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Pathogenic non-spore forming bacteria enter a dormant state under stressful conditions,
which likely allows them to acquire resistance to various antibiotics. This work revealed
the efficient formation of dormant “non-culturable” (NC) Corynebacterium jeikeium cells
in stationary phase upon gradual acidification of the growth medium. Such cells were
unable to form colonies and existed in a prolonged stationary phase. At an early
stage of dormancy (approximately 14 days post-inoculation), dormant cells are able
for resuscitation in liquid medium. However, those stored for long time in dormant state
needed addition of supernatant taking from active C. jeikeium cultures for successful
resuscitation. NC cells possessed low RNA synthesis and significant tolerance to
antibiotics (rifampicin and vancomycin). They also accumulated free porphyrins, and 5-
aminolevulinic acid addition enhanced free porphyrin accumulation which makes them
potentially sensitive to photodynamic inactivation (PDI). PDI of dormant bacteria was
accomplished by exposing cells to a 565 nm wavelength of light using a SOLIS-4C light-
emitting diode for 60 min. This revealed that increased porphyrin concentrations were
correlated with elevated PDI sensitivity. Results shown here demonstrate the potential
utility of employing PDI to minimize levels of dormant, persistent corynebacteria and the
C. jeikeium dormancy model developed here may be useful for finding new drugs and
techniques for combatting persistent corynebacteria.

Keywords: Corynebacterium jeikeium, resuscitation, porphyrin, photodynamic inactivation, dormant bacteria,
resistance

INTRODUCTION

Interest in the study of dormant forms of non-sporulating bacteria is caused, on one hand, by
the desire to understand long-term bacterial survival mechanisms under conditions that are not
conducive to growth that occur in natural ecosystems (El-Registan et al., 2006; Lennon and Jones,
2011). On the other hand, the occurrence of dormancy is associated with pathogen persistence
via the formation of antibiotic-resistant, persistent cells (Keren et al., 2004; Zhang, 2004; Lewis,
2007). The problem of antibiotic resistance and the emergence of antimicrobial resistant strains has
become especially important in connection with current infectious disease expansion. For example,
resistance has been observed in Staphylococcus aureus, which is able to form cells with increased
antibiotic resistance, which enhances persistence in the host organism and causes chronic or
recurrent infections (Chambers and Deleo, 2009). A similar phenomenon has also been described
in Mycobacterium tuberculosis (Kaprelyants et al., 2018).
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The bacterial transition to a dormant state has been
documented in experimental studies that described the process in
a number of non-sporulating bacteria (Kaprelyants et al., 1993).
Further, dormant bacterial cells may develop “non-culturability”
(NC) (a term which reflects the inability to form colonies on
agar plates), which prevents the cells from being detected in vivo
using routine plating procedures (Roszak and Colwell, 1987;
Cellini et al., 1994; Porter et al., 1995; Kell et al., 1998; Barer and
Harwood, 1999; Tholozan et al., 1999; Biketov et al., 2000; Currás
et al., 2002; Shleeva et al., 2002; Mukamolova et al., 2003; Wood
et al., 2005; Lee et al., 2007). For many non-sporulating gram-
negative and gram-positive bacteria, including non-pathogenic
relatives of pathogens, morphologically differentiated dormant
forms have previously been described (Cellini et al., 1994;
Currás et al., 2002; Shleeva et al., 2002, 2004; Lee et al., 2010;
Mulyukin et al., 2010). Studying the possible persistence and
development of antibiotic resistance of other pathogenic and
conditionally pathogenic bacteria, including representatives of
the genus Corynebacterium is also relevant (Blokpoel et al., 2005;
Tauch et al., 2005; Soriano et al., 2009; Olender, 2012).

Many corynebacteria are pathogenic (Bernard, 2012).
Corynebacteria of the species Corynebacterium diphtheriae,
which produce a very strong exotoxin, are the causative agents
of one of the most famous human infections, diphtheria.
So-called non-diphtheria corynebacteria (Corynebacteria
non-diphtheriae) C. ulcerans and C. pseudotuberculosis cause
diphtheria-like diseases that include pseudomembranous
pharyngitis, moderate pharyngitis, otitis, lymphadenitis
and skin ulcers. C. minutissimum is a causative agent of
erythrasma and chronic pseudomycosis. C. amycolatum,
C. urealyticum, and C. striatum are particularly resistant
to penicillins, aminoglycosides and quinolones. C. jeikeium
strains are causative agents of hospital infections. C. jeikeium
is responsible for a number of nosocomial infections such as
endocarditis, device-connected infection, osteomyelitis (van
der Lelie et al., 1995; Mookadam et al., 2006). The bacteria
has often found in cancer patients with compromised immune
system, inserted in medical instruments, skin lesions, and after
antibiotic therapy (Funke et al., 1997). A high mortality rate was
documented for C. jeikeium sepsis in hematological patients
(van der Lelie et al., 1995), and immunocompromised patients
carrying prosthetic valves or catheters are particularly susceptible
to infection. Further, the curing of C. jeikeium frequently
limited by developing of multidrug-resistance of the bacteria
(Olson et al., 2009; Ifantidou et al., 2010).

