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Abstract

Many experimental and bioinformatics approaches have been developed to characterize the human 

T cell receptor (TCR) repertoire. However, the unknown functional relevance of TCR profiling 

significantly hinders unbiased interpretation of the biology of T cells. To address this inadequacy, 

we developed tessa, a tool to integrate TCRs with gene expression of T cells, in order to estimate 

the effect that TCRs confer upon the phenotypes of T cells. Tessa leveraged techniques combining 

single cell RNA-sequencing with TCR-sequencing. We validated tessa and showed its superiority 

over existing approaches that investigate only the TCR sequences. With tessa, we demonstrated 

that TCR similarity constrains the phenotypes of T cells to be similar, and dictates a gradient in 

antigen targeting efficiency of T cell clonotypes with convergent TCRs. We showed this constraint 

could predict a functional dichotomization of T cells post-immunotherapy treatment, and is 

weakened in tumor contexts.
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INTRODUCTION

T cells are defined by their T cell receptor (TCR) sequences, which help T cells achieve 

highly specific TCR-dependent antigen recognition1-4. The antigen recognition triggers 
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downstream signaling of T cells, which is a crucial biological process in normal and 

dysregulated conditions, such as cancers5 and autoimmune diseases6. As a result, profiling 

the TCR repertoire has been the core interest of many studies. Tools have been developed to 

enable reconstruction of TCR sequences from RNA-Seq or whole exome-Seq data (TraCer7, 

TRUST8 and VDJ Puzzle9), to cluster TCRs into groups by similarity, with each group 

likely targeting the same antigens(GLIPH10) or to measure similarities between TCRs 

(TCRdist11). . .

However, a fundamental limitation of these approaches is that all conclusions are drawn 

based on solely interrogating the TCR sequences, which oversimplifies how T cells execute 

their functions in the context of their microenvironment. Tubo et al12 and Buchholz et al13 

showed that the intrinsic TCR-mediated signals and extrinsic cues both impact the functions 

of T cells. Therefore, an integrative investigation of the TCRs and their transcriptomics is in 

critical need, and will facilitate unbiased interpretation of the functional relevance of the 

TCR repertoire.

Given the high dimensional nature of TCR and transcriptomic data, it is imperative to 

develop statistical models that can simultaneously digest these two types of data. Several 

recent single cell RNA sequencing (scRNA-Seq) technologies have enabled the creation of 

such statistical models, eg.SMART-Seq214 and MATQ-Seq15 which are full-length scRNA-

Seq protocols enabling reconstruction of the TCR The 10x Genomics Chromium Platform 

and the SMARTer TCR profiling kit directly amplify the TCRs, while capturing the 

expression of the other genes at the same time. Furthermore, the pMHC feature barcoding 

techniques from 10x Genomics can measure the antigen binding affinities of T cells, adding 

another layer of information. Similarly, ECCITE-Seq16 allows the capture of transcriptomes, 

TCR sequences, and cell surface protein expression for each T cell in one setting.

We developed a Bayesian model named tessa (TCR functional landscape estimation 

supervised with scRNA-Seq analysis) to jointly model TCRs with T cell transcriptomics at 

single cell resolution. We applied tessa on 100,288 T cells on 19 single T cell sequencing 

datasets (Supplementary Table 1) and showed that tessa enables mapping the functional 

landscape of the TCR repertoire and propels a comprehensive characterization of TCR 

sequences in the context of T cell functionality.

RESULTS

Annotating the functional relevance of the TCR repertoire

First we created a numeric embedding of TCRs, where each numeric vector represented a 

TCR CDR3β sequence (Fig. 1a, Extended Data Fig. 1a). In short, we encoded each amino 

acid of the TCR CDR3β sequences by five numbers representing the Atchley factors17, and 

then fed the “Atchley matrices” to a stacked auto-encoder18 (Extended Data Fig. 1a).. 

Atchley factors have been shown to be suitable for embedding immune cell receptor 

sequences19-22 In the end, the TCR sequences are represented by a 30-dimension numerical 

vector, which is the smallest bottleneck layer in the middle of the auto-encoder. We showed 

that the “Atchley matrix” versions of the TCR sequences reconstructed from the embeddings 
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are very similar to the “Atchley matrices” of the input TCRs (Extended Data Fig. 1bc), 

validating our embedding methodology (Online Methods).

Next we investigated the correlation between TCR repertoire embeddings (Fig. 1a) and gene 

expression (Fig. 1b) in 19 single T cell sequencing datasets (Supplementary Table 

1)10,11,16,23-31. For each dataset, we choose to investigate the correlation between the 

pairwise Euclidean distances between TCRs and those of the expression of T cells, which 

were averaged within TCR clones. Interestingly, for the majority of the datasets we studied, 

we observed a positive correlation between TCR distances and expression distances. Typical 

examples are shown in Extended Data Fig. 2, and the average correlation is 0.438 across all 

datasets. This indicates that T cells sharing similar TCRs are also phenotypically regulated 

in a similar manner. This also matches the findings by P Dash et al11 and J Glanville et al10 

that T cells of similar TCR sequences often target the same antigen, although these prior 

works, mostly based on examining the TCR sequences alone, do not directly confirm or 

further investigate the functional relevance of their findings.

To fill in this void, we introduce tessa (Supplementary Note 1) to empirically map the 

functional relevance of the TCR repertoire. Our core rationale (Fig. 1c) is to take the 

expression profiles of the T cells and their TCR embeddings as input, and maximize the 

association between them through a parametric model, to capture the part of the functional 

variation of T cells accounted for by TCRs. In tessa, each digit of the 30-digit TCR 

embedding is adjusted by a weight to maximize the correlation between the expression of T 

cells and the TCR embeddings (Fig. 1d). Simultaneously, similar TCRs defined by the 

weighted embeddings are grouped into TCR networks reflective of antigen specificity (Fig. 

1e). These two steps are alternated until tessa achieves convergence. In each alteration, we 

adjust weights of the embedding according to the TCR-expression correlations calculated 

from only the T cell clones within the same networks.

