
1Scientific Reports | 6:25412 | DOI: 10.1038/srep25412

www.nature.com/scientificreports

Rigid proteins and softening of 
biological membranes—with 
application to HIV-induced cell 
membrane softening
Himani Agrawal1, Matthew Zelisko1, Liping Liu2 & Pradeep Sharma1,3

A key step in the HIV-infection process is the fusion of the virion membrane with the target cell 
membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the 
fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of 
fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the 
membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft 
membranes ought to stiffen the membranes not soften them. However, experimental observations 
perplexingly appear to show that rigid proteins may either soften or harden membranes even though 
conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely 
non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated 
by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we 
have carried out atomistic simulations to investigate peptide-membrane interactions. Together with 
a continuum model, we reconcile contrasting experimental data in the literature including the case of 
HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids 
around the inclusions cause the softening or stiffening of the biological membranes.

Protein inclusions in cell membranes are vital for life sustaining functions of a cell. The cell membrane—some-
times idealized as a fluid membrane—is very soft and deformable1. The inclusions have a profound impact on the 
bending rigidity of the membrane2 and this in turn has considerable influence on its various biophysical func-
tions. Several studies, both in vitro and in silico, have been performed to examine the effect of protein inclusions 
on the bending rigidity of membranes2–13. Mechanically, proteins are usually regarded as rigid inclusions. In most 
theoretical models, such a notion immediately suggests that a membrane will stiffen due to the presence of these 
rigid inclusions (—provided that the inclusions are anchored in the membrane and do not diffuse). However, this 
leads to some rather interesting paradoxes. As will be shown in the Theoretical Results Section, a conventional 
Helfrich-Hamiltonian based approach yields the result that the apparent bending modulus of a membrane in the 
presence of anchored rigid proteins is κb/(1 −  f), where κb is the bending modulus of the virgin membrane and 
f is the area fraction of the proteins. This naive result suggests that all proteins (which are essentially rigid com-
pared with the membrane) will stiffen the membrane in an identical manner. In other words, there is no protein 
specificity. Experiments suggest otherwise. In the case of HIV, recent and pioneering experiments7–9 find that 
the addition of HIV-1 fusion peptides decreases the apparent bending modulus of the membrane. Other exper-
imental results show exponential decrease of the bending modulus of a DOPC bilayer with linearly increasing 
mole fraction of Alamethicin10,11, an antibiotic peptide produced by a fungus. Similarly, another study shows 
progressive decrease of membrane bending with increasing melittin concentration12, a peptide which is an active 
component of bee venom. Conversely, tests have been performed on red blood cells (RBCs) infected by a parasite 
which introduces Ring-infected erythrocyte surface antigen (RESA), a protein produced by the parasite, into 
the membrane of the host blood cell. Compared to healthy RBCs, the stiffness of the infected RBCs was signifi-
cantly higher13—hence hardening was observed. The aforementioned experiments are quite interesting but also 
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perplexing in the sense that both hardening and softening are observed when proteins or inclusions (that are 
essentially rigid) impregnate a soft membrane.

Perhaps the most exhaustive experimental study pertaining to the theme of the current work is that by Nagle 
and co-workers7–9 on HIV-1 fusion peptide induced softening which inspired us to look deeper in to the ques-
tion of softening and hardening of membranes by rigid proteins and peptides. Since we will use this example 
both in our molecular dynamics simulations as well in our continuum model, a few more details on this case are 
warranted. The surface of HIV is composed of a lipid membrane containing many proteins. One of these viral 
proteins is glycoprotein 41 (gp41), a transmembrane protein that extends out of the membrane into the ectodo-
main. This extended domain of gp41 is responsible for initiating contact between the virion and the target cell. 
The virus then enters the target cell via receptor mediated endocytosis, whose mechanics is described14,15. The 
N-terminal of gp41 is preceded by an apolar segment generally referred to as the fusion domain or fusion peptide 
(FP). Following other works, here the fusion peptide is taken as the last 23 amino acids of gp41 leading up to 
and including the N-terminal; this section is called FP2316. The FP23 interacts with the target cell membrane in 
a non-specific way causing thinning (Fig. 1) and, in turn, softening of the membrane which subsequently allows 
pore formation. Through this pore, HIV can release RNA into the target cell for replication8. Using diffuse X-ray 
scattering, Nagle and co-workers7–9 discovered that the bending modulus of a membrane decreases upon addition 
of HIV fusion peptide. Depending on the composition of the membrane, they found that the bending modulus 
may be reduced to between 9 to 35% of the original value.

