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Conventional psychophysical methods ignore the degree
of confidence associated with each response. We
compared the psychometric function for detection with
that for “absolute certainty” in a perimetry-style task, to
explore how knowledge of response certainty might aid
the estimation of detection thresholds. Five healthy
subjects performed a temporal 2-AFC detection task,
indicating on each trial whether they were “absolutely
certain.” The method of constant stimuli was used to
characterize the shape of the two psychometric
functions. Four eccentricities spanning central and
peripheral vision were tested. Where possible,
conditions approximated those of the Humphrey Field
Analyzer (spot size, duration, background luminance,
test locations). Based on the empirical data, adaptive
runs (ZEST) were simulated to predict the likely
improvement in efficiency obtained by collecting
certainty information. Compared to detection, threshold
for certainty was 0.5 to 1.0 dB worse, and slope was
indistinguishable across all eccentricities tested. A
simple two-stage model explained the threshold
difference; under this model, psychometric functions for
detection and for certainty-given-detection are the
same. Exploiting this equivalence is predicted to reduce
the number of trials required to achieve a given level of
accuracy by approximately 30% to 40%. The chances of

detecting a spot and the chances of certainty-given-
detection were approximately the same in young,
healthy subjects. This means, for example, that a spot
detected at threshold was labeled as “certainly”
detected approximately half the time. The collection of
certainty information could be used to improve the
efficiency of estimation of detection thresholds.

Introduction

The gold standard for accurate measurement of
psychophysical thresholds is forced-choice testing,
which minimizes bias by negating the observer’s internal
decision criterion. However, forced-choice testing is
inefficient; a single correct response in a two-alternative,
forced-choice (2-AFC) trial has a 50% chance of simply
being a “lucky guess.” The information content in
such a response is thus diluted by noise—this is the
price paid for mitigating internal response bias. This
problem is exacerbated in the popular scheme for
adaptive testing in which a uniform prior probability for
threshold is adopted, which is also designed to reduce
bias. Accordingly, it is typical for adaptive 2-AFC
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procedures in nonclinical vision research to use around
30 to 40 trials to estimate threshold (King-Smith,
Grigsby, Vingrys, Benes, & Supowit, 1994; Kontsevich
& Tyler, 1999).

A common alternative to forced-choice testing is for
subjects to respond either “Yes” or “No” to having
perceived the relevant stimulus characteristic. Although
relatively immune to lucky guesses, Yes/No testing is
liable to mis-clicks, false-positive and false-negative
results. Measured thresholds depend on the subject’s
internal criteria and are generally elevated because
the subject has not been forced to guess. Hence, a
2-AFC approach (Lesmes, Lu, Baek, Tran, Dosher &
Albright, 2015) is generally preferred by most groups
in basic research applications, despite the requirement
for approximately twice as many trials to converge on a
stable threshold (King-Smith et al., 1994; Klein, 2001).

In settings that involve a large number of threshold
determinations in a limited time frame, forced-choice
testing may be impractical. For example, in clinical
visual field testing there are many individual locations
to test, and it is important to limit patient fatigue; in
a widely used implementation each point may receive
just two to six presentations (Bengtsson & Heijl, 1998).
Accordingly a Yes/No scheme is used rather than a
forced-choice approach, in combination with various
other “shortcuts,” which may include fewer trials, fewer
staircase reversals, or removal of catch trials (Bengtsson
& Heijl, 1998; Bengtsson, Olsson, Heijl, & Rootzén,
1997; Heijl et al., 2019). Although these measures save
time, they also limit reliability (Phu, Khuu, Agar, &
Kalloniatis, 2019) and, hence, reduce statistical power
to make a diagnosis, assess treatment efficacy, or detect
progression in disease. One solution to this problem is to
run more tests or to use more trials per test (Anderson,
Bedggood, Kong, Martin, & Vingrys, 2017; Phu,
Kalloniatis, Wang, & Khuu, 2019); however, this may
increase the burden on the healthcare system and reduce
patient compliance. Another solution is to maximize
the information gained from each trial (McKendrick,
Denniss, & Turpin, 2014; Phu, Kalloniatis, & Khuu,
2018). The present work seeks to achieve this through
consideration of response certainty.

Speaking more broadly than visual psychometric
testing, across all classes of perception there is a
rich complexity to the percept that gets distilled into
each decision to give a particular response, which is
not typically transmitted to the experimenter. That
is, each percept is automatically and inextricably
(Kiani & Shadlen, 2009) accompanied by an internal
perception of degree, and of the associated confidence
in the decision that was made to press or not press a
particular button (Klein, 2001). Collection and use of
such information has potential to significantly improve
the efficiency of psychometric testing, allowing more
accurate thresholds in a finite number of trials or faster
thresholds for a desired level of accuracy. This is all

the more true for forced-choice paradigms, especially
those adopting a uniform prior, because these are the
most likely to repeatedly display stimuli far from the
observer’s threshold.

Relatively few groups have explored the use of
confidence information to improve the efficiency of
threshold determination in psychometric testing (Klein,
2001). Most have concentrated on the “unforced
choice”, a 2-AFC task with an additional, opt-out,
“uncertain” response introduced. Efficiency of this
approach has been suggested to rival conventional
Yes/No testing, but with reduced bias (García-Pérez &
Alcalá-Quintana, 2013; García-Pérez, 2010; Kaernbach,
2001; Watson, Kellogg, Kawanishi, & Lucas, 1973). It
has been further proposed that bias may be eliminated
by providing a fourth response option (Hsu & Chin,
2014; Klein, 2001; Okamoto, 2012), such that subjects
are still forced to choose between the two alternatives
but additionally ascribe either a high- or low-confidence
rating (i.e., either high- or low-confidence for alternative
1 or 2: four response options). The idea may be extended
to a continuous rating of confidence (for example, on a
100-point scale) (Yi & Merfeld, 2016), with the richer
information providing even greater efficiency for rapid
determination of threshold.