We applied tessa on the single cell sequencing datasets that we collected, and discovered that 

the adjusted weights of the TCR embeddings independently determined from each dataset 

are similar to each other (Extended Data Fig. 3). The adjusted weights can be regarded as a 

characterization of the latent space where TCRs and expressions are best aligned. The 

pairwise Pearson Correlation Coefficients of the weight vectors from all datasets ranged 

from 0.783 to 0.993. This suggests that tessa likely infused relevant phenotypic information, 

gleaned from single T cell gene expression, into interpretation of the TCR sequences, rather 

than irrelevant random noises.

Convergent TCR recombinations form a gradient of targeting efficiency

We first questioned whether the TCR networks detected by tessa indeed reflect antigen 

specificity. We investigated four 10x Genomics single T cell sequencing datasets, in which 

the expression of genes, TCR sequences, and the antigen binding specificity in the context of 

44 pMHCs were profiled simultaneously for each T cell. We applied tessa on these datasets, 

and calculated the ‘purity’ of the constructed networks. This purity was calculated by 

counting the number of TCRs of the largest subset of TCR clonotypes that target the same 

antigen (the ‘putative antigen’, Fig. 2a) in each network. Fig. 2b shows that in each of the 4 

datasets, the purity ranges between 87.64%−100%. We also applied GLIPH and observed an 
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average purity of 61.65% (Extended Data Fig. 4) at about the same clustering rate. 

Furthermore, we analyzed two other TCR datasets10,11 with known epitope-binding 

specificity. As these two were not scRNA-seq datasets and could not be analyzed by tessa 

directly, we performed hierarchical clustering of the TCRs in each dataset based on the 

scaled TCR embeddings inferred from the scRNA-Seq datasets by tessa (the average scaling 

in Extended Data Fig. 3). We found that the TCR network purities achieved 99.52% and 

98.55% for each dataset (Extended Data Fig. 5), with a cutoff to split the hierarchical 

clustering that results in clustering rates comparable to those of tessa on the scRNA-Seq 

datasets. GLIPH achieved purities of 85.51% and 99.51% at about the same clustering rate 

(Extended Data Fig. 4).

Next, we asked whether tessa networks help to differentiate the antigen binding efficiency 

among different TCRs that target the same antigen. The different TCR clonotypes from the 

same TCR networks are generated from multiple VDJ recombinations. We hypothesize that 

the TCR clonotype that is closest to the “average” of all the clonotypes, within the same 

networks, should have better antigen targeting efficiency, which is a phenomenon sometimes 

referred to as “the wisdom of the crowds”32-34. To confirm this hypothesis, we divided the 

TCRs in the same networks into center T cells (the TCR that is closest to the average of all 

TCRs in each network) and non-center T cells. For each TCR network, we calculated the 

median of the clonal sizes of the non-center clones and compared the medians with the clone 

sizes of the center clones (Fig. 2c, representative example) For each of our datasets, we 

counted the numbers of TCR networks with a larger/smaller center clonal size than the 

corresponding non-center median, and the former was divided by the latter to obtain a ratio 

to represent the central clone’s expansion level. We found that, in 17 out of 19 datasets, 

more T cell networks demonstrate the phenotype that the center T cell clones are more 

expanded (Fig. 2d). This conforms to the theory of convergent VDJ recombinations, where 

TCRs in the same TCR networks are similar and the TCRs of the center T cells have better 

avidity towards the target antigens than the other non-center T cells, and thus are more 

strongly activated and more proliferative.

We further confirmed this hypothesis via directly examining the antigen binding strength of 

the TCRs, by analyzing the antigen binding data captured by pMHC feature barcodes for 

each T cell. The feature barcode technology of 10X is a method for adding extra channels of 

information to cells by running scRNA-seq in parallel with other assays. Binding strength of 

each T cell was measured by the Unique Molecular Identifier (UMI) barcode count for the 

pMHC targeted by the majority of the TCRs in the same networks. Medians of the UMI 

counts of different T cells sharing the same TCR were taken. For each TCR network 

identified by tessa, we divided its different TCR clonotypes into six groups of equal size 

depending on their dissimilarity from the TCRs of the center T cells (Fig. 2e). We observed 

a decreasing gradient of binding strengths along with increasing dissimilarity of TCRs from 

the center TCRs. In other words, the TCRs that are more similar to the center TCR are most 

efficient in antigen binding, while the other more divergent TCRs have less binding affinity.
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TCR-dependent dichotomization of T cells post-immune checkpoint inhibitor treatment

We investigated whether tessa could reveal insights into the human T cell machinery under 

therapeutic interventions. We examined the tumor infiltrating T cells of 11 basal cell 

carcinoma (BCC) patients (6 responders and 5 non-responders)31. Yost et al demonstrated 

that the T cell clones in tumors before anti-PD-1 therapy had limited proliferation capacity, 

while the expanded T cell clones in response to the immunotherapy were derived mostly 

from newly-infiltrated T cells. However, in their work, TCRs are mainly used as a marker of 

clonal expansion.

To analyze these data with tessa, we defined the TCR clonotypes of all T cells in the post-

treatment library as ‘post-treatment’ clonotypes. All other T cell clonotypes were defined as 

‘pre-treatment’. Then through majority voting based on clonotype-level labels, we defined 

pre-/post-treatment tessa networks (Materials and Methods). We performed t-SNE analyses 

of the T cells, and assigned a pre/post-treatment clonotype (Fig. 3a) and a pre/post-treatment 

network (Fig. 3b) label to each T cell. We observed that the T cells from the responders 

formed three distinct clusters, with one cluster mostly comprised of post-treatment clones 

(post-2), the second cluster comprised of both pre- and post-treatment clones (pre-1 and 

post-1 respectively), and the third cluster consisted mostly of pre-treatment clones (pre-2) 

(Fig. 3a). Interestingly, labeling the T cells with their network identities showed that most T 

cells that belong to the post-1 clones and infiltrated the pre-1/post-1 cluster actually belong 

to pre-treatment networks (Fig. 3b). By examining the most similar TCR clones 

(‘neighbours’) based on Euclidean distances of TCR embeddings, we found that, in 

responders, other than to post-1 clones themselves, post-1 clones are next most similar to the 

pre-1 clones explaining their presence in the pre-treatment networks (Fig. 3c). We applied 

the same analysis on post-2 clones from responders (Fig. 3d), and showed that pre-1 clones 

are not their closest “neighbors”. Therefore, our analysis offers a much more detailed view 

than Yost et al that the post-treatment T cells in responders actually consist of two distinct 

populations due to their differential TCR profiles.