In this work, we propose that membrane proteins cannot be regarded as inert mechanically rigid objects that 
bond coherently with the ambient lipids. Specificity must be built into the models that purport to describe their 
effect on membrane mechanical properties. We hypothesize that each protein (rigid as it may be) has a unique 
mechanical signature parametrized by its specific interfacial coupling to the surrounding membrane. Together 
with this hypothesis, all-atom molecular dynamics (MD) simulations, and a complementary continuum mechan-
ics model, we attempt to address the questions raised in the preceding paragraphs.

Results
Molecular dynamics simulations on HIV-1 fusion peptide and DMPC system.  To better inform 
the development of a continuum model (see Theoretical Results and Theoretical Formulation in the Methods 
Section) we performed all-atom MD calculations to assess the changes in the elastic properties of a prototypical 
membrane due to the addition of HIV fusion peptide. Quantitative estimates of the overall membrane bending 
modulus were obtained in the absence and presence of proteins with a mole fraction of 0.01. Membrane proper-
ties close to the protein-membrane interface were also investigated to obtain insights into membrane softening 
mechanism.

Two separate simulations are performed. The first, using a pure DMPC bilayer as the control, and the second 
using the same bilayer with 0.01 mole fraction of inserted FP23. This mole fraction is consistent with the amounts 
used in experimental work, and results in 16 peptides inserted into the simulated bilayer9. The pure DMPC bilayer 
contains 1600 lipids, 800 in each leaflet, and equates to a 21.92 nm ×  21.92 nm patch (Fig. 2). With the FP23 
inserted, the patch size increases to 22.35 nm ×  22.35 nm. Each case was energy minimized and then equilibrated 
using an NPT ensemble for 10 ns to ensure that there were no artifacts left from the creation of each topology. 
After equilibration was completed, a production simulation was performed for 10 ns for each case.

Figure 1.  A schematic of the HIV Fusion Peptide softening a lipid bilayer membrane. The picture shows an 
HIV entering the host cell via membrane softening and thinning. Subsequently, through the creation of pore, 
the genetic material of HIV (shown in yellow) is injected into the host cell.
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Experimentally, a common approach to estimate the bending modulus of a membrane is via recourse to 
so-called flicker spectroscopy which involves measurement of the thermal fluctuation spectra of the membrane17. 
Closed-form statistical mechanics formulae exist that then provide the required link between the thermal fluc-
tuation measurements and the bending modulus. The same approach is also used in molecular dynamics simu-
lations and simply involves tracking the atomic coordinates to measure the appropriate fluctuations18. However, 
this poses some difficulty for the cases presented here. First, the simulation “box” needs to be very large. This is 
necessary for capturing the necessary long wavelength fluctuations associated with the bending energy of the 
membrane and requires the length and width of the membrane to be greater than some critical length (around 
20 nm). The lipid bilayers, with and without FP23, used here are large enough to capture these long wavelength 
fluctuations. Another problematic condition is that the simulations need to be run for very long times to achieve 
a good ensemble average of the fluctuation spectrum. Typically, this means that a simulation will need to be run 
for at least 1 microsecond but preferably longer. The aforementioned difficulties have the following implications—
given the current available computing power, we can only use the fluctuations-based approach to compute the 
bending modulus if we use coarse-grained molecular dynamics. As will become evident in due course, our central 
idea necessitates a somewhat careful handling of the protein-lipid interface and accordingly the use of all-atom 
MD (instead of coarse-grained MD) is essential. Unfortunately, an all-atom MD simulation is computationally 
prohibitive in the present context. In the following we describe an approach based on some recent developments 
that allow us to extract the bending modulus in a computationally expedient manner—but with the fidelity of an 
all-atom simulation.

