipid/DNA complex became less positive. However,
when the charge of the complex was neutral, i.e. 1+/1-, the
wild-type was not detectable. Densitometric analysis indi-
cates that the relative signal of the wild-type band was
maximal at a lipid /DNA charge ratio of 6+/1- (Fig. 2B).
Thus, it appears the optimal Gene Porter/DNA fragment
charge ratio of 6+/1- for SFHR-mediated replacement of
AF508-CFTR in CFBE41o0- cells.
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Figure 3
Analysis of DNA from |6HBEI40- transfected cells. (A) PCR

analysis of wild-type (WT) and AF508 alleles as a function of
lipid to DNA charge ratios in 16HBEI40- cells transfected
with the AF508 DNA fragment. Replacement was indicated
by the presence of the AF-allele after transfection at lipid to
DNA ratios ranging from 42+/1- to |+/1- (lanes from | to 7).
DNA from untrasfected cells was amplified in lane 8 as nega-
tive control; (B) Densitometric analysis revealed that the
maximum correction efficiency is reached with a lipid/DNA
ratio of 2.2+/l-. With this cell line no correction was
observed at ratios of 42+/1-, 12+/1-, 6+/l-and |+/I-.

SFHR-mediated gene modification was further character-
ised in wild-type cells (16HBE140-) transfected with the
AF508-CFTR DNA fragment (488-bp) in a lipid complex
as described above. The subsequent PCR and radiographic
analysis of the wild-type and AF508-CFIR alleles is pre-
sented in Fig. 3. A faint 94-bp, AF508-specific, amplifica-
tion product could be detected at lipid/DNA charge ratio
of 4.2+/1-. However, the 94-bp band with the greatest rel-
ative intensity was observed at a lipid/DNA ratio of 2.2+/
1-. Densitometric analysis indicated that the amount of
wild-type and AF508 product were equivalent (Fig. 3B).
This result was supported by allele specific reverse-dot
blot analysis of CFTR exon 10 (data not shown).

Correction efficiency as function of lipid to DNA charge
ratio (+/-): RNA analysis

CFBE410" cells showed expression of the normal allele in
a pattern similar to that observed for the relative DNA lev-
els of the wild-type allele (Fig. 4A). However, the SFHR-
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Analysis of RNA from CFBE410- (A, B) and I6HBEI40- (C, D) transfected cells at different lipid/DNA ratios and harvested 120
hrs after transfection. Lanes |-7 correspond to lipid/DNA charge ratios ranging from 42+/1- to 1+/1-. Lane 8 is RNA analysis of
untransfected cells (A, C). The expression of the recombinant allele was detected in lanes | to 6 in (A) and in lane 6 only in
(C). Densitometric analysis revealed that the maximum correction efficiency in CFBE4|o- is reached with a lipid/DNA ratio of
6+/1- (B), whereas in |6HBE|40- recombinant allele is expressed only at 2.2/1 charge ratio (+/-) as reported in (D).

modified wild-type allele is expressed at the levels much
lower than the endogenous mutant allele (AF508), as
shown by densitometric analysis revealing that the maxi-
mum correction efficiency in CFBE410- is reached with a
lipid/DNA ratio of 6+/1- (Fig. 4B).

Similar results were obtained for the 16HBE14o0- cells
transfected with the AF508 DNA fragment (Fig. 4C). Tran-
scription of the AF508 mutant allele was only detectable
atalipid/DNA ratio of 2.2+/1- (Fig. 4C/D), corresponding
to the maximum correction efficiency observable in ge-
nomic DNA (Fig. 3A/B).

Analysis of targeted replacement at different times after
transfection with small DNA fragments

The stability of the SFHR-mediated exchange after expo-
sure to the lipoplexes was evaluated to determine the ef-
fective detectability of SFHR-mediated homologous
replacement as a function of time. Cells were transfected
at the optimal lipid/DNA charge ratio for each cell line
(6+/1-and 2.2+/1- for CFBE410- and 16HBE140-, respec-
tively) and harvested at 24 h, 48 h, 72 h, 96 h and 120 h
after termination of the lipoplex incubation. Analysis of
the DNA from transfected CFBE410- cells indicates the
greatest degree of SFHR-mediated replacement 24 h after
transfection (Fig. 5A). SFHR-mediated homologous re-

placement continued to be detectable up to 11 days post
transfection in CFBE410- cell (data not shown). No ap-
parent signal was detected when cells were harvested at
16, 21, and 30 days following transfection (data not
shown). It has to be noted that the intensity values be-
tween densitometric analysis results in fig 2B (lane 3) and
fig. 5B (lane 5) are different. The experiments were re-
peatead twice and the results come out from arithmetic
mean. These results could be explained by the polyploid
status of the cell line used for transfections. Thus, the frag-
ment can recombine in more CFIR loci. The highest level
of SFHR-mediated exchange in 16HBE14o0- cells was ob-
served at 48 h and then again at 120 h post transfection
(Fig. 5B).