We examined the genes that are differentially expressed in responder post-1 cells compared 

with post-2 cells. We identified TGFB1 as the top differentially expressed gene that is 

related to immune pathways, which was shown to be a strong inhibitor of CD8+ T cell 

functions and also a marker of exhaustion35. We identified a TGFB1/inhibition signature by 

including genes that are highly correlated with the expression of TGFB1. In responders, this 

inhibition pathway is highly expressed in pre-1 and post-1 cells, compared with post-2 cells 

(Fig. 3e). Furthermore, we examined pathway activities (naive, memory, activated, and 

exhausted) derived from the pathway signature genes defined by Yost et al31. In alignment 

with our observation above, post-1 and pre-1 T cells in responders had similar memory and 

exhaustion pathway activity levels, which are higher than post-2 T cells (Fig. 3f, g). Post-1, 

post-2, pre-1, and pre-2 T cells from the responders had similar levels of naive and activated 

pathway activities (Extended Data Fig. 6).

Furthermore, we employed diffusion map analysis (Fig. 3h) and ordered cells in pseudotime 

(Extended Data Fig. 7). The first diffusion component (DC1) was highly correlated with the 

activation status and it separated post-1 and post-2 cells of non-responders from the other T 

cells. The third diffusion component (DC3) represented the exhaustion levels and we 
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observed that pre-1 and post-1 cells were separated from post-2 cells of the responders, 

which is consistent with our pathway analyses.

Overall, tessa discovered that the TCRs of post-immunotherapy treatment T cells determined 

that only some of them are truly “new” to the tumor microenvironment, and these T cells are 

probably the real functional effectors. In comparison to responders, this dichotomization of 

post-treatment T cells is not observed in non-responders (Fig. 3), which could underlie the 

lack of response in these patients.

TCR-dependent constraint on T cell phenotype is weakened in tumor contexts

Tessa enables a comprehensive comparison of the functional implication of the TCR 

repertoire on the T cells in different contexts. We first examined two datasets16, where T 

cells from a healthy donor and a patient with Cutaneous T-cell lymphoma (CTCL) were 

processed by ECCITE-Seq. In the t-SNE plots of the CD8+ T cells of both datasets, we 

highlighted the top ten TCR clonotypes with the largest clonal sizes (Fig. 4a, b). 

Interestingly, different T cells in the same clones from the healthy donor are clustered rather 

closely by clone identity, while T cell clones from the CTCL patient are distributed much 

more diffusely. This observation hints that, compared with the T cells from the healthy 

control, those from the CTCL patient are more homogeneous functionally regardless of 

clonotypes.

We applied tessa to study this phenomenon more quantitatively. Based on the tessa-weighted 

TCR embeddings, we calculated the pairwise TCR distances and the pairwise expressional 

distances of TCR clonotypes as we did in Extended Data Fig. 2. We found that, although T 

cell clones with more similar TCRs are more likely to share similar expressional profiles, the 

correlation between TCR and gene expression for the CTCL patient was much smaller 

compared with that in the healthy donor (Fig. 4c). Taken together, in CTCL, the T cell 

clonotypes are less constrained by their TCRs and demonstrate a more homogenized pattern.

We further investigated the whole panel of CD8+ T cells from the 19 single T cell RNA-

sequencing datasets (seven healthy PBMC samples and twelve tumor samples of different 

cancer types). For each dataset, we calculated the ‘unexplained variations’, which are the 

part of variations left after deducting the TCR-constrained variations from the total gene 

expression variations (Extended Data Fig. 8). Interestingly, we found that the unexplained 

variations by TCRs are much larger for the tumor datasets than the normal datasets (Fig. 4d, 

Student’s T-test P-values from 0.0036 to 0.0016). To test the robustness of this observation, 

we set a series of cutoffs on the tessa network sizes (minimum number of TCR clonotypes in 

each network), and chose to only consider the larger networks in each subset. We observed 

the same phenomenon regardless of cutoffs (Fig. 4d). These results confirmed that, across a 

panel of tumor types/datasets, the functions of T cells were less constrained by TCRs in 

tumor patients when compared with healthy donors.

Other than TCR binding, another factor that regulates T cell function is the cytokines 

secreted by a variety of immune cells, especially in the tumor microenvironment36. Typical 

cytokines that influence CD8+ T cells include IL-2, IL-12, and IFN-α/β37-39, and we 

examined the activity of their downstream signaling pathways in the T cells (Online 
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Methods). Activity scores for each pathway were calculated for each T cell and averaged in 

each dataset. As expected, these pathways’ activities in the T cells of the tumor datasets 

were overall higher than those of the healthy datasets (Fig. 4e, upper panel). According to 

our hypothesis, we anticipate that the stronger these pathways’ activities are, the more the T 

cells are regulated by these pathways, and less by the TCRs proportionally. Indeed, we 

observed that the upregulation of these cytokine downstream pathways is positively 

correlated with the high TCR-independent expression variations, across the tumor T cell 

cohorts of different cancer types (Fig. 4e, lower panel).