Recognizing and taking advantage of the fact that the bending modulus of a membrane and its lipid tilt and splay 
are closely related19–21, we will compute effective properties of the membrane by calculating the lipid splay19–21,  
both in the presence and absence of proteins. For a membrane (with or without protein inclusions) the bending 
modulus of a monolayer (κm) is equal to the splay modulus of its constituent lipids (χLL). In order to determine 
splay modulus, we defined vectors for lipid directors and normals to the outer surface. The tilt angle is the angle 
between the lipid director and surface normal at that point and splay angle is the angle between lipid directors. 
Splay angles were found between different combinations of lipid pairs. The number of lipid combinations were 
constrained by a convergence study in which we evaluated the impact of nearest neighbor distance on splay 
modulus. Based on this study, the nearest neighbor distance was chosen to be 8 nm. The methodology of finding 
bending modulus from tilt and splay is further detailed in the Methods Section.

We find P(α), the normal probability distribution function of the splay angles at different time steps and then, 
the two molecule potential of mean force (PMF), which is defined as = − α

α( )k TPMF logB
P ( )
sin( )

. The splay modu-
lus is then estimated by performing a quadratic fit in the region of small α to the function PMF(α) (see Methods 
section). If the lipid system consists of only one type of lipids, the splay modulus of the monolayer is proportional 
to its bending modulus. The bilayer bending modulus is then twice of the splay modulus of lipid-lipid pairs. 
(Fig. 3) shows the final results in which we plot “thickness of membrane” and its “bending modulus” as the simu-
lations evolve. The simulation results clearly show softening and thinning of the membrane upon addition of 
FP23, consistent with what was observed experimentally7–9. It is now well established that addition of FP23 to a 
pure bilayer will cause simultaneous softening and thinning as shown in (Fig. 3); the next question to answer is 
why does this happen? To expound on the mechanism behind the change in membrane properties we calculated 
the time averaged mean area per lipid and mean splay angles of lipids near the protein (FP23), shown in (Fig. 4). 
These quantities were measured as a function of distance from the center of mass of a FP23 inclusion. Data was 
used from every 100th time step of the simulation and a mean was taken for all lipids enclosed within a circle of a 
certain radius, with the FP23 centroid as the center of this circle. The figures evidently show how the area per lipid 
and the mean splay angle of the lipids change with the distance from the protein inclusion. Clearly, the lipids in 
the vicinity of FP23 are strongly impacted and there is a transition distance before the lipids assume an unaffected 
state similar to the pure membrane. From (Fig. 4), it is worth pointing out that the vales of mean area per lipid and 
mean splay angles are not equal at 1.5 nm and 3.1 nm, in spite of being at a same relative position with respect to 
proteins, albeit different proteins; the reason is that the mean is taken for all lipids that are enclosed by circle 

Figure 2.  Large Scale all-atom MD simulations were performed on a system of 1600 lipids with 16 HIV 
FP23. The lipids are represented as yellow dots while the proteins are represented as red “blobs”. The size of the 
simulation box is 22.35 nm ×  22.35 nm surrounded by water molecules—which are shown in blue.
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whose center is A and radii, 1.5 nm and 3.1 nm. The mean taken in this manner will be certainly different for 
1.5 nm and 3.1 nm. Only if we chose the corresponding centers to be A and B for 1.5 nm and 3.1 nm respectively, 
the mean of area per lipid and mean splay angle will be the same. This insight allows us to frame the basic postu-
lates needed for a theoretical model which is presented in the next section.

Theoretical model and comparison with experimental predictions.  The Helfrich-Canham elastic 
energy of the membrane22 (assuming protein to be rigid) given by:


∫
κ

= ∆
Ω

U w w[ ]
2 (1)
b

HC
/

(0)
2

where κb
(0) is the bending modulus of the membrane,  is the total region enclosed by the membrane protein 

system and Ω is the region occupied only be the petide. We have assumed that the lateral tension is negligible. A 
bilayer may have an asymmetric character if spontaneous curvature is present (–perhaps due to an asymmetric 
arrangements of proteins or peptides). However, the bending modulus is to the spontaneous curvature and is 
therefore ignored in what follows.