Recent work has extended the addition of
an “uncertain” category to Yes/No testing (i.e.,
Yes/Unsure/No) in an adaptive procedure, again
showing rapid convergence (compared with 2-AFC)
and returning threshold values that appear criterion-free
(compared with Yes/No testing) (Lesmes et al., 2015).
However, this approach uses a large number of
false-alarm trials that may be impractical where total
test time is important.

The work cited above relies on the observer’s ability
to rate their own confidence, which may or may not
be accurate when confidence is low, such as when
responding to stimuli near and below threshold (Hsu
& Doble, 2015). A more reliable internal percept may
be created when an observer is certain that they have
made a correct decision. From the perspective of
mathematical modelling of the psychometric function,
certainty (100% confidence) does not exist. In real life,
observers often rely on reaching a sufficient degree
of confidence so as to become certain of a particular
decision (such as deciding when it is safe to cross a busy
road).

Here, we evaluate the potential for using response
“certainty” to improve the efficiency of threshold
determination in vision science. We have chosen
to explore a perimetry-style task, since perimetry
is a ubiquitous visual psychometric task. In the
first section we present empirical data on the shape
of the psychometric functions for performance
and for certainty in young, healthy subjects. Data
were collected contemporaneously for each trial by
combining a 2-AFC detection task with a binary
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“Certain/Uncertain” rating. We hypothesized that each
subject would have a particular threshold at which they
become “certain” they have seen the stimulus (i.e., 50%
chance of being certain), and that this threshold would
coincide with a point on the frequency-of-seeing curve
well above the performance threshold (for example,
the threshold for responding “certain” may equate
to perhaps the 80% or 95% chance of detecting the
stimulus). In the second section we use the empirically
collected data describing the shape of the psychometric
functions to simulate a large number of adaptive runs,
to predict the likely benefit of incorporating “certain”
responses in adaptive testing procedures.

Methods

Subjects

Five young, healthy subjects aged 22 to 24 years were
recruited from optometry students at the University
of Melbourne Department of Optometry and Vision
Sciences. Subjects wore their habitual distance
correction if applicable (no subjects required a near
correction) and had visual acuity of 20/30 or better
with this correction.

Subjects supplied written informed consent and the
study complied with the tenets of the Declaration of
Helsinki. The project was approved by the University
of Melbourne Human Ethics Committee.

Display

A Samsung SyncMaster 2243 BW LCD monitor
(Samsung, Seoul, South Korea) operating at 60 Hz was
used to display stimuli. The monitor was controlled
by an NVIDIA GeForce GTX680 graphics processing
unit (NVIDIA, Santa Clara, CA, USA) through
a DVI-I connector which allows analog control. A
sliding look-up table was used to address the eight-bit
display range with nine-bit precision (Metha, Vingrys,
& Badcock, 1993). Monitor luminance was calibrated
with a PR650 spectro-photometer (Photo Research,
Chatsworth, CA, USA).

Software

Experiments were operated using The Psychophysics
Toolbox (Brainard, 1997) version 3, running under
MATLAB (Mathworks, Natick, MA, USA). Standard
functions in this software were used to display stimuli,
record responses, and fit psychometric functions as
described below.

Testing paradigm

Figure 1A depicts the stimulus and task. A gray
spot increment (Goldmann III size) was displayed
monocularly on a gray background (10 cd/m2) for
200 ms, in one of two time intervals separated by
500 ms (temporal 2-AFC). Subjects indicated which
interval contained the spot, and whether they were
“absolutely certain” regarding their choice of interval
(see flow chart in Figure 1B). The 2-AFC paradigm was
chosen (as opposed to a Yes/No paradigm) to provide
a criterion-free threshold measure for performance,
for comparison to the potentially criterion-dependent
certainty data.

The method of constant stimuli (MOCS) was used to
capture the shape of the psychometric functions. There
were seven discrete intensities tested 40 times each. One
run, testing a single eccentricity, took approximately 10
minutes. Longer run times were predicted to degrade
responses because of fatigue; hence, it was deemed
undesirable to test multiple eccentricities in a single
run.

During each MOCS run, stimuli were displayed at
one of four quadrants positioned symmetrically a fixed
distance from fixation (a white cross 1 arc min thick).
This spatial uncertainty was introduced to remove any
incentive for shifting fixation, given that only a single
eccentricity would be tested in each run. Accordingly
each block of 40 trials referred to above represents
the pooling of data from 10 trials in each of the four
quadrants, forming a single block of 40 responses
for a given distance from fixation (i.e., responses are
averaged across the direction from fixation). Combining
spot locations in this way could broaden the slopes
measured; to assess this we repeated all analyses with
one hemifield removed in either the horizontal or
vertical direction and observed that the significance of
statistical associations presented in the Results did not
change (analysis not shown for brevity).

To decide on the set of stimulus intensities for
each subject at a given eccentricity, initial Bayesian
testing (ZEST, 40 trials) was conducted to estimate
threshold. Based on the fitted psychometric function, 7
test intensities were selected targeting the frequency-of-
seeing curve between 2.5% to 97.5% (with equal spacing
between intensities in log-contrast space). If the MOCS
run subsequently obtained did not reach at least 80%
correct at the highest test intensity, a curve was fit to
the data and used to suggest a new set of test intensities
(again, spanning 2.5% to 97.5% correct). This process
was repeated as needed, producing 1 to 3 MOCS runs
per subject at each eccentricity. All data were utilized
for curve fitting, because even the preliminary runs
provide useful information on the asymptotes of the
psychometric function.