Whilst the phenomenon of dormancy in non-sporulating
bacteria is extensively studied for many years, corynebacteria
dormancy in vivo and in vitro did not attract much attention.
Only one model has been used to assess dormant forms
of C. pseudodiphtheriticum, which is based on the fivefold
limit of the nitrogen source provided in growth media
(Mulyukin et al., 2014).

After infecting humans, bacteria are typically captured by
macrophages where they are influenced by a number of stresses
including low pH, elevated levels of the active forms of oxygen
and nitric oxide and the activity of lysosomal hydrolases (Rook
et al., 2001; Hacker et al., 2016; BoseDasgupta and Pieters, 2018).

However, some bacteria, such as M. tuberculosis (Deretic and
Fratti, 1999) and C. ulcerans (Hacker et al., 2016), can maintain
their viability within macrophages despite these harmful factors.
Therefore, naturally induced stressful conditions are likely to
be factors that are also useful for inducing a dormant state
in vitro. M. tuberculosis (Shleeva et al., 2011) and non-pathogenic
M. smegmatis (Kudykina et al., 2011) transition to dormant,
non-culturable, persistent states in response to the gradual
acidification of their environments, therefore, we may suggest
that slow decrease in pH levels may result in induction of
dormancy in corynebacteria, which, like mycobacteria, belong to
the order Actinomycetales.

In order to cure chronic infections caused by dormant forms
of pathogens, new ways should be established (Kaprelyants
et al., 2018). In this regard, application of physical factors
seems to be promising in order to destroy metabolically
passive dormant bacterial forms. Recently we found that
significant concentrations of the intermediates participating in
protoporphyrin biosynthesis were present in dormant forms of
M. smegmatis (Nikitushkin et al., 2016), a fast-growing bacterium
which is genetically close to M. tuberculosis, These findings
suggested that dormant bacteria may be killed by photodynamic
inactivation (PDI) when fluorescent porphyrins serve as
intracellular photosensitizers. Studies have also demonstrated
the photoinactivation of dormant mycobacterial forms in vitro
in the rapidly growing, tuberculosis-related pathogenic strain,
M. smegmatis (Shleeva et al., 2019b, 2020).

The goal of this study was to find if C. jeikeium are able
to form dormant cells as a result of slow decrease of pH level
of growth medium in stationary phase. We also tested whether
the stimulation of endogenous porphyrin production in dormant
corynebacteria enhances their sensitivity to photodynamic
inactivation (PDI).

MATERIALS AND METHODS

Organisms and Media
The C. jeikeium K411 strain (from State collection of pathogenic
microorganisms FSBI Scientific Center for Expert Evaluation of
Medicinal Products of the Ministry of Health of the Russian
Federation) was grown in TSB broth (Himedia, India) at 37◦C
for 20–24 h while stirring (200 rpm). A 0.2 mL inoculum was
added to 100 mL developed by us 2AS medium (105 cells/mL)
with the following composition: 20 g/L glucose; 0.125 g/L
MgSO4 × 7H2O; 1.5 g/L NaCl; 2.5 g/L (NH4)2SO4; 13.6 g/L
KH2PO4; 0.44 g/L histidine (Sigma); 4.0 g/L glutamic acid
(Sigma); 8 mL trace element solution; and 0.1% Tween-80. The
media was pH adjusted to 6.0 using NaOH. Trace element
solution contained 1.0 g/L EDTA, 10.0 g/L MgCl2 × 6H2O,
0.1 g/L CaCl2 × 2H2O, 0.04 g/L CoCl2 × 6H2O, 0.1 g/L
MnCl2 × 2H2O, 0.02 g/L Na2MoO4 × 2H2O, 0.2 g/L
ZnSO4 × 0.02 g/L 7H2O, CuSO4 × 5H2O and 0.5 g/L
FeSO4 × 7H2O. A final concentration of 0.1% Tween 80
was added. The culture was grown at 37◦Ñ in a shaker
(200 rpm) for 13–16 days until a pH of approximately 5.5
was established.
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Estimation of Viability
Bacterial suspensions were serially diluted in fresh TSB medium,
and three 10 µl samples from each dilution were spotted on TSB
(Himedia, India) agar containing 0.1% Tween-80. Plates were
incubated at 37◦C for 5 days. After incubation, the number of
the colony forming units (CFUs) present was counted. The limit
of detection was 10 CFU/mL.

The same diluted suspensions (100 µL each) were also
used for most probable number (MPN) assays and to evaluate
cell resuscitation in 48-well Corning microplates containing
appropriate medium (0.9 mL) (see below). Microplates were
incubated at 37◦C for 14 days without agitation. Wells with
visible bacterial growth were considered positive. The number
of cells that remained intact after exposure to damage-
inducing effects was also determined microscopically by counting
propidium iodide (PI)-negative cells in a Helber’s chamber (no
less than 10 large fields were counted for each sample).