In the naive case where we simply treat proteins or peptides as rigid objects (without any consideration of 
the fact that proteins alter the lipid structure in their vicinity), we can easily obtain (using a homogenization 
approach) an estimate of the effective bending modulus (Fig. 5):

κ
κ

=
− f1 (2)b
beff
(0)

Here f is the area fraction of the included peptide. Further procedural details are provided in the Methods Section. 
From this formula, it is clear that the bending modulus derived from this naive classical model does not depend 
on the type of protein or membrane and merely on the concentration of peptide in the membrane. In other words, 
there is no protein-specificity. This is the reason why the existing models fail when it comes to explaining the 
softening of lipid bilayers due to FP23, Alamethicin, Magnanin and many others.

To resolve this apparent paradox, we have developed a new theoretical model, which is based on the physi-
cal observations in the preceding section on atomistic simulations. We propose that at the molecular scale, the 

Figure 3.  Thickness and bending modulus of the membrane as a function of the MD simulation time-steps. 
Only converged values are used for comparison. We note that the converged values clearly show decrease in 
thickness and bending modulus upon addition of HIV FP23 to the virgin lipid membrane.

Figure 4.  (a) The two red bars represent two FP23 separated by a distance of 4.6 nm from their centers. The plot 
shows decrease in the mean area per lipid as we move away from the center of protein, which again increases 
as we approach the other protein, (b) The mean splay angle reduces while moving away from protein, which 
indicates lessening of the impact of proteins on the surrounding lipids. Due to the decrease of splay, they occupy 
less area.
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insertion of a protein in the membrane breaks the original in-plane lipid-lipid interactions and protein-water 
molecules (ambient medium) bonds and forms new bonds between protein and lipids (these are van der waals 
and electrostatic interactions between whole molecules, not actual bonds that are being broken). This causes 
structural rearrangement of lipids around the protein. So there is a thin interfacial layer between protein and 
lipid which has hybrid properties of lipids and proteins, as shown in (Fig. 6). It is this layer which leads to these 
anomalous observations. Based on these physical observations, and the fact that different proteins have different 
softening effects and in some cases even a stiffening effect, we postulate that the protein-membrane interface must 
play a role. The effects of this thin re-arranged layer of lipids may be captured by not adopting perfect boundary 
conditions typically assumed in theoretical models of the inclusion-matrix interface. We propose that the effects 
of this thin re-arranged layer of lipids may be captured by penalizing the jump of displacement and rotation angle 
in a Helfrich-type continuum model. We also propose that these jumps in displacement and rotation angle cost 
energy and should be added to Helfrich Hamiltonian in the following way:


∫ ∫
κ

= ∆ +






+ ⋅ ∇






Ω ∂Ω

U w w k w k wn[ ]
2

1
2

[[ ]] 1
2

[[ ]]
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/

(0)
2
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2

2
2

Where [[w]] and [[n ⋅  ∇ w]] are jumps in displacement and rotation angle respectively, and k1, k2 >  0 are corre-
sponding stiffness factors. Incorporating the new jump conditions, we can derive the following effective bending 
modulus (the detailed derivation is presented in the Theoretical Formulation of the Methods Section):

κ
κ

=
− +

κf(1 ) (4)
b

b
f
k a

eff
(0)

2 b
(0)

2

Figure 5.  The left figure shows a peptide or protein of radius a and bending modulus κb
1( ) embedded in a 

membrane of radius b and bending modulus κb
0( ). The outer boundary of the membrane is represented by ∂  

and the inner boundary between peptide and membrane by ∂ Ω. We use an homogenization approach to obtain 
the effective bending modulus of this protein-membrane system, represented by κb

eff .

Figure 6.  The central concept behind the theoretical model is the introduction of special interfacial 
boundary conditions represented by the parameters k1 and k2. The thin interface between protein and 
membrane is represented by solid bars and springs in the top figure. The bottom figure shows a peptide of radius 
a embedded in a membrane of radius b. The thin interface between peptide and lipid is also taken into account 
in this case. The outer surface of the membrane is represented by ∂ . The inner surface of the protein is 
represented by ∂ Ω− and outer surface (which is towards the membrane) by ∂ Ω+. The effective bending 
modulus of this protein membrane system is found by modifying the Helfrich Hamiltonian and taking into 
account the interface by introducing jump energies parametrized by k1 and k2.
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The above expression clearly indicates that value of κb
eff  can be greater or less than κb