For the 3°, 3° point, three of five subjects displayed
sensitivity for the 200 ms stimuli greater than was
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Figure 1. Schematic showing stimulus configuration and response collection. (A) Depicts a temporal 2-AFC task. A Goldmann III spot
was displayed for 200 ms in 1 of 4 quadrants, with symmetrically placed co-ordinates (x,y) of ±(3°,3°), (9°,9°), (15°,15°) or (27°,3°)
from fixation (white cross). The stimulus appeared during either interval 1 or interval 2 (separated by 500 ms). Using a single button
press, subjects indicated which interval the spot was in, and whether they were “absolutely certain” of the interval. (B) Depicts the
mapping of the observer’s percept to button presses and psychometric functions, for an example in which the stimulus was in the
second interval and the subject was certain. There were four buttons available, with a button on the subject’s left pressed for interval
1 (labels “1” and “2” in the figure) and on the right for interval 2 (labels “3” and “4” in the figure). One row of buttons was used for a
noncertain response (labels “1” and “3” in the figure) and a separate row for an “absolutely certain” response (labels “2” and “4”).
This allowed contemporaneous measurement of the psychometric functions (right) for detection (blue) and for certainty (red).

allowed by the bit depth of the monitor control (nine
bits), so that seven unique MOCS intensities could not
be generated. In these subjects the stimulus duration
was reduced from 200 ms to 16.7 ms (a single frame),
effectively lowering their sensitivity to allow sufficient
bit-depth at this location. Results from the other two
subjects at this eccentricity were not included for
analysis (i.e., Figure 2a and Figure 3a show data from
three subjects rather than five).

To facilitate comparison to other work, where
possible conditions were chosen to approximate
those of the Humphrey Field Analyzer (HFA) (Zeiss,
Oberkochen, Germany): the spot size (Goldmann III),
stimulus duration (200 ms), background intensity (10
cd/m2), testing distance (300 mm), and eccentricities
selected (x°–y° from fixation: 3°–3°, 9°–9°, 15°–15°,
and 27°–3°) were all chosen in this way. It should be
noted that due to the symmetric spot configuration, 2
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Figure 2. Strategies for combining detection and certainty information in adaptive simulations. Left-hand column: conventional
Bayesian adaptive testing.Middle column: independent probability functions maintained for detection and for certainty, with the
estimated threshold being an average of the two. Right-hand column: combined probability function maintained for both detection
and certainty. Top row: example prior probability before a given trial is shown.Middle row: example likelihood functions. Bottom row:
posterior probability after each possible response, together with the new threshold estimate in the case the stimulus was detected,
but not with certainty.

of the 4 test locations for the 27-3 eccentricity do not
correspond to the HFA, which tests this eccentricity
only in the nasal visual field. We also used a central
fixation target as does the HFA, although our was a
white cross subtending 1°, and 1 arc min thick.

Subject responses

An important feature of the experimental design
was the contemporaneous collection of performance
(2-AFC) and certainty (Certain/Uncertain) data.
Subjects operated a gamepad controller with 4 potential
button presses, and were tasked with reporting whether
the stimulus was presented in the first or second interval
by pressing the left- or right-hand buttons, respectively.
Subjects were given unlimited time to respond after
each trial. For trials in which the subject felt “absolutely
certain” of the correct interval, they were instructed

to press the bottom row of buttons on the controller;
for all other trials, subjects were to press the top
row of buttons. The mapping of subject percepts to
button presses and generated psychometric functions
is illustrated in Figure 1B. The scheme matches one
advocated by Klein (Klein, 2001).

Curve fitting and statistical analysis for
psychophysical response data

The following steps were taken in processing and
fitting the data:

1. To correct for interrun and intersubject variability,
we first fit the proportion correct (2-AFC) data
for each MOCS run to determine threshold. This
threshold was subtracted from the test intensities
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Figure 3. Normalized, pooled MOCS data at four eccentricities. (A–D) show data collected for all subjects from locations
corresponding to the following HFA 24-2 points: (A) shows data at 3°,3°; (B) shows data at 9°,9°; (C) shows data at 15°,15°; (D) shows
data at 27°,3°. Each datum shows the result from one run (40 trials) in one subject at a given stimulus contrast. Proportion correct
(2-AFC) data are plotted in blue against the right-hand y-axes. Raw data are indicated by open blue symbols, the curve fit (equally
weighted for all plotted points) by the solid blue line and ± 1 σ on the curve fit by the blue shaded region. Proportion certain
(Certain/Not) are plotted in red against the left-hand y-axes. Raw data are indicated by filled red symbols, the curve fit by the solid red
line and ± 1 σ on the curve fit by the red shaded region. For all panels the threshold for a Certain response was significantly different
to that for detection, whereas slope was not distinguishable between the curves (see Table 1).

to create a “normalized” threshold of 0 dB (i.e.
equivalent to sliding the curve along the x-axis
(Strasburger, 2001)). Hence, there are more than
seven unique contrast values plotted in the pooled
Results figures. The proportion certain data from
the same run was shifted by an equal amount,
maintaining the relative difference in threshold
between the curves.

2. After normalization, at each eccentricity, data were
pooled across subjects to maximize statistical power.
Each subject contributed between one and three

MOCS runs to this pool; all runs were weighted
equally for analysis.

3. A fixed lapse rate (response error) was calculated at
each eccentricity, by calculating the proportion of
trials for which subjects responded with “absolute
certainty” but had selected the wrong 2-AFC
interval. It is assumed that, in this task, subjects
are never “absolutely certain” when no stimulus is
presented; this appears justified given that the low
lapse rate, averaging 0.8% ± 1% across all subjects
and eccentricities. This consideration is returned to
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in the Discussion in the context of signal detection
theory.

4. Pooled 2-AFC and Certain/Uncertain data were
each fit with a cumulative normal function. The
upper asymptote for both curves was set by (one
minus) the lapse rate. The lower asymptote for
2-AFC fits was 0.5, and the lower asymptote for the
Certain/Uncertain data was also equal to the lapse
rate (following the assumption in the previous step).