DISCUSSION

In this work, we developed the tessa model to quantitatively interpret the functional 

relevance of T cell repertoire. The function of T cells is determined by the overall 

contribution from a number of factors, such as TCR-antigen interaction, the environmental 

cytokine/chemokine, etc. After antigen exposure, the naive T cells become activated, which 

is followed by exhaustion and formation of memory T cells40,41. Using tessa as a tool, we 

showed that TCR similarity/dissimilarity determines a significant portion of the functional 

variation of T cells. Our results are in alignment with Tubo et al12, who revealed that each 

naive T cell has a tendency to produce certain types of effector cells, in part due to the nature 

of its unique TCR. They are also in alignment with Buchholz et al13, who similarly revealed 

that complex biological systems tend to balance the stochastic processes (intrinsic and 

extrinsic cues) and a robust outcome with a shared theme, when distinct variations of 

individual T cells with the same TCR are averaged out. Counter-intuitively, in tumors, the 

proportion of the functional variance controlled by TCRs is lower than that of the healthy 

donors. This could be a result of the high levels of cytokines and chemokines secreted into 

the tumor microenvironment37, which possibly influence all T cells simultaneously, and thus 

have tuned different clones of T cells to follow a similar distribution transcriptomically.

Tessa revealed insights into the behavior of the TCR repertoire that could have impactful 

translational value. Kalergis et al42 and Course et al43 demonstrated that when the binding 

affinity of the TCRs toward target antigens is too high, it hinders, rather than promotes, the 

activity and efficiency of T cells. Our approach of examining expression together with the 

TCRs of T cells could provide a more fine-grained resolution to the identification of the 

most promising TCRs for immunotherapies such as TCR transgenic T cells.

Our observations do not indicate that all T cells of the same TCR clonotype will have the 

same expressional profile. Instead, the different T cells of the same TCR clone can be either 

naive, memory, activated or exhausted, which is the part of functional variation of T cells 

that cannot be explained by TCRs. In the future, it could be of interest to further develop 

tessa to jointly model the TCR repertoire together with these other factors, such as cytokine/

chemokine exposure, for a more comprehensive characterization of the functions of T cells 

in various contexts. Another future direction would be to incorporate the CDR3α sequences 

and V/J genes into the modeling process, whereas our work currently only considers the 

CDR3β chains.
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In conclusion, we developed tessa, which bridges the gap between the field of TCR 

repertoire analysis and the field of single cell sequencing. Tessa enabled an insightful 

interpretation of the TCRs with empirical evidence, and can answer a variety of research 

questions regarding T cell biology that could not be asked before.

ONLINE METHODS

Embedding TCR sequences

First, we encoded the amino acids in TCR peptide sequences with the “Atchley factor”17 to 

give each TCR sequence an initial numerical representation. Atchley et al compressed a set 

of over 500 amino acid properties by dimensionality reduction to simplify the 500 attributes 

into 5 combined features in the latent space that faithfully represent the features of amino 

acids. The five Atchley factors correspond loosely to polarity, secondary structure, molecular 

volume, codon diversity, and electrostatic charge.

The resulting embedded ‘Atchley matrix’ has each row representing one digit of the 

‘Atchley factor’ and each column representing one amino acid in the TCR sequence. The 

Atchley factor matrices are large and they are also in matrix-format, where the neighboring 

relationship between residues contain critical information regarding the feature of the TCRs. 

Thus, an algorithm will need to be used to digest the Atchley factor matrices to generate a 

much smaller numeric vector that has captured the critical information contained in the TCR 

‘Atchley matrices’ to simplify the following steps. Stacked auto-encoders can naturally 

perform this task. We added zero padding to the columns to fix the shape of the matrices to 

5×80. Then a stacked auto-encoder, which is capable of reconstructing the input data and 

capturing their inherent structural features in an unsupervised manner, was applied to the 

encoded TCR “Atchley matrices” (Extended Data Fig. 1a). The input and the output of the 

auto-encoder are exactly the same, the “Atchley matrices”. The extracted structural features 

are captured in the smallest fully connected layer in the middle (the bottleneck layer). In our 

case, the bottleneck layer outputs are a 30-neuron numeric vector embedding of the original 

CDR3s. The training dataset consisted of 286,477 TCRs derived from bulk RNA sequencing 

data and 35,374 single-cell TCR sequences, and the total number of unique TCR sequences 

for training was 243,747 (Supplementary Table 1).

Here we chose an 80 (x5) embedding of the CDR3β sequences for two reasons: (1) We leave 

room here for potentially adding the CDR3α chains in the future. CDR1 or 2 may also be 

added. This could be convenient for us as the structure of the auto-encoder does not need to 

be changed or just needs to be changed minimally, even when the other CDRs are added. In 

the current study, not all sequenced T cells in these scRNA-seq datasets will have matched 

CDR3α and 3β sequences. If we limit ourselves to CDR3αβ matched cells, we will have a 

modestly reduced sample size in our analyses, which is one reason why we focused on 

CDR3β only so far. (2) In our datasets, the longest CDR3β has 50 amino acids. If we create 

an embedding that is shorter, say 30(x5), it means some (though a small number) CDR3βs 

will need to be truncated, which is not ideal.

Alternatively, we can encode amino acids by one-hot encoding. But this way of encoding 

has lost the biological context, and cannot reflect the fact that some amino acids are more 
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similar to each other than others. One might also consider more sophisticated techniques 

such as word2vec44. However, such models will need to be trained on a set of biologically 

meaningful data to be able to embed the amino acids reasonably. This would be essentially 

replicating the work of Atchley et al to some extent.

A brief description of the tessa model

The input to tessa are two matrices, the embedded TCR matrix of all T cells (T cells x 30-

dimensional embedding) and the expression matrix for all the T cells (genes x T cells). In 

our study, we used our own TCR embedding described above to preprocess the original TCR 

sequences. However, the user is free to use any other embeddings of the TCRs, and our 

software implementation has taken this flexibility in input into consideration. To preprocess 

the expression of genes, we calculated the variation of the expression levels of each gene 

across all cells. Only the top 10% genes with the highest variation were kept.

Tessa is a parametric Bayesian hierarchical model. There are two major steps that are 

iteratively performed in the model: (1) the Dirichlet Process step, which is employed to 

determine the TCR networks, and (2) the parameter updating step, which updates model 

parameters to achieve the optimal estimation of the association between TCRs and 

expression.