(0) depending on the value 
of extra term κf

k a
2 b

(0)

2
 in the denominator. The value of k2 largely depends the type of protein- lipid system. Also, 

taking the limit k2 →  ∞  in the above expression we readily recover the classic result κ =
κ

−b f
eff

1
b
(0)

.
Experiments conducted by Nagle et al.7–9 show that the effective bending modulus of DOPC decreases as the 

mole fraction of fusion peptide (FP23) of gp41 of HIV-1 virus is increased. Similar softening is observed when 
either Alamethicin or Magnanin3,23 is added to a bilayer. Now, we fit the updated model to the experimental data, 
and the results are shown in (Fig. 7). Our modified model aligns well with the experiments. We also evaluate k2 
for each protein membrane system in the plot which is shown in (Table 1).

In contrast to the softening cases mentioned in the preceding paragraph, RESA–a plasmodial protein, is one 
of the proteins that cause membrane stiffening. It plays a critical role in modulating the mechanical properties of 
RBC membranes. Impact on deformability at several stages after infection has been experimentally observed24 
which shows up to two fold increase in bending modulus of RBC’s membrane. This membrane stiffening or 
decrease in membrane deformability has been linked with progression of the parasite infection. Although there is 
a lack of significant experimental data to make a comparison, it is clear that the model given in (4) can predict 
hardening of the membrane, κ κ>b b

eff (0), when the denominator is less than one.

Discussion
We assume that in the absence of proteins, there is negligible splay in the membrane. Acknowledging that the 
mean thickness of membrane-protein system is less than that of membrane-only system (Fig. 3(b)), an impli-
cation is that the presence of proteins lead to a positive splay of lipids in its vicinity25. This suggests that in the 
vicinity of the membrane, the area per lipid should be higher and should decrease as we move away from the 
protein and should again increase as we approach the other protein—this also matches our interpretation from 
MD Simulations (Fig. 4(a)). We note that the change in tilt of lipids cannot change the area per lipid as the acyl 
chains elongate when they incline to maintain the constant lipid volume25.

The high area per lipid will lead to high splay in the vicinity of the protein (Fig. 4(b)). The increased splay 
angles, in turn, reduce the splay modulus and hence the bending modulus of the monolayer. To prevent water 
from entering into the hydrophobic regions of the membrane, the lower monolayer will follow the upper mon-
olayer and hence an overall reduced bending modulus of the membrane in the presence of lipid inclusion ensues.

In our theoretical model, we have postulated that there is structural rearrangement of lipids around the 
protein. This interpretation of our MD simulation explains that the rearrangement happens so as to match the 
increased area per lipid and increased splay angle requirements near the protein. This reduces the thickness of 
the membrane, which results in softening. The increase or decrease of thickness is decided by the structure of 
protein, or the hydrophobicity or hydrophilicity of its constituent amino acids. For example, HIV FP23 is highly 
hydrophobic and lies almost flat at the lipid hydrophobic-hydrophilic interface (explained in the Methods Section 
and Fig. 8(b)). Hence, for FP23, the lipids heads will stick to the top hydrophilic portions of the protein and will 
develop positive splay as shown in (Fig. 8(c)). It is these structural rearrangements which (from a continuum 

Figure 7.  The plot shows effective bending modulus as a function of area fraction of peptide in a membrane 
for HIV FP23, Alamethicin and Magnanin. The solid lines represent the theoretical values of effective bending 
modulus corresponding to the area fraction f. The dotted points in corresponding colors are the experimentally 
observed values of the bending modulus corresponding to that f for that protein. Our theoretical predictions 
match well with that of experimental observations and explain the mechanics behind the softening process.

Protein, Membrane k2 (kBT/Å)

Magnanin, POPC 0.03

Alamethicin, DOPC 0.28

FP-23, DOPC 0.13

Table 1.   The table lists the k2 values of various protein-membrane systems.
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viewpoint) give rise to a jump in w and n ⋅  ∇ n at the interface, and furthermore, different types of protein-lipid 
systems will result in distinctive jumps at the interface. Phenomenologically, these re-arrangements manifest in 
form of the newly introduced lipid-protein interface energy characterized by parameters k1 and k2.