TEM analysis of lipoplex-cell interactions

The intracellular route that the DNA fragments take to
traffic to the cell nucleus was monitored using TEM and li-
pid/gold-labelled DNA complexes at different charge ra-
tios (+/-). Cells were fixed and observed at different times
after the start of transfection ranging from 5 h to 96 h (Fig.
6,7,8,9). In cells treated at the optimal lipid/DNA charge
ratio complexes (6+/1-), an endocytotic-like pattern of in-
ternalization was observed (Fig. 6B,6C). Nevertheless,
DNA/lipid complexes were never observed in coated pits,
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Analysis of DNA from CFBE41o- (A) and 16HBE 40" (C) transfected cells at optimal lipid/DNA charge ratio (6+/1- and 2.2+/1-
respectively) and harvested at 24 h (lanel), 48 h (lane2), 72 h (lane 3), 96 h (lane 4) and 120 h (lane 5) after transfection. Lane
6 corresponds to untransfected cells. Densitometric analysis revealed that the maximum correction efficiency in CFBE4 10 is
reached at 24 h after transfection (B), while in 16HBEI40- at 48 h and again at 120 h after transfection (D).

Figure 6

Transmission EM of CFBE4|0- cells transfected at the optimal lipid/DNA ratio (6+/1-) and fixed 5 h after the start of transfec-
tion. (A) gold-labelled DNA complex; (B) labelled complexes interacting with cell membrane; (C) a detail of B at higher magni-
fication. ee: early endosome. Arrows indicate endocytosis of the lipid/DNA complex. Bars: 200 nm.
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Figure 7

Transmission EM of CFBE4 | o- cells transfected at the optimal lipid/DNA ratio (6+/1-) and fixed 72 h after the start of transfec-
tion. (A)-(C) large membrane-bound vesicles containing aggregates of labelled complexes in the perinuclear region of trans-
fected cells. Destabilization of an early endosome (D), late endosome (E) and membrane-bound vesicles (F and G) by lipid/
DNA complexes; (G) a higher magnification of (F). Arrows indicate a part of the aggregated complexes extruded into the cyto-
plasm and not surrounded by an endosome or a large vesicle membrane. ee: early endosome; g: Golgi apparatus; le: late endo-
some; mbv: membrane-bound vesicle; ly: lysosome; n: nucleus. Bars: (A)-(C): | um; (D)-(G)): 200 nm.

suggesting that the internalization of the complexes was
not achieved through receptor-mediated endocytosis (Fig
6B,6C).

The complexes appeared as structures around gold-la-
belled DNA (Fig. 6A). Some endosomes containing the
complexes were near the cell surface suggesting that these
were early endosomes (Fig. 6C). With an increase in the
time of exposure to the transfection complexes, the endo-
somes appeared to move towards the perinuclear region.
Late endosomes fused together to generate large mem-
brane-bound vesicles containing aggregates of labelled
complexes (Fig 7A,7B,7C). As shown in Fig. 7D,7E,7F,7G
the DNA lipid complexes seemed to destabilize both en-

dosomes and large membrane-bound vesicles. It should
be noted that the destabilization site along the progres-
sion of the endosome to large vesicle seemed to be prefer-
entially near the Golgi apparatus and the vesicular
compartment of endoplasmic reticulum (Fig 7F,7G).
These observations suggest that the DNA-liposomes com-
plexes might be released into the cytoplasm by destabiliz-
ing either the endosome and large vesicle membrane and
that the endoplasmic reticulum may be involved in the
transport of free DNA towards the nucleus. Occasionally,
gold labelled electron-dense material, apparently not
bound to liposome structures, was observed near the ER
and near the nuclear pores (data not shown). Free gold la-
belling was never observed in the nucleus. This may be
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Figure 8

Transmission EM of CFBE410- cells transfected at the (6+/1-) lipid/DNA ratio and fixed 96 h after the start of transfection. (A)-
(C) Large vesicles filled with labelled complexes in the cytoplasm of a transfected cell; (C) a higher magnification of (B). Arrows
indicate a fusion site between a large vesicle and a lysosome. (D)-(F) labelled membranous body and lysosome in the cytoplasm
of a transfected cell; (F) a higher magnification of a membranous body, in which the lipid/DNA complexes appeared partially
degraded. ly: lysosome; mb: membranous body; mbv: membrane-bound vesicles. Bars: (A)-(E): 300 nm; (F): 100 nm.