As the input to the Dirichlet Process, in each network, we defined the TCR distances 

between the center TCR (the TCR closest to the average of the embeddings of all the unique 

TCRs) and the non-center TCRs as dt, which were the Euclidean-like distances scaled with 

the weights b. We also defined the expression distances between the center clones and the 

non-center clones as de, using Euclidean distance between T cells and averaged within 

clones. We assumed that there was a linear regression between dt and de,

dk
e = ak × dk

t + ek

where k = 1, …, K represents different networks. ak is the regression coefficient capturing 

the expression-TCR correlation for each network, ek is a random error. Key parameters, b 
and ak, are to be updated in the second step. In each iteration, the Dirichlet Process re-

assigns each TCR into either an existing or a newly-built network, based on similarity of this 

TCR to the other TCRs, in order to reduce the regression error above. Therefore, after the 

first step, the network labels of the TCRs are updated.

In the parameter updating step, according to the newly-assigned networks we update within-

network distances dk
t  and dk

e for each network k. The center of each network is re-considered 

by drawing one from the TCRs of the network, following the probabilities inversely 

correlated to their dts to the averaged embedding of all the TCRs in the network. The 

regression coefficient ak and the embedding weights b are updated according to their 

posteriors. We iteratively perform the two steps above, and through this process tessa 

essentially searches for the parameters that can maximize the correlation between dk
t  and dk

e.
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It is important to note that, during the estimation process, the same weight, b, is applied 

within networks and across networks. We hypothesize that some of the features of our 30-

dim embedding could always be more important or less important for all TCRs. For 

example, the middle of CDR3s tend to bulge out and come into closer contact with the 

epitopes/MHCs, and therefore could be more important. This likely holds true for most, if 

not all, CDR3s. Therefore, a uniform weighting could likely find these features and scale up 

or down their influences for all TCRs. On the other hand, we also allowed some flexibility 

when correlating the transcriptomic features of the cells and the embedded TCRs, within 

each network. This is reflected by ak in the formula above. We adopted the so-called random 

effect model where we assumed the correlation, between expression and TCR, of each 

network, to closely follow the same population correlation, with a certain degree of network-

specific deviance allowed. This ensures that a general rule is found to correlate expression 

and TCR, but the characteristics of different TCR networks are also taken into consideration.

A detailed description of the tessa model can be found in Supplementary Note 1 along with 

simulation and diagnostics.

Correlation between TCRs in embedding space and expression of T cells

For Fig. 4c, TCR embeddings adjusted by the weights estimated by tessa were used to 

calculate the pair-wise TCR distances. The TCR distances and expression distances were 

binned by every 5,000 TCRs with the closest TCR distances. For Extended Data Fig. 2, the 

distance calculation method was the same as in Fig. 4c, but without the weight scaling by 

tessa. The TCR distances and expression distances were binned and ranked before plotting.

Assignment of antigen specificity of TCRs of the 10x Genomics scRNA-Seq datasets

The single cell immune profiling datasets released by the 10x Genomics consist of single 

cell 5’ gene expression libraries, TCR sequencing libraries, and antigen binding affinity 

measurements of CD8+ T cells from 4 healthy donors. The antigen binding affinity between 

the TCR of one T cell and pMHCs is determined by measuring the number of short 

sequences (‘UMIs’) specifically counted for each one of the 44 pMHC dCODE™ 

Dextramers® under investigation. In the application note released by the company (https://

www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-

linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/), their 

scientists validated the antigen specificities inferred from the UMIs by comparing the 

inferred pMHC-specific TCRs with those that have been confirmed with experiments in 

VDJdb (https://vdjdb.cdr3.net/), and they found exactly matching and closely similar 

sequence pairs (their Fig. 5 and Table 1). In another report by the 10X Genomics on the 

same technology (https://www.immudex.com/media/118671/tf119302-sitc-2018-immudex-

poster-in-collaboration-with-10x-genomics-dcode-dextramer-technology.pdf), their research 

team found that flow cytometry and their feature barcoding technology identify similar 

dCODE Dextramer®-binding cell populations (their Fig. 4). Strikingly, that figure shows 

that distributions of the flow cytometry intensities (top panel) and the UMI counts (bottom 

panel) closely resemble each other. Therefore, that figure proves that the UMI counts are 

rather quantitative (at least as quantitative as conventional flow cytometry), rather than 

qualitative.
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Our methodology to assign antigen specificity basically follows that of the original 10x 

report. For a T cell to be called antigen specific for one pMHC, that pMHC’s UMI count has 

to be >=10 and it has to be the largest across all 44 pMHCs. To give a context for the cutoff 

of 10, the four 10X datasets also include pMHC UMI measurements of six irrelevant 

peptides as negative controls to assist the detection of specific binding events. Across all 

cells in the four datasets, 92~97% negative control UMIs are zeros, and the average negative 

control counts range from 0.05 to 0.16. Importantly, for Fig. 2e, the UMI counts numbers we 

showed are log-scaled “clone level” UMI counts. For clones that have multiple cells sharing 

the same TCR, we calculated median UMI counts as clone level UMIs. It is very common 

for a clone to have, say, 20 cells, but only 10 cells have a specific pMHC that can be 

assigned according to the rule above. One clone of T cells has the same TCR, so it’s unlikely 

for these T cells to have different antigen specificity. In such cases, the antigen specificity 

for this T cell clone will be assigned according to these 10 cells’ antigen specificity (a >90% 

concordance has to be reached for these 10 cells). Importantly, the “clone”-level UMI counts 

reported in Fig. 2e will be the median of all T cells’ UMI counts in each clone. We cannot 

take max of the cell-level UMI counts for each clone, as bigger clones will have higher UMI 

counts just due to sampling size, which will bring bias into the analysis.