While there has been considerable research on HIV vaccine development26,27, exploitation of membrane sof-
tening to design drugs has not been investigated. Conventional approaches behind tacking HIV protect against 
disease, not against infection and HIV remains latent in the body for a long period of time before the infection 
becomes apparent28. The real resiliency of HIV lies in its mutational and replicative abilities and adaptation to the 
human immune system29, which makes it highly difficult to curb HIV once the host is infected. Exploitation of the 
observed membrane softening for possible therapeutic purposes is an open question.

Methods
Molecular dynamics of HIV-1 fusion peptide in a lipid bilayer.  All-atom MD Simulations were 
performed on a membrane-protein system using the freely available GROMACS software, version 4.5.630. All 
simulations used the CHARMM-36 all atom force field which is optimized for biomolecules31, and the starting 
topologies were created using the Charmm-GUI membrane builder tool32. A leapfrog integration scheme was 
used, and all bonds were constrained allowing for a time-step of 2 ps to be used. For molecular dynamics sim-
ulations an NPT ensemble was used with semi-isotropic pressure coupling via the Parrinello-Rahman barostat 
method; the Nose-Hoover thermostat was used to maintain a temperature of 323 K during NPT equilibration and 
production MD.

Orientation of peptide in bilayer.  FP23 structure (PDB id: 2ARI) was obtained from Orientations of Proteins 
in Membranes database (OPM) which provides spatial arrangements of membrane proteins with respect to the 
hydrocarbon core of the lipid bilayer33. The amino acid sequence of fusion peptide is detailed in34,35 and we find 
that most of the amino acids are hydrophobic. The orientation provided by OPM shows that the FP23 prefer to lay 
in a horizontal position, with respect to the bilayer normal, at the hydrophobic-hydrophilic interface of the outer 
surface of the lipid membrane.

Calculation of bending modulus from tilt and splay.  For a homogeneous membrane, the bending modulus of 
monolayer (κm) is equal to the splay modulus of lipids (χLL). In order to determine splay modulus, we need to 
define lipid directors and normals to outer surface. The lipid director is defined to be the vector connecting the 
midpoint between the head group phosphate atom, and the backbone C2 atom with the center of mass of the 
three terminal carbon atoms on the lipid tails20. The outer surface was generated by surface fitting of the points 
joining the midpoint between the head group phosphate atoms and the backbone C2 atom. The tilt angle is the 
angle between the lipid director and surface normal at that point and splay angle is the angle between lipid direc-
tors. Splay angles were found between different combinations of lipid pairs. The number of lipid combinations 
were constrained by a convergence study (Fig. 9(a)) in which we evaluated the impact of nearest neighbor dis-
tance on splay modulus. Based on this study, the nearest neighbor distance was chosen to be 8 nm. The periodic 
boundary conditions were also taken into account as shown in (Fig. 9(b)).

We compute the normalized probability densities P(α) of finding a pair of DMPC at an angle α with respect to 
each other, shown in (Fig. 10(a,b)). The figures are drawn at different time steps and we can see that the probabil-
ity densities are uniform across different time steps. The analysis was limited to nearest neighbors, and the lipid 
pairs which lie within 8 nm distance of each other were chosen. Among the chosen pairs, a pair was neglected 
if both the lipids have tilt angle more than 10 degree. Splay modulus for all the time steps was then obtained by 
performing a quadratic fit to the PMF plot as shown in (Fig. 10(c,d)). Splay modulus is twice the coefficient of the 
quadratic term in the PMF quadratic fit expression.

Theoretical formulation for the modified problem.  Let U R⊂ 2 be an open bounded domain in the 
xy-plane. Consider a thin fluid membrane occupying U R× − ⊂h h( /2, /2) 3, where h is the thickness of the 
membrane. If the thickness h compared to the area of U is very small, then the thin membrane may be idealized 
as a two-dimensional body; the thermodynamic state is described by the out-of-plane displacement U R→w: .