Measuring Levels of 3H-uracil
Incorporation to Determine the
Metabolic Activity of Cells
One milliliter samples from cells suspensions were incubated
with 1 µl [5,6-3H] uracil (10 µCi; 0.2 µmol in 50%
ethanol) and incubated for 2 h at 37◦C with agitation (45–
60 rpm). Cells were then harvested on glass fiber GFC filters
(Whatman, United Kingdom) and washed with 3 mL 7%
trichloroacetic acid. Next, cells were washed using 3 mL absolute
ethanol. Air-dried filters were placed in scintillation liquid and
incorporated radioactivity was measured using a scintillation
counter (Beckman, United States).

Spent Medium Preparation
Supernatants (SN) with resuscitating activity were obtained
from C. jeikeium cultures grown in either TSB or 2AS (initial
pH 7.0) media after consecutive sub-culturing. First, a 0.2 mL
stock culture (stored at −70◦C) was used to inoculate 100 mL
culture medium to produce an initial density of approximately
103 cells/mL. The cultures were incubated overnight with
agitation (100 rpm). Cells were sub-cultured by transferring a
0.1 mL inoculum to 100 mL fresh medium and cultivating as
previously described for 2–30 h. Then cultures were subjected
to centrifugation (12,000 × g, 20 min) and sterilization using
0.22 µm filters (Whatman). Fifty milliliters volumes of SN
produced in this manner were frozen and stored at −70◦C.
C. jeikeium growth stimulating activity of SN was assessed after
SN was added to freshly inoculated TSB or 2AS media at a 1:1
vol/vol ratio. Stored SNs were used immediately after thawing
and were not refrozen and reused.

Resuscitation of “Non-culturable”
C. jeikeium Cells
Non-culturable cells were separated from spent medium
(centrifugation for 20 min at 5, 000 × g), that was serially
diluted and used to inoculate either TSB or 2AS medium. An
equal volume of either SN was prepared as indicated above,
or appropriate uninoculated medium (control), and numbers of

viable resuscitated cells were determined using the MPN assay
(de Man, 1974).

Sensitivity to Antibiotics and Heat
Treatment
Four milliliters of an early stationary phase (ESP) culture that
was grown in TSB medium (pH 7.0) for 1 day or 4 mL of a 25
days old culture incubated at reduced pH were treated with 0–
10 µg vancomycin/mL or 0–100 µg rifampin/mL and incubated
at 37◦C or room temperature for 24 h without agitation. The
number of resistant cells was determined using the MPN assay
in the presence of TSB culture SN (5 h, see above). One milliliter
samples of ESP cultures or 25 days long incubated suspensions
containing dormant cells were heated to 60, 65, 70, 75, or 80◦C
for 10 min, and the number of survivors within samples were
determined by evaluating the growth of bacteria in presence
of SN (MPN assay).

Pigment Extraction From the Cells
Pigment was extracted from the biomass in accordance with
the method described by Bligh and Dyer (Bligh and Dyer,
1959). First, 1 mL chloroform and 2 mL methanol were added
to the wet biomass of cells (0.8 g). Cells were agitated for
12 h in the extraction mixture and subsequently centrifuged
(2,000 × g), followed by the addition of 1 mL water and
1 mL chloroform (to separate phases). The chloroform layer was
washed three times with 0.1 M NaCl. The bacterial pellet was
re-suspended in ice-cold 100 mM HEPES (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid) buffer (pH 8.0) containing 2%
Triton × 100 (Sigma, United States) then lysed by using
zirconium beads on a bead beater homogenizer (MP Biomedicals
FastPrep-24) for 1 min, five times and stayed in dark place at
room temperature for 5 h. The bacterial lysate was centrifuged
at 13,000 rpm for 15 min at 4◦C.

Absorption and Fluorescence Spectra
Absorption spectra were recorded on a Cary 300 Bio
Spectrophotometer (Varian, Inc., United States). Fluorescence
measurements were carried out with a Varian Cary Eclipse
fluorimeter (Varian, Inc., United States).

PDI
Either dormant or active cell suspensions were used for light-
inactivation experiments. C. jeikeium suspensions with OD
values equal to 0.1, which corresponded to approximately 107

bacteria/mL, were used. Bacterial suspensions (100 µL) were
added to the wells of a Nunc 96-well plate (ThermoFisher
Scientific, United States). Samples were illuminated with a
SOLIS-4C light-emitting diode at 565 nm, 3.2 W using bandpass
filter MF565-24 (Thorlabs, United States). The light beam was
collimated to a diameter of 5 mm, which corresponded to the
diameter of the wells of the 96-well plate, and samples were
illuminated for 60 min. The power density of the light was 145
mW per well (513 mW/cm2) as determined using a 2,936-c power
meter (Newport, United States). Temperature was controlled an
accuracy of ± 0.2◦C by placing an 80BK type-K multimeter
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thermocouple (Fluke, Germany) directly in the microcell before
and after lighting in the presence and absence of bacterial
suspension. Temperatures were below 40◦C in the wells of all
samples. After the illumination of samples, numbers of viable
bacteria were estimated using an MPN assay in presence of
5-h-old SN obtained from TSB medium (see above).