Hierarchical clustering of TCRs based on the weighted embedding and correlation with 
antigen specificity for the Dash and Glanville datasets

We analyzed the two antigen-specificity datasets (Dash and Glanville)10,11, which provided 

276 and 207 TCR sequences with known antigen specificity. In these studies, single T cells 

from healthy donor PBMCs with known HLA types and infections of common viruses were 

incubated with engineered pMHCs and sorted with FACS before obtaining TCR sequences 

from a series of nested PCRs. Unlike scRNA-seq, these T cells do not have matched 

expression data. Therefore, for these two datasets, we performed hierarchical clustering 

based on the scaled TCR embeddings with weights learned from the single cell sequencing 

datasets (the b used for scaling is an average of the bs from all the single T cell sequencing 

datasets in Extended Data Fig. 3). The clustering also resulted in TCR networks that are 

similar to the TCR networks detected by tessa. Different tree height cutoffs were employed 

to test the stability of the results. We randomized the cluster labels and performed the same 

calculation 10,000 times to examine whether the clustering purity was achieved by chance. 

P-values were calculated as the number of trials that achieved a higher purity than the true 

hierarchical clustering results, divided by 10,000.

Identifying the T cell neighbours based on tessa-weighted TCR similarity

We identified the ‘neighbours’ for each of the TCR clones in the post-1 and the post-2 

subgroups in Fig. 3c, d. For each clone, we calculated the tessa-weighted TCR distances 

between that clone and all the other clones with different TCRs from the same patient, and 

we selected the clone with the smallest TCR distance as the ‘neighbour’ of the previous 

clone. We counted the number of the neighbours that belong to each subgroup (pre-1, pre-2, 

post-1, and post-2), and divided those numbers by the total number of clones in that 

subgroup to obtain percentages.
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Construction of gene modules and calculation of gene pathway activity scores

In Fig. 3e-g and Extended Data Fig. 6ab, we first selected 11 previously established 

individual marker genes representing 5 key T cell function pathways, including naive T cell 

markers (IL7R), memory T cell markers (CXCR3, GZMK), activated T cell markers (IFNG, 
TNF, FOS, JUN), and exhausted T cell markers (ITGAE, ENTPD1, GZMB, LAG3) defined 

by Yost et al31. We also examined the differentially expressed genes between post-1 cells 

and post-2 cells from responders. We identified TGFB1 as the top highly expressed gene in 

the post-1 cells that is related to immune pathways35. To increase the stability of our 

analyses, we expanded these individual genes to pathways by including the 13 genes that 

show the highest levels of positive correlations for each individual gene marker.

In Fig. 4e, the IL-2 signaling pathway #1 included 13 genes from Conley et al38 and Cho et 
al39. The other four pathways, including the IL-2 pathway #2 

(GSE39110_UNTREATED_VS_IL2_TREATED_CD8_TCELL_DAY3_POST_IMMUNIZ

ATION_DN), the IFN-α/β pathway 

(GSE15930_STIM_VS_STIM_AND_IFNAB_24H_CD8_T_CELL_DN), the IL-12 

pathway #1 (GSE22443_NAIVE_VS_ACT_AND_IL12_TREATED_CD8_TCELL_DN) 

and #2 (GSE13173_UNTREATED_VS_IL12_TREATED_ACT_CD8_TCELL_DN), were 

selected from version 7.0 of the molecular signature database (MSigDB) (http://

www.broadinstitute.org/gsea/msigdb/index.jsp): the c7 immunologic signatures. The two 

negative control pathways were generated with 200 randomly selected genes from all unique 

genes included in the c7 immunologic signatures. These selected genes in each pathway 

were shown in Supplementary Table 2. To determine the pathway activity scores, we 

normalized the RNA-expression raw counts by dividing raw counts of each gene and each 

cell by the sum of raw counts of each corresponding cell. The normalized expression values 

of the genes belonging to the same pathway were then log scaled, summed for each cell, and 

served as the pathway activity score in that cell. The activity scores of each pathway were 

scaled by their tenth roots for a better representation.

Diffusion map and pseudotime analysis

For the CD8+ T cells from BCC samples, the top 10% genes with the highest expression 

variations across all cells were used to calculate the diffusion components. The R package 

‘destiny’ (version 3.0.1) was used to compute a neighborhood graph using 40 neighbors and 

the first 20 principal components. We then employed SCINA45 to detect naive CD8+ T cells 

with the marker gene IL7R and five genes with the highest correlation with IL7R. Three 

randomly selected naive T cells were used as the root cell for diffusion pseudotime 

prediction with the ‘dpt’ function in the ‘destiny’ package using all 20 diffusion components 

and a window width of 0.1 to decide the branch cutoff.

Calculating the variations of gene expression unexplained by TCRs

As described before in tessa, the TCRs were grouped into K networks. In each network, the 

TCR distances between the center TCR and the non-center TCRs were defined as dt, their 

expression distances were defined as de. tessa assumed a linear regression relationship 

between dt and de, which is
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dk
e = ak × dk

t + ek

where k = 1, …, K represents the k-th network. We defined the unexplained variations as,

∑k = 1
K (dk

e − ak × dk
t )2

∑k = 1
K (dk

e − 1
K ∑k′ = 1

K dk′
e )2

.

The unexplained variations were calculated separately for each of the networks in each 

dataset.

Benchmarking analysis with GLIPH

In Extended Data Fig. 4 we performed a series of benchmarking analysis using GLIPH10. 

We performed the analysis on six datasets including the four Healthy-CD8 datasets from 10x 

Genomics, the Glanville10 dataset, and the Dash dataset11 (Supplementary Table 1). The 

command ‘gliph --tcr TCR_TABLE --gccutoff = n’ was used to generate clusters from the 

TCR sequences of these datasets. We adjusted the value of the “gccutoff” parameter from 

0.5 to 5 with a step-length of 0.5 and calculated the ‘network purities’ for each choice of the 

parameter.