5. For statistical significance testing, curve fits were
bootstrapped with replacement 10,000 times. Data
were bootstrapped by both subject and test intensity
to select new combinations of 40-trial response
blocks; for each block, the individual responses were
also bootstrapped to capture binomial variability.
• On each resampling a new curve fit was generated;
the central 95% of curve-fit parameters determined
in this way was used to specify confidence intervals
(CI) to test for statistical differences between
conditions.
• To allow visual comparison between whole curves,
we also evaluated each bootstrapped curve fit in
0.1 dB increments, ranking the values to produce
a 95% confidence interval at each test intensity.
These are indicated by the colored patches flanking
the solid line curve fits in the results figures. To
facilitate comparison between 2-AFC data ranging
nominally from 0.5 to 1.0, and proportion certain
data ranging nominally from 0.0 to 1.0, the two
curves are plotted against independently scaled left-
and right y-axes.

Monte Carlo simulations of Yes/No adaptive
testing

Based on the empirical data, we used Monte Carlo
simulation to gauge the likely benefit of collecting and
using certainty information on each trial of an adaptive
procedure. We also explored whether any purported
benefit is robust in the presence of common types of
error.

In the Results we establish that the psychometric
functions for detection and for certainty-given-detection
were not distinguishable (to within the limits of our
experiment). In other words, we can use a single
psychometric function in double-pass to simulate
detection and certainty responses: first the function
is consulted to decide whether a given stimulus was
detected and then, if so, it is consulted again to decide
whether it was detected with certainty. For example,
if at threshold where we expect 50% of spots to be
detected, we expect 50% of 50% = 25% of spots to be
detected with certainty. This model assumes that one
cannot be “absolutely certain” regarding the presence
of a spot which was not detected.

Under this model, we simulated observer responses
to a large number of adaptive tests. There were
accordingly three possible responses: “no,” “yes, but not
with certainty,” and “yes, with certainty.” Depending
on the instructions delivered to the subject, this may be
equivalent to previously proposed strategies offering
subjects a three-category rating system such as “Yes,”
”Uncertain,” and “No” (Lesmes et al., 2015).

Each simulation used Bayesian (ZEST) testing
logic. The prior probability distribution for threshold
had a mean μ = 0 dB (the initial “guess”), with a
relatively uniform distribution (σ = 25.0 dB). The
slope parameter was presumed to be 2.0 dB (defining
the likelihood functions), which was the midpoint of
our parameter range obtained from curve fits to the
empirical 2-AFC data (σ = 1.3 dB at 3°,3°; σ = 2.7
dB at 15°,15°). During each adaptive run, the slope
parameter remained fixed whereas the current estimate
of the threshold parameter was varied.

Simulations were conducted first under “ideal”
conditions in which the presumed and actual threshold
were equal, presumed and actual slopes were equal,
and there were no response errors. Simulations were
then repeated under “realistic” sources of error:
the presumed threshold (initial guess) was 5 dB
from the actual threshold; the slope was 1 dB flatter
than expected, and response errors (false positive
= false negative) were 5% for both Yes/No and
Certain/Uncertain.

For each simulated adaptive run we assessed 3
strategies for selecting the next stimulus intensity, as
illustrated in Figure 2.

• “Conventional ZEST”: a typical Yes/No approach
(Figure 2, left colum). A single probability density
function (PDF) is driven by Yes/No responses using
Bayesian inference (example likelihood functions
shown in second row of Figure 2). This formed the
reference case for the other two strategies.
• “Independent PDFs”: two separate PDFs were
maintained (Figure 2, middle column). One PDF
incorporates the Yes/No responses (blue) and the
other incorportates Certain/Uncertain responses
(red). The estimated thresholds according to each
of the two PDFs (dashed vertical lines) are averaged
(solid magenta line) to estimate threshold.
• “Combined PDF”: a single combined PDF was
used (Figure 2, right column)
◦ For a “No” response, the PDF was multiplied
by the appropriate likelihood function in the
conventional manner.

◦ For a “Yes” response, if the response was
“Certain” the PDF was multiplied by the
appropriate likelihood function twice—this is
equivalent to having presented two trials at the
given intensity, obtaining a “Yes” response for
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� Threshold (dB) � Slope (dB)

(x,y) 95% CI (lower) 95% CI (upper) p value 95% CI (lower) 95% CI (upper) p value

3°,3° −0.97 −0.16 0.006 −0.59 +0.37 0.64
9°,9° −1.03 −0.19 0.000 −0.75 +0.35 0.56
15°,15° −1.56 −0.54 0.000 −0.82 +0.56 0.83
27°,3° −1.34 −0.49 0.000 −0.50 +0.56 0.72

Table 1. Difference in fitted parameters between proportion correct (2-AFC) and proportion certain data. Values indicate 95%
confidence intervals for the difference between the fitted parameters. “Slope” refers to the standard deviation of the probability
density function (dB), which defines the slope of the psychometric function. At all four eccentricities, thresholds for certainty were
significantly different from those for detection, whereas slopes were not significantly different.

each. This generally produces a greater shift and
narrowing of the PDF than would otherwise be
the case (solid magenta line in bottom-right panel
of Figure 2).

◦ For a “Yes” response that was not “Certain”, the
PDF was multiplied by both the “Yes” and the
“No” likelihood functions—this is equivalent to
having presented two trials at the given intensity,
obtaining a “Yes” for one and a “No” for the
other. This generally does not shift the PDF, but
improves the confidence for the threshold estimate
(e.g., the green curve in Figure 2, bottom-right
panel is much narrower than other PDFs in the
figure).

For each combination of parameters and strategies
combined above, we modeled 10,000 runs. This
corresponds to a total of 5 (“guess” error levels
for threshold) × 3 (“guess” error levels for slope)
× 2 (including response errors or not) × 3 (testing
strategies) × 10,000 (repeats) = 9 × 105 runs modeled.
Each run proceeded for 20 trials, which is suggested to
be sufficient for Yes/No testing for threshold estimation
(King-Smith et al., 1994).