Microscopy
Cell suspensions were examined under a microscope (Eclipse
E4000, Nikon, Japan) in phase-contrast and epifluorescence
modes after staining with propidium iodide (PI) (3 mM)
to detect injured cells, ethidium bromide (5 mM) to detect
DNA-containing cells, or Nile red (4 mg/mL) to detect lipid
inclusions. The excitation value was at 510 nm and emission
was at > 560 nm.

Statistical Analysis
Statistical processing was carried out using the analysis of the
standard deviation or relative error within the data group. MPN
values were determined using de Man’s tables calculated on the
base of Poisson distribution (de Man, 1974). For the MPN assay
(95%) confidence limits were calculated. The MPN values were
considered statistically different if low and high confidence limits
were not overlapped.

RESULTS

Acidification of the Medium Induces
Dormancy in in vitro Culture of
C. jeikeium
In order to modulate changes in pH values during the stationary
phase of C. jeikeium culture we used developed by us a
synthetic medium (2AS) supplemented with different glucose
concentrations (0–40 g/L) (Figure 1). After a phase of modest
alkalization (to approximately pH 6.8), the gradual acidification
of the culture to distinct final pH values were observed for glucose
concentrations that ranged from 10 to 40 g/L. More significant
pH decreases were observed in stationary phase cultures in 2AS
medium containing 30–40 g/L glucose (Figure 1). In cultures
grown with 10–20 g/L glucose, stationary phase of growth was
established within approximately 3 days, and further incubation
resulted in the gradual decrease of CFU values, starting about 4
days post-inoculation (Figure 2). A minimum CFU was found
between 12 and 14 days after inoculation, which indicated that
the cultures had transitioned to “non-culturability.”

After the exponential growth, total cell counts (according
to microscopy) and OD measurements were maintained at the
constant level of 2.3 ± 0.8 × 109 cells per mL for total count and
4.8 ± 0.2 for OD600. The exact time point at which culturability
(according to CFU counts) demonstrated minimum values
varied in different experiments. However, a correlation between
culturability and culture acidification was evident (Figure 2).

Microscopic examination of non-culturable C. jeikeium grown
at 10–20 g/L glucose and stabilized at pH 5.5 by adding 50 mM
MES (2-(N-morpholino)ethanesulfonic acid) buffer revealed that

FIGURE 1 | Changes in the pH of media with different concentrations of
glucose upon cultivation of Corynebacterium jeikeium. C. jeikeium strain K411
was initially grown for 1 day in TSB medium supplemented with Tween-80.
The culture grown in this medium served as an inoculum and was added to
2AS medium (initial concentration 105 cells/mL; initial pH = 6.0) and grown
while agitating at 37◦C for 14 days. Samples of C. jeikeium cultures were
taken periodically from the same flask and passed through a 0.2 µm filter
(Whatman) to obtain supernatants for pH measurements. Relative error of pH
measurements was about 3%. The experiment was repeated three times, and
a typical result is shown.

FIGURE 2 | Culturability of Corynebacterium jeikeium under medium levels of
acidification in a prolonged stationary phase. C. jeikeium strain K411 was
initially grown for 1 day in TSB medium supplemented with Tween-80. The
culture grown in this medium served as an inoculum and was added to 2AS
medium. Each inoculum (105 cells per ml) was added to flask with 2AS
medium (initial pH6.0, 10 g/L glucose) and grown while agitating at 37◦C for
14 days. Samples of cultures were taken from flasks to determine pH, CFU,
MPN and the CPM. MPN was estimated in the presence of supernatant taken
from an actively growing C. jeikeium culture (see section “Materials and
Methods”). Data shown are results of a typical experiment (five biological
replicates). The relative error for CFU ranged between 10 and 30%. The
relative error of pH values was about 3%. Bars represent (95%) confidence
limits for the MPN assay.

the majority of the cells displayed coccoid forms that were
approximately 1 ± 0.5 µm in length. This was in contrast with
characteristics of exponentially growing cells, which typically
possess elongated ovoid shapes, are 2 µm in length, and have an
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FIGURE 3 | Morphological changes in post-stationary phase
Corynebacterium jeikeium cells throughout the gradual acidification of the
growth medium. C. jeikeium strain K411 was initially grown for 1 day in TSB
medium supplemented with Tween-80. The culture grown in this medium
served as an inoculum and was added to 2AS medium. Each inoculum (105

cells/mL) was added to 2AS medium (initial pH6.0, 10 g/L glucose) and grown
while agitating at 37◦C for 14 days. Active bacteria were grown using TSB
medium for 20 h while agitating at 37◦C. Culture samples were taken from
flasks and examined under a phase-contrast microscope (1,000x
magnification).

average diameter of 1 µm (Figure 3). A microscopic assessment
of dormant C. jeikeium cultures revealed that the majority of
bacterial cells remained intact when incubated 30 days in liquid
medium at room temperature, according to a PI test. When the
cellular permeability barrier is destroyed, PI penetrates through
cell wall and binds with DNA producing a fluorescent complex.
According to this test 28 ± 5% of PI-positively stained cells were
found in stabilized dormant population vs. 5–10% stained cells
found in active cultures (Supplementary Figure 1). However, if
the final pH value of the external environment was below 4.8,
a significant number of dead bacteria appeared in the culture
(Figure 1 and Table 1).