Statistical analyses

All computations and statistical analyses were carried out in the R computing environment 

(version 3.5.1). We employed SCINA45 to detect the CD8+ T cells and CD4+ T cells from 

single T cell sequencing data, based on two gene signatures that are genes specifically 

expressed in the CD8+ T cells and the CD4+ T cells, respectively. Within each single cell 

dataset to be analyzed, we defined the CD8 gene signature as the 10 genes with the highest 

correlation with CD8A, and the CD4 gene signature as top 10 genes most highly correlated 

with CD4. For all boxplots appearing in this study, box boundaries represent interquartile 

ranges, whiskers extend to the most extreme data point which is no more than 1.5 times the 

interquartile range, and the line in the middle of the box represents the median. The t-SNE 

analysis was performed with the ‘Rtsne’ package (version 0.15). Specifically, for Fig. 3ab 

and Fig. 4ab, we used the RNA expression of the T cells as the input. For Fig. 1e and 

Extended Data Fig. 5ab, we used the embedded TCR sequences as the input. PCA 

preprocessing was applied to both types of data, and the first 50 Principle Components (the 

default parameter of the function ‘Rtsne’) were employed to calculate the 2-dimensional 

(default) t-SNE representations, and they were plotted as principles ‘tSNE-1’ and ‘tSNE-2’. 

We applied Pearson correlation tests for all correlation analyses. Student’s T-test with two 

tails was used to calculate all the P-values (unless otherwise specified). The function 

‘geom_smooth’ (method=‘lm’) in the package ‘ggplot2’ (version 3.1.0) was applied to 

calculate the regression trend lines and 95% confidence intervals. The one-sided jonckheere 

trend test was applied to calculate the P-value in the analysis of Fig. 2e, with the function 

‘jonckheere.test’ in the package ‘clinfun’ (version 1.0.15). The hierarchical clustering was 

performed with the ‘hclust’ function (method = ‘manhattan’) from the package ‘stats’.
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Data availability

The bulk RNA-Seq datasets used for deriving TCRs and then for the auto-encoder training 

are publicly available at https://gdc.cancer.gov/about-data/publications/panimmune 

(TCGA23), https://www.iedb.org/database_export_v3.php (IEDB), and http://

friedmanlab.weizmann.ac.il/McPAS-TCR/ (McPAS25). We made the Kidney-bulkRNA24 

dataset available in csv format at https://github.com/jcao89757/TESSA/tree/master/

Tessa_released_data. All scRNA-seq/TCR-seq datasets are publicly available. The 

NSCLC-1 and healthy-PBMC-1 datasets are available on the 10X website https://

support.10xgenomics.com/single-cell-vdj/datasets/2.2.0. The healthy-CD8 1-4 datasets are 

available on https://www.10xgenomics.com/resources/application-notes/a-new-way-of-

exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-

and-phenotype/. The healthy-PBMC-2 dataset is also available on the 10X website https://

support.10xgenomics.com/single-cell-vdj/datasets/3.0.0. The NSCLC-226, CRC27, and 

HCC28 datasets are downloaded from the European Genome-Phenome Archive (EGA) 

under accession numbers, EGAS00001002430, EGAS00001002791, and 

EGAS00001002072, respectively. The Breast 1-529 datasets are available on the Gene 

Expression Omnibus (GEO) under accession numbers, GSE114727 and GSE114724. The 

Melanoma30, BCC31 and ECCITE-seq16 datasets are also on the GEO database under study 

numbers, GSE123139, GSE113590 and GSE126310. The Glanville10 dataset is downloaded 

from https://doi.org/10.1038/nature22976. The Dash11 dataset is available in the NCBI 

Sequence Read Archive (SRA) under accession number SRP101659. The details of the data 

used, including sample size, role in the analysis, and references, are shown in 

Supplementary Table 1. All scRNA-seq data were involved in Fig. 2 (directly or indirectly 

mentioned), the BCC scRNA-seq data were used in Fig. 3, and all scRNA-seq data were 

used in Fig. 4.

Code availability

The tessa model: https://github.com/jcao89757/tessa (doi: 10.5281/zenodo.4161819)46

The SCINA model: https://github.com/jcao89757/SCINA (doi: 10.3390/genes10070531)45

Reporting Summary

Please refer to Life Sciences Reporting Summary regarding detailed information on 

experimental design.
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Extended Data

Extended Data Fig. 1. 
Details of the stacked auto-encoder for TCR embedding. (a) The structure of the auto-

encoder, with the configurations of each layer shown. (b) Typical examples of TCR CDR3b 

sequences, heatmaps of the initially embedded ‘Atchley’ matrices of TCRs, and heatmaps of 

the auto-encoder-reconstructed ‘Athley’ matrices. The TCR sequence examples were not 

used in the training step of the auto-encoder. (c) Scatterplots showing the consistency 

between the ‘Atchley factor’ values of the original and re-constructed TCRs. Green points 

represent tiles in the heatmaps in (b).
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Extended Data Fig. 2. 
Scatterplots showing the relationships between the distances of TCRs and the distances of 

RNA expression levels for several more datasets. Both distances are calculated in a pair-wise 

manner between all the T cell clonotypes of each dataset. Four example datasets are shown: 

Healthy-CD8-3 (a), Healthy-CD8-4 (b), Breast-1 (c), and Breast-2 (d) (Supplementary Table 

1). The P values indicate the significance of the Pearson correlation coefficients. The shaded 

areas denote the 95% confidence intervals for linear regressions.

Extended Data Fig. 3. 
The weights of the TCR embeddings learned from tessa. The X axis shows the digits of the 

30-dimensional embeddings, and the Y axis shows the weights learned for all datasets. Each 
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bar represents one digit of the weights and shows the values of that digit obtained from all 

the 19 scRNA datasets in the Supplementary Table 1.

Extended Data Fig. 4. 
Benchmarking results using GLIPH. (a) Clustering rates of the four Healthy-CD8 datasets 

from 10x Genomics, the Glanville dataset, and the Dash dataset under different global 

convergence distance cutoff (‘gccutoff’) values (Supplementary Table 1). The dashed lines 

represented the tessa clustering rates of the corresponding datasets. (b) Clustering purities of 

GLIPH when the ‘gccutoff’ equals to 3. The cutoff value was selected so that the GLIPH 

clusters achieved clustering rates that are most similar to the tessa networks. The clustering 

purities were calculated with the same method as in Fig. 2. (c, d) The GLIPH network 

purities (c) and number of networks (d) with different ‘gccutoff’ values, compared with the 

tessa network purities and the number of networks.
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Extended Data Fig. 5. 
The antigen binding specificity of 207 Human TCRβ chains from 704 T cells were profiled 

against two epitopes in the Dash dataset, and 276 TCRs from 415 T cells against three 

epitopes in the Glanville dataset. (a, b) T-SNE plots showing the TCR clonotypes in the 

space of the TCR embeddings, with the embeddings adjusted by the tessa-inferred weights. 