Figure 8.  (a,b) The figure shows the spatial arrangement of FP23 with respect to the membrane. The red line is 
the hydrophobic-hydrophilic interface. The fusion peptide is almost parallel to the interface. Also, being mostly 
hydrophobic it lies with the hydrophobic tails of the bilayer, shown as black lines. (c) It shows the cross section 
of protein and lipids shown in (b). The lipids adjacent to the protein show positive splay.
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Figure 9.  (a) A convergence study was performed to evaluate how far lipids can actually “feel” each other. 
Quantitatively, we compute a parameter called ‘splay modulus’ which is the energy penalty due to the splay 
distortion of the lipid molecules. This splay distortion costs more energy when the lipids are closer than when 
they are far away. Hence we need to chose an optimum cut-off distance beyond which the lipid pairs contribute 
minimally to the energy. It is the point at which the splay modulus saturates, and we find it to be 8 nm, (b) The 
figure shows 8 periodic images of the membrane-protein system, which is the middle box, surrounded by the 
8 images. We accounted for influence of these images on the computation of splay modulus of the system. The 
quantity ‘r’ in the figure is the nearest neighbor cut-off distance (8 nm).

Figure 10.  (a,b) Normalized probability densities P(α) of finding a pair of DMPC at an angle α with respect to 
each other. (c,d) The figure shows PMF (Potential of Mean Force) defined as = − α

α( )k TPMF logB
P ( )
sin( )

 where α 
are the angles between lipid-lipid pairs. A quadratic fit is performed to the PMF at small angles of α to evaluate 
Splay Modulus of the lipid monolayer.
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At the outset we work in the Monge gauge and linearized setting. The Helfrich-Canham elastic energy of the 
membrane22 in the absence of lateral tension is given by:


∫
κ

κ=








∆ + ∇∇








U w w w[ ]
2

( ) det( )
(5)

b
x

gHC

( )
2

where κb and κg are the bending and Gaussian moduli, respectively, and κ κ=b b
x( ) (1) if x ∈  Ω; κ= b

(0) otherwise. The 
integral of Gaussian curvature over the membrane is independent of R and hence does not contribute to interac-
tion energy22. Also, for the physically relevant case of rigid inclusions, the Gaussian modulus is irrelevant and 
hence forth, it is discarded. Future generalization of the work to finite elastic modulus of the inclusions must 
account for this.

To quantify the effects of insertion of protein in a bilayer and subsequent rearrangement of lipid molecules 
around it, we introduce a jump of displacement and rotation angle in the continuum model. Let the jump of a 
quantity (·) across ∂Ω be denoted by ⋅ = ⋅ | − ⋅ |∂Ω ∂Ω+ −[[( )]]: ( ) ( ) , and hence the jump in displacement and 
rotation angle across the interface ∂ Ω is denoted as [[w]] and [[n ⋅  ∇w]], respectively. Based on stability argu-
ment, the jumps in displacement and rotation angle shall be penalized by a positive internal energy, which to the 
leading order can be written as

∫=






+ ⋅ ∇






∂Ω

U w k w k wn[ ] 1
2

[[ ]] 1
2

[[ ]] ,
(6)

interface 1
2

2
2

where k1, k2 >  0 are two phenomenological constants, and physically the above energy may be regarded as the 
protein-lipid interface energy. Summing up the effects of lipid-protein interaction, we propose the total elastic 
energy of the protein-bilipid membrane system as follows:


∫ ∫
κ

=
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


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
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2
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(7)

b
x

tot

( )
2

1
2

2
2

To mimic a uniformly bent homogeneous membrane we impose the following boundary conditions:

= ⋅ ∇ = ⋅ ∂w w Kn x n0, on , (8)0

where K0 can be regarded as the macroscopic curvature of the membrane.
By the principle of minimum free energy, the equilibrium state of the membrane is determined by the variational 
principle

.U w wmin { [ ]: satisfies (8)} (9)tot

We now calculate the Euler-Lagrange equations and boundary conditions associated with the above vari-
ational principle (9). Let w satisfying (8) be a minimizer. Then for any perturbation w →  w ±  εw1 we have 
(0 <  ε ≪  1)

ε± ≥U w w U w[ ] [ ], (10)tot 1 tot

which implies

ε
ε+ | = .ε=

d
d

U w w[ ] 0 (11)tot 1 0

Upon integration by parts, the above equation can be rewritten as (w1 =  ∇ w1 =  0 on ∂ )