Dormant C. jeikeium Cells Are
Characterized by Low Metabolic Activity
A metabolic activity assay was performed that estimated
metabolic activity by evaluating levels of 3H-uracil incorporation.
Cultures in which acidification was observed possessed
significantly reduced levels of 3H-uracil incorporation relative
to cultures in which pH values were maintained at neutral levels
(Table 1). Under conditions where the maximum percentage of
dormant intact cells was produced (10–20 g/l glucose, final pH
5.0–5.5), RNA synthesis activity was less than 1% of that for cells
grown under neutral pH (Table 1).

Resuscitation of Dormant C. jeikeium
Cells
The presence of ca. 90% of PI-negative coccoid cells in C. jeikeium
cultures in the post-stationary phase of growth in presence of
10 g/l glucose (14 days) (Table 1) and ca. 70% for 30 days old
dormant cultures (Supplementary Figure 1) assumed that these
morphologically changed cells (Figure 3) had kept their integrity
and therefore potential viability, despite a sharp decrease in
CFU number (Figure 2). Their potential viability was confirmed
in resuscitation experiment via a MPN assay (Figure 2). After
C. jeikeium cultures containing coccoid cells were incubated 10–
14 days after inoculation when CFU number had decreased up
to zero, the number of viable cells estimated by MPN assay in
liquid TSB medium reached 105 cells/mL (Figure 4A). Whilst
the cultures further incubated for up to 5 months, the number
of cells is able for resuscitation decreased up to undetectable
level (Figure 4C). However, these cells could be resuscitated
when supernatant obtained from replicating C. jeikeium was
added to the resuscitation medium. Supernatant with maximum
resuscitation activity was obtained from a growing in TSB
medium for 5–12 h C. jeikeium cultures (Figures 4A,B). Samples
stored as long as 5 months revealed concentration of potentially
viable cells between 107 and 108 cells/mL which could be
resuscitated upon addition of SN (Figure 4C).

As revealed by microscopy, resuscitation of coccoid
C. jeikeium cells resulted in their conversion to normal
bacilli. According to 16S RNA sequences coccoid C. jeikeium
cells after resuscitation shown 100% identity to C. jeikeium.

Dormant C. jeikeium Cells Are Resistant
to Heat and Antibiotics
According to MPN assays, coccoid cells from 25-days-old
cultures were more resistant to heat treatment than exponentially
growing cells (Figure 5A). As opposed to early stationary-
phase cells, coccoid C. jeikeium cells were much more resistant
to treatment with vancomycin (0.5–10 µg/mL) (Figure 5B)
or rifampicin (50–100 µg/mL) (Figure 5C) for 1 day than
early stationary phase cells, as revealed by MPN viability tests
in presence of SN.

Accumulation of Porphyrins by Dormant
C. jeikeium Cells
We found that dormant C. jeikeium cells accumulate a pigment
characterized by the typical absorption spectra for porphyrins
(Soret band at 400 nm and by emission maxima of fluorescence
in the range of 620–670 nm) (Figures 6A,B). The intracellular

TABLE 1 | Medium pH, metabolic activity and percentage of dead cells in 14 days old C jeikeium cultures growns in 2AS medium supplemented by different glucose.

Glucose concentration g/l 0 2 5 10 20 30 40

Parameter

Medium pH 7.5 7.0 6.5 5.48 5.1 4.5 4.0

% dead bacterials cells (PI+) 5 ± 3 4 ± 2 7 ± 4 10 ± 2 15 ± 5 40 ± 8 90 ± 5

Incorporation of H3-uracil CPM/mg wet cell weight 7, 512 ± 354 7, 244 ± 265 5, 325 ± 254 62.7 ± 22 50.5 ± 18 20.2 ± 5 18.4 ± 4.5

The mean ± SD is shown.
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FIGURE 4 | Resuscitation of dormant Corynebacterium jeikeium cells. (A) A C. jeikeium culture was harvested at the period of minimum culturability (14 days,
Figure 2). MPN assays were performed in TSB or 2AS medium supplemented with 0.1% Tween-80 that possessed and lacked SN taken from cultures of
C. jeikeium (5–20 h) grown in TSB or 2AS medium. The results of 8 different experiments are summarized and SD values are given. (B) Resuscitation was also
measured on TSB media using SNs of cultures of different ages. Results of a representative experiment are shown. (C) Resuscitation of dormant C. jeikeium cultures
with different periods of storage at acid conditions as describe in M&M. Cell viability was estimated using an MPN assay in the presence or without of TSB SN. Bars
represent (95%) confidence limits for the MPN assay. The experiments were repeated two times, and a representative result is shown.

pigment concentration had the potential be increased if a
precursor of porphyrin synthesis, 5-aminolevulinic acid (ALA)
was added to the growth medium in accordance with spectral
values produced by chloroform–methanol or Triton X100
extracts of dormant bacteria (Figure 6A).