The hierarchical clustering tree cutoff used in the two plots was represented with green 

dashed lines in c-f. Each point in the plots represents one TCR clonotype, and the size of the 

point refers to the clone size. Points are colored by the true antigens that the corresponding 

TCRs target according to the original report. Points are connected if they are clustered into 

the same network based on hierarchical clustering of the TCR embeddings. T cell clones 

with only one cell were deemed as having low confidence and unclustered clones, which 

does not affect the calculation of the purities, were excluded from visualization. (c, d) The 

numbers of TCR networks and the clustering rates with different hierarchical tree cutoffs in 

the Dash dataset (c) and in the Glanville dataset (d). Cluster rates were calculated as the 

number of TCR clonotypes that are clustered with at least another TCR clonotype, divided 

by the total number of TCR clonotypes. (e, f) The network purities and p-values testing the 

significance of the purities with different hierarchical tree cutoffs in the Dash dataset (c) and 
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the Glanville dataset (d). The network purity and P value calculations were described in the 

Online Methods section.

Extended Data Fig. 6. 
T cell pathway activity scores of the different T cell subsets in the BCC dataset. The naive 

and activated pathways are shown, to be compared against the inhibition, memory and 

exhausted pathways shown in Fig. 3. The T cell subsets were the same as those in Fig. 3e-g.
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Extended Data Fig. 7. 
Pseudotime analysis of the different T cell subsets in the BCC dataset. The T cell subsets 

were the same as those in Fig. 3e-g.

Extended Data Fig. 8. 
A cartoon sketch shows how the unexplained variance in gene expression of the TCR 

networks were determined. Details were described in the Materials and Methods section.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The tessa algorithm. (a) A flowchart shows how the TCR sequences are encoded into 

numeric vectors that are amenable for mathematical operations. (b) A heatmap indicating the 

scRNA-Seq expression matrix, which was used to calculate the expression distances, and 

serves as another input into the tessa model. (c) The core rationale of tessa: to combine the 

information from TCR and RNA expression. (d) The two key processes of the tessa model to 

combine the information iteratively: updating variables to maximize the association in (c) 

and updating TCR network assignments according to the updated variables. (e) A t-SNE plot 

intuitively shows tessa-identified networks of TCRs, which has incorporated expression 

information, and can help achieve more refined estimation of the association in (c) within 

each network.
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Fig. 2. 
TCR networks demonstrate a gradient of targeting efficiency. (a) The calculation of TCR 

network purity. (b) Clustering purities in the four 10X Healthy-CD8 datasets. Unexpanded 

clones with only one T cell and networks with only one clone were excluded. The numbers 

of unique TCRs were 119, 364, 87 and 62, respectively. (c) One typical example (Breast-5) 

to show the clonal sizes of center TCRs and the median clonal sizes of non-centered TCRs 

for each network. The dashed line represents the X=Y line. 79 CD8+ and 150 CD4+ TCR 

networks with at least three clones were included. (d) Ratios representing central clones’ 

expansion levels of the CD8/CD4 clones in each dataset. (e) The decreasing gradient of 

antigen binding strength for TCRs, along with increasing dissimilarity to the center TCRs. 

The TCR clonotypes from each dataset were divided into six groups of equal size (N=198). 

Unexpanded clones with only one T cell and networks with only one clone were excluded.
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Fig. 3. 
TCR similarity determines fate of T cells post-immunotherapy treatment. (a,b) T-SNE plots 

of the post-treatment and pre-treatment cells from all the BCC patients (dataset BCC, 

Supplementary Table 1). The colors represent either clonal level labels (a) or network level 

labels (b). TCR networks were built separately for cells from each patient. The post-1, 

post-2, pre-1 and pre-2 subgroups were described in the result section. (c,d) The ratios of 

clones of the neighbors of post-1 (c) and post-2 (d) in each subgroup. (e-g) Pathway activity 

scores including TGFB1/inhibition gene pathway (e), memory gene pathway (f), and 

exhausted gene pathway (g) of the different cell subgroups. (h) Diffusion map analysis 

showing the cell subgroup distribution along the activation diffusion component and the 

exhaustion diffusion component. The numbers of T cells in the eight subgroups analyzed in 

Fig. 3 were: responders: N(post-1) =389, N(post-2) =841, N(pre-1) =1321, N(pre-2) =787; 

non-responders: N(post-1) =550, N(post-2) =757, N(pre-1) =892, N(pre-2) =670.
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Fig. 4. 
CD8+ T cells are functionally constrained by TCRs differently in healthy donors and tumor 

patients. (a,b) t-SNE plots of the T cells from a CTCL patient (a) and a healthy donor (b). 

Cells in each of the top 10 largest clones were labeled in non-grey colors, and the other cells 

were labeled in grey. The total numbers of cells were 1,103 for (a) and 1,462 for (b). (c) 

Correlation between the TCR distances and the RNA/protein expression distances of CTCL 

and healthy donor T cells datasets. (d) The boxplots show the unexplained variance of TCR 

networks from the twelve tumor samples of different cancer types and the seven healthy 

samples combined (Supplementary Table 1). X-axis indicates the percentages of TCR 

networks analyzed with cutoffs. The P values were generated from one-sided Student’s T-

tests. (e) Differences between the pathway activities calculated from the different cancer and 

healthy datasets, as in (d) (upper panel) and the correlation between average pathway 

activity scores and medians of unexplained gene expression variances by TCR in all tumor 
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datasets (lower panel) (Supplementary Table 1). The P values were generated from one-

sided Student’s T-tests. The shaded areas denote the 95% confidence intervals for linear 

regressions.
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