Results

Part I—Experimental data (MOCS)

Figure 3 shows normalized and pooled MOCS data
for all five subjects and all four eccentricities, for both
proportion correct (2-AFC, right-hand y-axis) and
proportion certain (left-hand y-axis). To facilitate visual
comparison between curves, shaded regions indicate ±1
standard deviation on the curve fits to the bootstrapped
data. For each bootstrap iteration we also calculated
the difference in fitted parameters for threshold and
slope. At each eccentricity (panels A–D) the fitted
threshold for a certain response was less than that for
detection; there was no statistically significant difference
in fitted slopes (see Table 1). In essence, the certainty

curve appears indistinguishable from a detection curve
that has been shifted to the left on the order of 0.5 to
1.0 dB.

We next applied a “sanity” correction to the certainty
data, reasoning that responses of “absolutely certain”
are only obtained where the subject did in fact detect
the stimulus. Since it is not possible to know directly
which trials were detected in a 2-AFC task, we partially
corrected for this by considering only those trials
in which the observer reported the correct 2-AFC
interval. Since some of these must be “lucky guesses”
(at threshold, 75% are correct but only 50% should be
seen), this will tend to overestimate the proportion of
trials detected, and hence underestimate the necessary
adjustment to the certainty data. Nonetheless this is
an instructive exercise, with results shown in Figure 4
and updated statistical comparisons shown in Table
2. It can be seen that after this transformation the
two psychometric functions are not statistically
distinguishable in either threshold or slope.

Given the empirical similarity between functions for
detection and for certainty (given correct), it may be
possible to predict the threshold for detection from the
certainty data alone. We considered a two-stage model
whereby a single underlying psychometric function
is first sampled to determine whether a stimulus is
detected and then, if so, sampled a second time to
determine whether it is detected with certainty. To
implement this on our data, we fit a curve to the
square-root of the proportion certain data, and plotted
it against the (non-adjusted) data for proportion
correct. The results are shown in Figure 5, and the
statistical comparison of fitted parameters in Table 3.
Again the two curves appear to be indistinguishable,
indicating that detection threshold can be predicted
from certainty data (to within the precision afforded by
our experiment).

Part II—Simulations (ZEST)

To assess the potential benefit of incorporating
certainty information in an adaptive testing strategy
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Figure 4. Proportion certain calculated only for those trials in which the subject selected the correct 2-AFC interval. Panels are
otherwise identical to Figure 3. For all eccentricities the fitted threshold and slope parameters are now indistinguishable (visual
comparison of overlapping (magenta) confidence intervals; also see Table 2).

� Threshold (dB) � Slope (dB)

(x,y) 95% CI (lower) 95% CI (upper) p value 95% CI (lower) 95% CI (upper) p value

3°,3° −0.71 +0.29 0.45 −0.64 +0.56 0.85
9°,9° −0.68 +0.34 0.53 −0.79 +0.53 0.82
15°,15° −0.85 +0.53 0.58 −0.84 +0.98 0.79
27°,3° −0.87 +0.14 0.20 −0.45 +0.86 0.47

Table 2. Difference in fitted parameters between proportion correct (2-AFC) and adjusted certainty data. Values indicate 95%
confidence intervals for the difference between the fitted parameters. “Slope” refers to the standard deviation of the probability
density function (dB), which defines the slope of the psychometric function. As opposed to Table 1, here the proportion of certain
responses was calculated for correct trials only. For all four eccentricities tested, there were no measurable differences in either
threshold or slope, meaning that the underlying curves were not distinguishable from each other.
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Figure 5. Fitted curve for proportion certain transformed by a square-root operation. This transformation presumes a common
psychometric function underlying detection and certainty; applied once to detect the stimulus and, if detected, a second time to
determine whether the detection was certain. As for Figures 3 and 4, lines show fitted curves and shaded regions show 95%
confidence intervals, with blue indicating detection and red indicating certainty. Individual points were omitted because the applied
transformation can produce non-sensical (negative) values for probability of certainty. For all eccentricities the fitted threshold and
slope parameters are indistinguishable under the transformation applied (visual comparison of confidence intervals; also see Table 3).

� Threshold (dB) � Slope (dB)

(x,y) 95% CI (lower) 95% CI (upper) p value 95% CI (lower) 95% CI (upper) p value

3°,3° −0.35 +0.46 0.73 −0.69 +0.42 0.57
9°,9° −0.39 +0.48 0.77 −0.86 +0.44 0.53
15°,15° −0.58 +0.57 0.95 −0.79 +0.95 0.79
27°,3° −0.44 +0.41 0.88 −0.79 +0.37 0.64

Table 3. Difference in fitted parameters between proportion correct (2-AFC) and adjusted certainty data (square-root of proportion
certain). For all four eccentricities tested there were no measurable differences in either threshold or slope, meaning that the
underlying curves were not distinguishable from each other.
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for efficient estimation of threshold, we performed
Monte Carlo simulations of a large number of
individual ZEST runs for a Yes/No detection task,
with or without augmentation from a concurrent
Certain/Uncertain task. These simulations sampled a
common underlying psychometric function for both
detection and certainty-given-detection, following our
above finding that there appears to be little discernible
difference between these functions. Our approach
also presumes that this parity, established for 2-AFC,
remains true under a Yes/No paradigm.

Three Bayesian-inspired (ZEST) strategies were
assessed, as detailed in the Methods and Figure 2:

i) Conventional ZEST: Simple Yes/No, ignoring
certainty information.

ii) Independent PDFs: Yes/No and Certain/Uncertain
functions had independent probability distributions;
wherever a threshold estimate was required, this was
determined from each function independently and
then an average taken.

iii) Combined PDF: Yes/No and Certain/Uncertain
functions were combined in a single probability
distribution.