Photoinactivation of Dormant C. jeikeium
Cells
The effect providing 565 nm wavelength light (which coincides
with the absorption of porphyrins in the visible region) on the
viability of active and dormant corynebacterial forms grown
in the presence and absence of 1.0 mM ALA was studied
(Figure 7A). The greatest decrease in the corynebacterial survival

rate was observed when light was applied to dormant C. jeikeium
formed in the presence of ALA in which a 4.5-log10 decrease in
survival after 60 min of illumination was observed (Figure 7A).
In case of cells taken from the early stationary growth phase
(20 h), illumination did not reduce survival (MPN), but in
presence of ALA photosensitivity increased (a 3-log10 decreased
in viability was observed after illumination) (Figure 7A).

Microscopy was used to demonstrate that the illumination
immediately resulted in the appearance of injured cells
(Figure 7B). After 60 minutes of light exposure, about 68 ± 5%
of the dormant C. jeikeium cells formed in the medium contained
ALA were damaged. In contrast, only 18 ± 4% of unilluminated
cells were damaged. 24 h later, this proportion of damaged cells
in the population was greater than 99% (Figure 7B).
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FIGURE 5 | Bacterial resistance to (A) high temperatures and (B,C) antibiotics. The sensitivity of Corynebacterium jeikeium cells to heating or antibiotic treatment is
shown. Samples were taken from 25 days cultures that contained coccoid cells. For comparison, C. jeikeium cells were cultivated in TSB medium for 20 h (active
cultures). Both types of cells were heated to 60–80◦C for 10 min (A), treated with 0–10 µg vancomycin/mL (B), or treated with 0–100 µg rifampin (C) and incubated
at 37◦C or room temperature for 24 h without agitation. Cell viability was estimated using an MPN assay in the presence of SN taken from culture grown in TSB
medium for 5 h (for details see section “Materials and Methods”). Active cells are shown using gray columns and dormant cells are indicated using red columns. Bars
represent (95%) confidence limits for the MPN assay. The experiments were repeated three times, and a representative result is shown.

DISCUSSION

In this study, we ascribe conditions needed for corynebacterial
cells to transition to a state of dormancy, which was accompanied
by: (1) the formation of stress-resistant forms intended for long-
term survival that have been identified in many spore-forming
and non-spore-forming bacteria (Zhang, 2004; Mulyukin et al.,
2010, 2014; Lennon and Jones, 2011) and (2) the acquisition of
an NC state during the prolonged incubation of post-stationary
cultures, which was previously described for Micrococcus luteus
(Kaprelyants and Kell, 1993), Rhodococcus rhodochrous (Shleeva
et al., 2002) and mycobacteria (M. tuberculosis and M. smegmatis)
(Shleeva et al., 2003, 2004, 2011, 2015; Kudykina et al.,
2011). The dormant forms of mycobacteria, which form when
the external medium undergoes gradual acidification, can be
distinguished from active bacteria based on their distinct
proteomic (Trutneva et al., 2018, 2020) and metabolomic
(Nikitushkin et al., 2020) profiles.

C. jeikeium cells formed in post-stationary cultures should
be classified as dormant bacterial forms based on the following
features: (i) the retention of viability throughout an extended
incubation period (up to 5 months) (Figure 4), (ii) their low
level of metabolism (Table 1), (iii) their enhanced resistance
to deleterious factors such as high temperatures and antibiotic
treatment (Figure 5), (iv) the acquisition of an NC state. In the
NC state, cells maintain viability (the potential for proliferative
activity), but could not produce colonies on agar media and,
therefore, are not detected using standard tests (Colwell and
Grimes, 2000; Oliver, 2010). The determination of whether
non-sporulating C. jeikeium have the ability to transition to a
long-lived dormant form of the bacteria has the potential to
broaden our understanding of the mechanisms by which bacteria
survive in natural systems when they encounter conditions not
conducive for growth.

The NC state can be reversed by applying a resuscitation
procedure in MPN assay either in fresh medium or in the
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FIGURE 6 | Spectral properties dormant Corynebacterium jeikeium pigments. (A) Absorption spectra of a Triton X100 C. jeikeium extracts obtained from 0.8 g (wet
weight) of cells for both cultures. The blue line indicates absorption spectrum of the extract from dormant bacteria grown in presence of 5-aminolevulinic acid. The
red line indicates absorption spectrum of the Triton x 100 cellular extract from dormant bacteria grown without ALA (for details see section “Materials and Methods”).
(B) Typical fluorescence emission spectra of extracted pigments (λ excitation, 400 nm).