due to the fact that, because of the size of the DNA frag-
ments, not all the DNA was gold labeled. Consequently,
our inability to observe free gold labeled DNA in the nu-
cleus might reflect that very little DNA (gold labeled and
unlabeled) escaped from the endosome and that the sen-
sitivity of electron microscopy is not high enough to de-
tect it. Alternatively, it is possible that, during the delivery
of the DNA fragments from the complexes, some of the
gold labelling was removed. At 96 hrs after the start of
transfection, very large vesicles filled with gold-labelled
complexes were observed (Fig 8A,8B,8C). Furthermore,
large membranous bodies showing a regular lamellar pat-
tern, similar to those described previously [21], were fre-
quently observed (Fig 8D,8E). Of note is that the
multilamellar packed structure of complexes that was still
visible in the large cytoplasmic vesicles (Fig 8C), whereas

in the large membranous bodies and apparent lysosomes
the liposome complexes were not distinguishable (Fig
8E,8F). One possible explanation for this observation is
that continued cellular exposure to the liposomes/DNA
complexes results in their accumulation in large cytoplas-
mic vesicles. When the complexes in these vesicles exceed
a critical concentration, the vesicles could neither fuse
with lysosomes (Fig. 8C) and result in degradation of the
complexes inside the large membranous bodies.

TEM analysis of cells treated with lipid/ DNA ratios that
showed no SFHR-mediated modification showed labelled
complexes adhering to the cytoplasmic membrane of a
small number of cells (Fig. 9A). These complexes were
never observed inside endosomes. Furthermore, in some
cases the adherent complexes seemed to destabilize, the
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Figure 9

Trgnsmission EM of CFBE4|o- cells transfected at a lipid/DNA ratio having no transfection activity (1+/1-). Cells were fixed at
5 h (A and B) and at 72 h (C and E) after the start of transfection. (A) and (B) show labelled complexes adhering to the cellular
membrane; (B) is a higher magnification of (A). Arrows indicate sites at the plasma membrane that appear to be destabilised by
the adhering complex. (C)-(E) show a labelled lysosome in a transfected cell; (E) is at high magnification. In (E) the lipid/DNA
complexes, adhering to the lysosome membrane, appear to be free within the cytoplasm (arrowhead). ly: lysosome. Bars: (A),
(©), (D), (E): 300 nm; (B): 100 nm.
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cell membrane (arrows in Fig. 9B). Both observations sug-
gest that these lipid/DNA complexes penetrated the cell
by a fusion mechanism. At these charge ratios, gold label-
ling was observed almost exclusively around and inside
lysosomes (Fig. 9C,9D), and labelled complexes were nev-
er observed in late endosomes or large vesicles. These ob-
servations suggest that when lipid/DNA complexes enter
the cell via a fusion mechanism, they are immediately di-
gested by lysosomes. Thus, the entry of lipid/DNA com-
plexes via an endocytic mechanism seems to be a
requirement for the release of the DNA from the lipoplex-
es and transport into the nucleus. Controls were moni-
tored in which labelled fragments, not complexed with
lipid, were transfected for testing labelling toxicity. No
fragments were seen inside cells (data not shown).

Discussion

SFHR-mediated gene targeting has been used to correct a
specific CFTR mutation, in the 3-bp AF508 deletion
[7,10]. Recently, this strategy was successfully employed
to correct a nonsense mutation in the dystrophin (dys) lo-
cus of the mdx mouse both in vitro and in vivo[22]. Previ-
ous studies have also shown that DNA fragments can be
delivered to the lung by lipid vehicles. In this study, SFHR-
mediated correction was detected up to seven days at
mRNA level within lung and lower airways, suggesting its
therapeutic potential within this organ [9].

These previous studies results suggest that SFHR has ther-
apeutic potential for treatment of inherited disorders.
However, to enhance this therapeutic potential, transfec-
tion conditions need to be optimized. This can, in part, be
achieved by analysis of the cellular and molecular mecha-
nisms that underlie transport of the therapeutic fragments
to the nucleus. One of the necessary conditions to achieve
therapeutically relevant SFHR-repair efficiencies is a care-
ful optimization of delivery methodologies to overcome
both extracellular and intracellular barriers that preclude
the nuclear localization of the small fragments.

In fact, a major hurdle of gene therapy is the limited nu-
clear uptake of intact therapeutic DNA that inhibits its full
performance [21].