Figure 6 (top row) shows the predicted performance
in an idealised scenario where the initial guess is
equal to the true threshold, the presumed slope of the
psychometric function is correct, and no response errors
of any kind are made. Figure 6A shows mean absolute
error as a function of trial number, whereas Figure 6B
shows the standard deviation of (signed) error.

Test-retest standard deviation for the Humphrey
Field Analyzer’s SITA-Standard 24-2 test is
approximately 1.64 dB in healthy eyes (Gardiner,
2018); this value is shown as the upper horizontal line
in Figure 6B. Approximately 3.5 trials were required
to meet this criterion for conventional testing, and 2.9
to 3.3 trials when incorporating certainty information.
Differences were more pronounced where the desired
precision was higher: for a 1 dB test-retest criterion
(lower horizontal line), the number of trials required
was approximately 8.5 for conventional testing and 5.7
to 6.0 when incorporating certainty information, thus
reducing trials required by 30% to 33%.

The modeling exercise was repeated in the presence
of various “realistic” sources of error: actual threshold
was 5 dB different from the initial threshold guess, true
slope (3 dB) was 1 dB flatter than the presumed slope,
and response errors were 5%. The results are shown
in Figure 6 (bottom row). As expected, performance
was worse in the presence of error for all three methods.
However, the benefit of including certainty information
was increased. At the 1.64 dB error criterion (upper
horizontal line in Figure 6D), conventional testing
required 6.6 trials on average, compared with 4.1 to 4.5
with certainty information (reducing trials required by

32% to 39%). For the 1 dB criterion, approximately 16.7
trials were required for conventional testing, compared
with 9.8 to 10.9 with certainty. These figures correspond
to a saving of trials required of 35% to 41%.

Discussion

Overall

In a simple perimetry-style task, our data did
not support a measurable difference between the
psychometric functions for detection (2-AFC) and
for certainty given detection. In other words, at visual
threshold (defined as 50% chance of detection), when
the stimulus was seen, our subjects were certain that
they saw it approximately 50% of the time. This was
a surprising result, contravening our expectation that
one would be somewhere in the 80-95% range on
the frequency-of-seeing curve if certain of seeing the
stimulus.

When trained observers participate in a typical
psychophysical experiment, they are inundated with
stimuli that they are certain they have seen, which causes
the impression that one is being tested inefficiently
because such stimuli must surely be well above their
threshold (Klein, 2001). The present findings would
seem to be at odds with that position, showing that even
at threshold one should expect a large proportion of
“seen” responses to be seen with high conviction.

Despite contravening our expectations regarding
the relationship between performance and certainty,
their apparent equality is optimal in regard to using
certainty information to more efficiently estimate the
shape of the psychometric function for performance.
If the two functions can indeed be directly equated,
this obviates any need to determine what threshold an
observer applies to their internal degree of confidence
in order to describe their percept as “certain” (i.e.,
no additional bias is introduced). In cases where
the two functions differ the observer can be said to
be either over- or under-confident, and hence some
degree of “calibration” would be required to avoid
errors in estimation of performance threshold based
on Certain/Uncertain data (for further discussion, see
“Limitations and further work” below).

Under the assumption that the functions can indeed
be equated, our model proposed that the subject decides
whether they are certain only if the stimulus has been
detected. In this case, one “rolls the dice” again to
decide whether the stimulus was detected with certainty;
for these trials there is therefore no redundancy between
the detection and certainty data. On the other hand if
the stimulus is not detected, the certainty response is
practically guaranteed to be negative, yielding complete
redundancy for this subset of responses. Hence, we
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Figure 6. Simulated ZEST performance in a detection task with and without the use of certainty information. Top row shows an “ideal”
scenario in which the presumed threshold and slope were equal to the actual threshold and slope, and no response errors were
made. (A) Shows the mean absolute error from 10,000 simulations, with a conventional ZEST (Yes/No) approach plotted in blue, the
“independent PDF” approach in red, and the “combined PDF” approach in black. (B) As for (A), but plotting the standard deviation of
error across the 10,000 simulations. Horizontal lines indicate criteria for test-retest reliability (see text). Bottom row shows a more
“realistic” scenario in which the presumed threshold is in error by 5 dB, the true slope is 1 dB flatter than expected, and response
errors are 5%. (C, D) Plot the mean absolute error and standard deviation of error for the “realistic” scenario; plots otherwise as
described above for panels (A) and (B).
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expect twice as much information to be obtained, but
only on half of the trials, whilst the other half yield
the normal amount of information. This means that
the expected “value” of each trial, under this model, is
1.5 times that of a normal trial, leading to 2/3 of the
number of trials being required. This gain in efficiency
may be tempered somewhat by the increased number
of responses available; practical strategies to efficiently
gather the additional information are discussed further
below.

Monte Carlo simulations of adaptive Yes/No testing
predicted a reduction in number of trials required
to estimate threshold by 30% to 40%, in line with
the above prediction. Improvement was especially
apparent when considering the variance in returned
thresholds (Figure 6B and 6D) and in the presence of
error (Figure 6C and 6D). Decision confidence provides
a complementary source of information which may
help to “rescue” runs affected by an unlikely string
of responses (Kaernbach, 2001). Such improvements
would be expected to be even more apparent under
a 2-AFC detection paradigm, which is particularly
prone to sequences of “lucky guesses.” Thus the
proposed use of certainty information has merit both
in clinical settings (which may use a Yes/No approach
for efficiency) and in basic visual psychophysics
(which often use a 2-AFC approach to minimize
bias). Although not modeled here, gains in efficiency
should be most pronounced when the uncertainty in
the threshold estimate is high, i.e., when the slope of
the psychometric function is shallow (King-Smith et
al., 1994). Particularly shallow slopes are observed
in moderate perimetric loss in glaucoma (thresholds
below approximately 19 dB), resulting in a general
inability to reliably determine threshold within a
conventional number of trials (Gardiner, Swanson,
Goren, Mansberger, & Demirel, 2014).