FIGURE 7 | Photodynamic inactivation of dormant Corynebacterium jeikeium at 565 nm. Dormant and active cells in the presence or absence of ALA were obtained
and subjected to PDI as described in section “Materials and Methods.” (A) After 60 min of exposure under static conditions, numbers of viable bacteria were
estimated via an MPN assay using 5-h-old SN of TSB cultures. Bars represent (95%) confidence limits for the MPN assay. (B) Percentage of damaged dormant
C. jeikeium cells estimated by PI staining microscopically immediately after illumination and 24 h later is shown. Bars represent ± SD. Controls are unilluminated
cells. The experiments were repeated three times, and a representative result is shown.

presence of SN. MPN assay was used to evaluate a number
of potentially viable cells in cultures that were diluted to
disappearance in liquid medium. At the same time this approach
permitted the resuscitation of cells that were deprived of the
ability to produce colonies on agar plates. This procedure was
previously developed to resuscitate mycobacteria by cultivating
“non-culturable” cells in liquid medium (Shleeva et al., 2011).

The increased necessity of SN-based resuscitation as C. jeikeium
cultures age could be due to the existence of cells in
different physiological state: those that are simply unable to
form colonies on plates and those that are at the depth of
dormancy. Previously, we have found that a secreted protein
Rpf (resuscitation promoting factor) provided culture SN activity
for Micrococcus luteus (Mukamolova et al., 1998). The protein
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stimulates the resuscitation of non-culturable cells and shortens
the lag phase of active M. luteus cultures inoculated with a
low dose of bacteria. Rpf family is comprised of peptidoglycan
hydrolases (Kana and Mizrahi, 2010) and the products of
their enzymatic activity stimulate the reactivation of dormant
mycobacteria (Nikitushkin et al., 2013, 2015). The expression
of the rpfA gene in M. tuberculosis is under control of the
transcriptional regulator Rv3676 and a cAMP receptor protein
(CRP) (Rickman et al., 2005). Presumably, a protein similar
to the Rpf protein in M. luteus is the active factor present
within the cell free C. jeikeium culture liquid. Indeed, the
C. jeikeium genome contains three genes encoding proteins
similar to Rpf (JK_RS02150/jk0416, RpfA; JK_RS07760/jk1512,
RpfB; JK_RS00265/jk0051, RpfC), which may be released into the
environment and function to resuscitate NC C. jeikeium cells.

However, other reactivation stimulants, such as phospholipids
(Zhang et al., 2001), free unsaturated fatty acids (Nazarova et al.,
2011), cAMP (Shleeva et al., 2013), muropeptides (Nikitushkin
et al., 2013), may also be present within the supernatant of
actively growing bacterial cultures. It was previously shown
that unsaturated fatty acid-dependent adenylate cyclase Rv2212
and a cAMP-dependent transcription factor of the Crp family
Rv3676 participate in the reactivation of dormant forms of
M. tuberculosis (Shleeva et al., 2017, 2019a). There is also a
link between the Crp factor Rv3676 and RpfA protein synthesis
(Bai et al., 2005). The C. jeikeium genome contains a gene
encoding a cAMP-dependent transcriptional regulator of Crp
family, glxR (JK_RS10065/jk1972), which may have a function
that is similar to Rv3676.

It is clear that dormant cells could be of significant
importance for medicine and microbiology due to their
ability to form normal, viable organisms after resuscitation
(Kaprelyants et al., 1993; Barer, 1997; Barer et al., 1998; Kell
et al., 1998; Barer and Harwood, 1999; Mukamolova et al.,
2003). For example, diphtheria bacteriocarrier phenomenon is
known, and is considered one of the mechanisms by which a
pathogen can persist within the host organism (Deviatova, 1956;
DeWinter et al., 2005; Kostyukova and Bechalo, 2018).

C. jeikeium cells are resistant to a number of many beta-
lactam antibiotics, doxycycline and ciprofloxacin, but they are
sensitive to vancomycin and rifampicin (Soriano et al., 1995).
However, the dormant forms of C. jeikeium used in the study that
were produced as a result of the acidification of the environment
proved to be resistant to both rifampicin and vancomycin
(Figures 4B,C). Researchers previously demonstrated that, in
some cases, vancomycin may be ineffective in the treatment of
C. jeikeium bacteremia and endocarditis and disease recurrence
occurred despite providing an extended course of antimicrobial
therapy (Vanbosterhaut et al., 1989; Clarke et al., 2019). Wang
et al. (2001) “retrospectively reviewed 53 cases of C. jeikeium
bacteremia in bone marrow transplant recipients who had a
Hickman catheter without signs of local catheter site infection.
The results showed that salvage of catheter with vancomycin
therapy is successful in most patients (93%)” (Bookani et al.,
2018). However, 7% of patients that underwent catheter salvage
were affected by recurrent bacteremia. Whilst the genetic
characterization of causative pathogen was not performed in the

study, the emergence of such resistance of corynebacteria to the
antibiotic could be a consequence of the transition of bacteria
to a dormant state, which protects them from being killed by
antibiotic treatment. The fact that C. jeikeium was resistant to
both vancomycin and rifampicin allows us to suggest a model of
C. jeikeium dormancy that can be used to screen for new drugs
that possess activity against chronic C. jeikeium bacteremia.