The lipid/DNA ratio appears to be an important factor in-
fluencing the success of transfection [18,23,24]. The re-
sults of the studies presented here indicate that the lipid/
DNA charge ratios for optimal SFHR-mediated modifica-
tion are cell line dependent. A molar charge ratio of 2.2
(+)/1(-) and 6 (+)/1(-) for the wild-type (16HBE140-)
and the mutant (CFBE410-) cell lines, respectively, was
found to be optimal for SFHR when assessed by PCR.
When the amount of lipid was held constant and the
amount of DNA was increased, a more negatively charged
lipid/DNA complex was formed. While increasing the

http://www.biomedcentral.com/1471-2350/3/8

amount of DNA in the lipoplexes, SFHR-mediated modi-
fication was observed to progressively decrease until it was
undetectable (up to 30 pg of fragment). These findings in-
dicate that the amount of DNA is not rate limiting in itself,
but rather that the reduction in positive charge caused by
an increase in DNA within the lipoplexes, impacts SFHR-
mediated modification. This effect on SFHR was clearly
cell line dependent and appears to be associated with the
transport of the DNA to the nucleus. Alternatively, it can
not be ruled out that the increased amount of DNA in neg-
atively charge lipid/DNA complexes might competitively
inhibit the enzymatic processes that leads to DNA uptake
and/or SFHR. If the enzymatic pathways are saturated
with DNA fragments they might not be as effective at me-
diating exchange. This will require further analysis in a fu-
ture study.

Knowledge of the internalization mechanism and intrac-
ellular fate of lipoplexes is a prerequisite for the further
development of efficient SFHR-based gene repair proto-
cols. TEM analysis demonstrated that the lipoplexes enter
cells via different mechanisms that depend on the lipid/
DNA charge ratio. At a more negative charge ratio, lipo-
plexes enter into cells via a fusion pathway. Complexes
that enter the cell via fusion with the plasma membrane
appear not to enter the nucleus to mediate SFHR as is im-
plied by the apparent lack of correction detected by mo-
lecular analysis. These results are consistent with previous
work investigating the role of helper lipid in the assembly
[18] and destabilization [23] of lipoplexes, and in the
finding that lipid can inhibit SFHR-mediated modifica-
tion of mutant plasmids after transient transfection [24].

The TEM analysis also demonstrated that lipoplexes with
the appropriate charge could be taken up in endosomes
within 5 h after initiation of transfection and become as-
sociated with the nucleus within 72 h. This endocytic up-
take mechanism for the lipoplex appears to be distinct
from that involving fusion with the plasma membrane,
but also dependent on the lipoplex charge. As the lipoplex
molar charge ratio becomes more positively charged, the
lipoplexes appear to enter the cells via an endocytic path-
way. It is this pathway that appears to be more effective at
transferring DNA to the nucleus and mediating SFHR.
Therefore, strategies that enhance endosome disruption
might further improve delivery to the nucleus and thus
potentiate SFHR-mediated modification. These include
incorporation of synthetic virus-derived "fusogen" into
the lipid complex [25,26], the introduction of membrane
destabilizing peptides into DNA/poly-lysine conjugates
[27], transfection in the presence of inactivated adenovi-
rus [28,29] as well as treatment of the cells with agents
that enhance endosome lysis such as chloroquine and
glycerol [30-32].
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SFHR-mediated DNA modification was detected within
the population of transfected cells for at least 120 hours
post-transfection. Analysis of the transfected CFBE41o0-
cells showed the 3-bp insertion at 11 days post-transfec-
tion. However, at 30 days, the insertion was no longer ap-
parent. Recent studies in which the mixed population of
transfected cells was sorted into isogenic cell lines have in-
dicated that subpopulations of corrected cells exist within
the larger population, albeit at a frequency that is detecta-
ble by allele-specific PCR [33]. Thus, it does appear that
SFHR-mediated modification of CFBE410- cells is stable
over time, but the proportion of corrected cell is reduced,
leading to dilution of the signal because of the passing of
time.

Conclusions

These studies demonstrate that the efficacy of lipid assist-
ed SFHR-mediated modification appears to be cell line-
dependent. Different charge ratios were optimal for SFHR-
mediated targeting when comparing CFBE410- cells to
16HBE140- cells. This suggests that, as yet undefined, in-
tracellular factors influence lipid-facilitated SFHR-mediat-
ed modification. The data are also consistent with
previous observations that the efficiency of cationic lipid-
mediated transfection varies with different cell types
[18,34,35]. This issue will be particularly relevant to the
selection of the delivery vehicles for SFHR in vitro and in
vivo[9,22].

While recent studies demonstrated that SFHR delivery can
be achieved in vivo in the mouse lung [9] and muscle [22],
there are still questions that need to be answered before
SFHR can be applied therapeutically. Although it is diffi-
cult to extrapolate conditions and optimal delivery vehi-
cle formulations from in vitro experiments to in vivo, these
studies on human airway epithelial cell lines provide in-
sights into therapeutic application of SFHR in human air-
ways. In the context of a reliable assay system these cell
systems, can be useful for elucidating those conditions
that will optimize SFHR in the airways [18,24].
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