The improvement in efficiency predicted with the
use of certainty information, as expressed by the
proportion of trials saved, was relatively constant for
different criteria and for different overall numbers of
trials. Again this suggests that the method may have
merit both for basic science applications, where subjects
are typically “well-trained” and there are many trials,
and in clinical settings where they are not well trained
and there are fewer trials. The predicted degree of
improvement was around 30% fewer trials required
in the no-error condition, and around 40% in the
error-prone condition. This corresponded (Figure 6)
to a reduction in variability of around 20% to 30%,
respectively. This compares favorably with previous
modeling predicting that reductions in variability of
20% or more would make a clinically meaningful
improvement to the detection of progression in
glaucoma (Turpin & McKendrick, 2011).

An important consideration in efficient adaptive
psychometric testing is the selection of starting

intensity. It has been proposed that in Yes/No
paradigms, presenting real observers with stimuli near
threshold which do not happen to be seen may cause
them to “panic”, shifting their response criterion to be
more lax. This would lead to bias in returned threshold
estimates and a higher false positive rate (Heijl et al.,
2019; Phu, Khuu, et al., 2019). A similar “panic”
response can occur for unlucky sequences of non-seen
stimuli beyond the initial phase, where the observer
has not pressed the button for some time and feels
obligated to do so. Such problems could be ameliorated
by the use of certainty information, using a strategy for
initial testing that seeks to obtain at least one “certain”
response to build the confidence of the participant
that they are performing the task correctly. Although
such subjective nuances are outside the scope of the
simple resilience to error evaluated here, they should be
considered in future practical implementations.

Our predictions for the degree of efficiency gain with
use of certainty information are in broad agreement
with those of Lesmes et al (2015), who presented a
signal detection theory framework incorporating the
extra response “Uncertain” to a Yes/No detection
task (Lesmes et al., 2015). The choices of Yes, No,
and Uncertain may effectively promote the “Yes”
response to the level of “Certain” (or at least, “Not
Uncertain”); thus their rating task appears analogous
to ours. They reported that variability of 1 dB was
reached after approximately 25 trials for a Yes/No task,
which dropped to 15 trials with the addition of the
extra response option. This is a reduction of 40% in
number of trials required, in line with our predictions
for the “Realistic” scenario modelled in Figure 6D.
The total number of trials was somewhat higher for
their approach (around 50% higher), most likely due
to the large number of catch trials used to optimize
performance according to signal detection theory.

The typical response apparatus in clinical perimetry
is designed for maximum simplicity: subjects are given a
single button to press when they see a spot (“Yes”), and
a lack of button-press is presumed to indicate a “No.”
To collect certainty information in such a setting, more
patient input is required. This could be accomplished
more economically than the four-button approach
used here, which may be troublesome for elderly or
inexperienced observers given the potentially increased
cognitive load of the task. This could be accomplished
by provision of an additional button (requiring a
hardware change), a double-click of a single button
(no hardware change, but potentially difficult for some
subjects), or holding down the button for an extended
period instead of a quick click (currently used as a
subject-initiated pause in many clinical instruments).

The response paradigm just described for clinical
perimetry mandates the use of a finite response period,
with a lack of response within the period indicating
“No.” This may “interrupt” subjects who were taking a
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little longer to contemplate a noisy percept, but would
have responded “Yes” if given more time (indeed,
previous work has advocated the use of reaction time
as a surrogate for response confidence as discussed
further below). This interruption would tend to elevate
their threshold measured for detection. In comparison,
the threshold for certainty would be largely unaffected
because subjects tend to respond quickly when they
are certain. The elevation of threshold for detection,
although certainty remains constant, would tend
to reduce the distance between the two measured
thresholds. This should increase the degree to which
one may be used as a proxy for the other.

The best method for combining certainty and
detection data is unknown. We modelled two
possibilities: one which maintained two parallel
probability functions (one for detection and one for
certainty) and took an average of the two estimates
when choosing the next trial and deciding upon the
final threshold; and the other which maintained a single
probability function which was multiplied by multiple
likelihood functions where appropriate. Our simulations
predict these methods to be largely equivalent under
“ideal” conditions (no response errors, correctly guessed
threshold and slope). Under “realistic” conditions
with moderate levels of error, the “independent PDF”
approach required fewer trials for a given level of
accuracy. Considering isolated errors, the independent
PDF approach may be more resilient because one PDF
remains unpolluted by the error.

Limitations and further work

Our observers were young and also well-trained
after undergoing multiple MOCS runs that each
consisted of 280 trials. Inexperienced and elderly
observers tend to show a greater divide between their
self-confidence and their performance, with the typical
finding in simple perceptual tasks (such as this one)
being one of “underconfidence” (Björkman, Juslin,
& Winman, 1993; Keren, 1991). Typically this would
be taken to mean that the threshold for achieving a
confidence rating of 50%, on a scale of 0% to 100%,
would be higher than the performance threshold (for
example, 50% hit rate on a Yes/No detection task).
It is not fully understood how a binary classification
of “absolutely certain” as considered here should
map onto a confidence rating scale (e.g., whether the
stimulus intensity giving 50% of responses as certain
would correspond to an average confidence rating of
50% on a scale of 0%–100%). If one considers a simple
mapping whereby the probability of being certain at a
given intensity is equal to the average confidence rating
on a scale of 0% to 100%, our data would also support
underconfidence because thresholds were around 0.5 to
1 dB worse for certainty (Figure 3, Table 1).