Evidently, dormant bacteria with little metabolic activity are
capable of avoiding effects of antibiotics even though they
remain suitable targets. It can be assumed that the effect of
complete elimination of dormant, “non-culturable” bacteria can
be accomplished by factors which produce indirect, harmful
effects on bacteria (Kaprelyants et al., 2018). In this regard,
we employed a previously discovered phenomenon of the
accumulation of free and methylated porphyrins in dormant
mycobacteria (Nikitushkin et al., 2016). This finding made it
possible to induce the PDI of mycobacteria (Shleeva et al.,
2019b, 2020). In the present study we found that dormant
C. jekeium cells accumulate a pigment which according to the
spectral properties (Figures 6A,B) evidently belong to a class of
porphyrins (Gouterman, 1961).

Of the currently available photosensitizers (PSs) available,
porphyrin and its analogs have the following advantages: (1)
many are effective producers of singlet oxygen; (2) they usually
do not generate singlet oxygen in the absence of light; (3) they
absorb in the red region of the optical spectrum; and (4) they
are relatively stable. As an alternative to antibiotic treatment
for killing dormant C. jeikeium, PDI was a promising approach
that was used for killing dormant bacteria (Figure 7). In a
previous study, an elevated accumulation of coproporphyrin III
was observed in C. diphtheriae culture filtrates (Gray, 1948). The
overproduction of porphyrins was also observed in 15 days old C.
acnes cultures (Cornelius and Ludwig, 1967). However, the link
between porphyrin accumulation and C. jeikeium dormancy was
not established previously.

The functional role for the porphyrins that accumulate
in dormant bacteria is not clear. Likely that newly found,
hydrophobic porphyrins may stabilize and protect dormant cells
against unfavorable conditions or destructive factors (Patel and
Day, 1999; Castello et al., 2008; Antonova et al., 2010). In
addition, stored porphyrins may be utilized as metabolites in
biochemical pathways during dormant bacterial cell reactivation.

Bacterial killing in association with PDI seems to be due to the
production of reactive oxygen compounds, which participate in
the oxidation of such important molecules as enzymes, proteins,
lipids and nucleic acids, are lethal to the bacterial cell (Demidova
and Hamblin, 2004; Jori et al., 2006). PDI is known as a
robust approach for killing bacterial cell including multi-resistant
bacteria (Grinholc et al., 2008; Cassidy et al., 2010). PDI was
found to be efficient for eliminating of a number of bacteria
(Plavskii et al., 2018), including virulent E.coli O157H7, Listeria
monocytogenes (Romanova et al., 2003), Neisseria gonorrhoeae
(Wang et al., 2019) and Legionella rubrilucens (Schmid et al.,
2019). Commonly, exogenously added photosensitizers, in
particular porphyrins, were applied in PDI experiments (Liu
et al., 2015; Guterres et al., 2020; Rossi et al., 2020). For
example, cyclodextrin with bound porphyrins has been applied
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for the treatment of Staphylococcus aureus (Hanakova et al.,
2014). Endogenous porphyrins were utilized for the killing of
pathogenic periodontal bacteria (Cieplik et al., 2014; Hope et al.,
2016), skin pathogens St. aureus (Ashkenazi et al., 2003; Lipovsky
et al., 2009), Staphylococcus carnosus (Hoenes et al., 2020),
Hemophilis parainfluenzae (van der Meulen et al., 1997) and
Helicobacter pylori (Hamblin et al., 2005; Morici et al., 2020).

Apart of photosensitizer, application of 5-aminolevulinic
acid (ALA) was employed as another approach. ALA being
photodynamically inactive stimulates biosynthesis of endogenous
PSs in cells that enhances harmful effect upon illumination
(Harris and Pierpoint, 2008; Bohm et al., 2020). In bacteria, close
to eukaryotic cells, the biosynthesis of porphyrins from ALA
took place, and ALA administrated to the cell culture enhances
porphyrin accumulation in the cell (Nitzan et al., 2004).

Application of ALA-PDI in clinic revealed positive
results notably for the skin diseases such as acne, chronic
folliculitis, rosacea, lichen sclerosis and skin lesions caused by
Mycobacterium marinum. According to the clinical trials, the
usage of ALA-PDI look promising for the treatment of ulcers
caused by Helicobacter pylori (Wilder-Smith et al., 2002; Nitzan
et al., 2004). However, the application of PDI for eliminating
both active and dormant corynebacteria was demonstrated for
the first time in the present study. This work suggested a new
approach that has the potential to be used to eradicate dormant
corynebacteria in clinical settings.

CONCLUSION

Under gradual medium acidification, C. jeikeium cells transit to
dormant “non-culturable” state with the retention of viability,
low level of metabolism, enhanced resistance to deleterious
factors, porphyrins overproduction. This model of C. jeikeium
dormancy can be used to screen for new drugs that possess
activity against persisting C. jeikeium. Resistant to antibiotics
dormant C. jeikeium cells can be eliminated by application of
photodynamic inactivation due to the endogenous porphyrin

accumulation. The stimulation of porphyrin production by ALA
in dormant and active corynebacteria enhances their sensitivity
to photodynamic inactivation.
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