∫ κ∆ ∆ + + + + =− + − +w w T T T T[ ( )] 0,

(12)
b
x

1
( )

1 1 2 2

where − −T T,1 2  + +T T( , )1 2  are integrals over the interior interface ∂ Ω− (exterior interface ∂ Ω+) and given by
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Since w1 and n ⋅  ∇w1 on ∂Ω− and ∂Ω+ can be specified independently, by (12)–(13) we immediately obtain 
(14) as the Euler-Lagrange equations equations associated with the variational principle (9). It is typical that pro-
teins are much more rigid than the bilipid membrane. Therefore, it will be useful to study the asymptotic behavior 
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as κ → + ∞b
(1) . In this limit, to keep the total energy finite, we shall set Δw =  0 on Ω. The third of (15) follows as 

one integrates the second of (14) over ∂Ω−. The rest of (15) is the same as in (14).
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Moreover, it is typical that proteins are much more rigid than the membranes. Therefore, it is useful to study 
the asymptotic behavior as κ → + ∞b

(1) . In this limit, the boundary value problem formed by (14) and (8) can be 
rewritten as





∫
κ

κ











∆ = Ω
∆∆ = Ω

=

⋅ ∇∆ + = ∂Ω

∆ − ⋅ ∇ = ∂Ω
= ⋅ ∇ = ⋅ ∂ .

∂Ω
+

+

w
w

w

n w k w
w k w

w w K
n

n x n

0 on ,
0 on \ ,

[[ ]] 0,

( ) [[ ]] 0 on ,
[[ ]] 0 on ,

0, on (15)

b

b

(0)
1

(0)
2

0

Solution of the homogenization problem.  As shown above, the mid-plane profile U R→w:  is determined by the 
variational problem (9); the associated boundary value problem is given by (14). In the limit that the inclusion is 
rigid, i.e, κ → +∞b

(1) , the boundary value problem can be rewritten as (15). If, in particular, both the inclusion Ω 
and the overall membrane  are circular and of radii a and b, respectively, by symmetry we infer the solution to 
(15) can be written as w =  w(r). By (15)1,2 we can write the solution as

=






<

+ + + < < .
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By (15)3,4,5,6, we have
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Solving the above set of equations we obtain,
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Inserting (16), (17) and (18) into (7), we obtain the total elastic energy of the system:

π κ

κ
=

+ −
.U w b k K

a k b a
[ ] 2

2 ( ) (19)
b

b
tot

4
2

(0)
0
2

(0)
2

2 2

In the homogenization framework, the lipid-protein system is replaced by an equivalent homogeneous mem-
brane with an effective bending modulus κeff. With the same boundary conditions as in the last of, the homogene-
ous membrane admits the solution = −w K r b( )1

2 0
2 2  and its total elastic energy is given by π κb K(2 )1

2
2 eff

0
2. 

Equating this energy to that of the lipid-protein system, i.e., (19), we identify the effective bending modulus as:

κ
κ

=
− +

.
κf(1 ) (20)

b
b

f
k a

eff
(0)

2 b
(0)

2

Material parameters and experiments.  We have analyzed some key experimental results in the literature that 
show both softening and hardening upon addition of proteins in a bilayer. These experiments typically presents 
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results for the effective bending modulus as a function of mole fraction of the proteins added. We have fit the 
experimental data to our theoretical model and estimated the corresponding value sof k2 using tleast square min-
imization curve fitting for that protein-bilayer system. We know that =

−
n

x n
xlip

(1 ) pep , where x is the mole frac-
tion, npep is the number of peptide molecules, and nlip is the number of lipid molecules. Also, =

+
f

A
A A

pep

pep lip
, where 

f is the area fraction, Apep is the representative total cross section area of peptides, and Alip is the total cross section 
area of lipids which is equal to the area per lipid multiplied by nlip. A transmembrane protein can often have a 
complicated shape. We have idealized it as a cylinder of radius a along the entire thickness of the membrane and 
with the same volume as its original shape.

π= =A n a
n V

t
p

pep pep
2 pep

where t =  thickness of bilayer, about 50 Å and Vp is the volume of peptide. Let =RA
V
t
p , RL =  Area per lipid. Then,

=
+

.−f R
R R (21)

A

A
x

x L
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