However, we have proposed that it is sensible to
“correct” certainty data for non-detected trials and,
at least in our young and reasonably well-trained
observers, this caused their thresholds for detection
and for certainty (given detection) to appear
indistinguishable. Regardless of this correction, given
the importance in day-to-day life of achieving a high
level of certainty in visual perceptual tasks (such as
crossing a busy road), measures of certainty may more
closely mirror performance than ratings of confidence.
It remains to be explored how well performance
and certainty are coupled in elderly or inexperienced
subjects, especially given the potentially increased
cognitive load of the task), and it is also worth noting
that any such finding will need to be established on a
task-specific basis; for example it is known that more
difficult tasks can be associated with overconfidence
(Baranski & Petrusic, 1994), in a complex manner
that depends on both accumulated evidence and the
time required to reach a decision (Kiani, Corthell, &
Shadlen, 2014).

Reaction time has previously been proposed as
a surrogate for distance from threshold in clinical
perimetry, and, hence, as a proxy for response
confidence (McKendrick et al., 2014; Wall, Kutzko, &
Chauhan, 2002). The separability of the time taken to
reach a decision from the evidence actually available to
make the decision (Kiani et al., 2014) places an upper
bound on the utility of such an approach. However,
in cases that do benefit from the use of reaction time
data, the incremental utility of using confidence data
may be limited. Future work should consider, on an
application-specific basis, the relative merits of response
time and confidence ratings (or ratings of certainty, as
we have argued may be more robust).

Differences between the psychometric functions
for detection and for certainty could reduce the
gains in efficiency predicted by our Monte Carlo
modelling. This is relevant given the specific application
that we have considered (detection perimetry). The
relationship between detection and certainty could
be influenced by a host of factors not explored here.
For example, perimetry typically involves splitting of
one’s attention across the visual field. This has been
shown to reduce sensitivity, possibly due to a reduction
in certainty, with a more pronounced difference being
reported in pathological cases (Phu et al., 2018). It
will be of interest to learn how well conserved the
correspondence between detection and certainty,
observed here, is when extended to a diverse array
of visual functions and testing conditions and in the
presence of age- or disease-related changes to the visual
system.

Detection perimetry is often performed on elderly
and/or inexperienced observers.Such tests are also
performed with far fewer presentations (approximately
two to six trials (Bengtsson & Heijl, 1998)) than we
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have used here (280 trials) due to time and attention
constraints in clinical evaluation of a large number of
points across the visual field. Accordingly, the typical
test-retest standard deviation is relatively high in such
tests, e.g., approximately 1.6 dB for the Humphrey Field
Analyzer SITA-Standard 24-2 test (Gardiner et al.,
2014). For comparison, our “uncorrected” thresholds
for a certain response were 0.5 to 1.0 dB worse that
detection thresholds, i.e., within the test-retest error of
clinical perimetry. Thus there is good reason to hope
that in clinical settings, the approximate equivalence
between detection and certainty measures will hold to
within measurable limits.

A further potential limitation in clinical populations
is that for a disease such as glaucoma in which neural
machinery is damaged, the normal coupling between
performance and certainty could break down. The
visual system could plausibly be more “confused” by
received stimuli due to misfiring and missing cells,
limiting the ability to use certainty information to
rapidly infer detection threshold. However, if such
putative differences were indeed observed, they could
provide an additional source of diagnostic information.
Alternatively, given that the primary site of damage
in glaucoma is held to be within the eye whereas the
neural machinery underlying certainty is predominantly
cortical (Fleming, Weil, Nagy, Dolan, & Rees, 2010;
Kiani & Shadlen, 2009), certainty thresholds may be
found to simply shift in line with detection thresholds.
Of course, confidence measures could be dissociated
from performance where the cortex is “damaged”
(independently of the retina), as could occur for
example in aging or dementia (Grimaldi, Lau, & Basso,
2015). Again, if significant then such a limitation could
actually provide useful diagnostic information if an
appropriate baseline had been established.

The empirical data presented in Figures 3, 4, and 5
compared thresholds for certainty and performance on
a 2-AFC task, but the modeling in Figure 6 considered
a Yes/No task that is more relevant to clinical perimetry.
The relationship between performance and certainty
could well differ when using a Yes/No paradigm;
when not forced to guess, untrained subjects will
adopt varying response criteria that are expected to
produce elevated thresholds. It is not presently known
whether the threshold for Certain/Uncertain would
shift accordingly, or whether it might in fact remain
relatively stable despite shifts in decision criteria for
detection. In other words, perhaps criterion variability
is less when subjects are asked whether they were
“absolutely certain,” as opposed to just whether they
saw the stimulus or not.

In classical theories of decision making based on
signal detection theory (SDT), degree of confidence is
modelled by the distance between the stimulus intensity
and the internal decision criterion (Kepecs, Uchida,
Zariwala, & Mainen, 2008). For those trials that turned
out to be incorrect, SDT predicts decreasing confidence
with increasing stimulus intensity; recent evidence
suggests that the opposite is observed in practice

(Kiani et al., 2014). Here we have proposed a third
possibility when confidence is expressed as a binary
classification of “absolutely certain” or not: subjects
do not (other than mis-clicks) report being “absolutely
certain” when they have not in fact seen the stimulus.
This is reconcilable with SDT because when it comes
to a binary classification of certainty, subjects are not
in fact “detecting” a stimulus, rather they are making
a comparison of the degree of confidence elicited by
the stimulus to their internal register of what should
constitute sufficient confidence to be labeled “absolutely
certain.” In other words, the task has been transformed
into a discrimination task, for which a zero false alarm
rate is not inconsistent with SDT (Klein, 2001). This is
one way in which there may be a meaningful difference
between confidence ratings and binary classification
of Certain/Uncertain, suggesting the latter as a useful
avenue of future investigation in the field of perceptual
decision making.

Conclusions

In young, healthy subjects the probability of spot
detection across the visual field was approximately equal
to the probability of being certain, given detection.
This equivalence could allow threshold and slope
of the psychometric function for detection to be
estimated from certainty responses. Simulations based
on this relationship predict a significant reduction in
the number of trials required to estimate detection
threshold, especially within clinically relevant margins
of accuracy.

Keywords: Confidence, certainty, psychometric
function, threshold, slope
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