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Purpose: To develop and validate machine learning (ML) models to predict choroidal nevus transformation to
melanoma based on multimodal imaging at initial presentation.

Design: Retrospective multicenter study.
Participants: Patients diagnosed with choroidal nevus on the Ocular Oncology Service at Wills Eye Hospital

(2007e2017) or Mayo Clinic Rochester (2015e2023).
Methods: Multimodal imaging was obtained, including fundus photography, fundus autofluorescence,

spectral domain OCT, and B-scan ultrasonography. Machine learning models were created (XGBoost, LGBM,
Random Forest, Extra Tree) and optimized for area under receiver operating characteristic curve (AUROC). The
Wills Eye Hospital cohort was used for training and testing (80% traininge20% testing) with fivefold cross vali-
dation. The Mayo Clinic cohort provided external validation. Model performance was characterized by AUROC
and area under precisionerecall curve (AUPRC). Models were interrogated using SHapley Additive exPlanations
(SHAP) to identify the features most predictive of conversion from nevus to melanoma. Differences in AUROC and
AUPRC between models were tested using 10 000 bootstrap samples with replacement and results.

Main Outcome Measures: Area under receiver operating curve and AUPRC for each ML model.
Results: There were 2870 nevi included in the study, with conversion to melanoma confirmed in 128 cases.

Simple AI Nevus Transformation System (SAINTS; XGBoost) was the top-performing model in the test cohort
[pooled AUROC 0.864 (95% confidence interval (CI): 0.864e0.865), pooled AUPRC 0.244 (95% CI: 0.243e0.246)]
and in the external validation cohort [pooled AUROC 0.931 (95% CI: 0.930e0.931), pooled AUPRC 0.533 (95%
CI: 0.531e0.535)]. Other models also had good discriminative performance: LGBM (test set pooled AUROC
0.831, validation set pooled AUROC 0.815), Random Forest (test set pooled AUROC 0.812, validation set pooled
AUROC 0.866), and Extra Tree (test set pooled AUROC 0.826, validation set pooled AUROC 0.915). A model
including only nevi with at least 5 years of follow-up demonstrated the best performance in AUPRC (test: pooled
0.592 (95% CI: 0.590e0.594); validation: pooled 0.656 [95% CI: 0.655e0.657]). The top 5 features in SAINTS by
SHAP values were: tumor thickness, largest tumor basal diameter, tumor shape, distance to optic nerve, and
subretinal fluid extent.

Conclusions: We demonstrate accuracy and generalizability of a ML model for predicting choroidal nevus
transformation to melanoma based on multimodal imaging.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures
at the end of this article. Ophthalmology Science 2025;5:100584 ª 2024 by the American Academy of Ophthal-
mology. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
Choroidal nevus, the most common benign intraocular tumor,
presents a unique clinical challenge because of the potential for
transformation into malignant melanoma.1 The ability to
accurately predict transformation holds significant
implications for patient treatment strategy, ocular morbidity,
prognosis, and mortality. Multimodal imaging techniques
such as fundus photography, fundus autofluorescence (AF),
spectral domain OCT, and B-scan ultrasonography have
enhanced the characterization of choroidal nevi, facilitating
nuanced understanding of their clinical behavior.2 The
combination of these techniques captures a diverse range of
anatomical and functional characteristics of nevi and has led
to the development of multivariate risk tools to help quantify
the risk of transformation.2 However, the information-rich
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output of these imaging modalities remains underutilized,
primarily because of the complexity of the data generated and
the consequent challenge in effective analysis.

In recent years, artificial intelligence (AI) has come to the
forefront as a tool to analyze complex multivariate relation-
ships. New machine learning (ML) algorithms offer a novel
approach to analyzing complex classification problems and
have demonstrated strong performance in diverse medical
applications.3,4 However, their potential in predicting the
transformation of choroidal nevus to melanoma based on
multimodal imaging data has remained largely unexplored.5

To address this need, we developed a ML model, Simple
AI Nevus Transformation System (SAINTS), to predict
choroidal nevus transformation risk to melanoma using
1https://doi.org/10.1016/j.xops.2024.100584
ISSN 2666-9145/24

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xops.2024.100584&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.xops.2024.100584


Ophthalmology Science Volume 5, Number 1, Month 2025
tabular multimodal imaging data in a multicenter study with
both internal and external validation to enhance generaliz-
ability. Given the black box nature of many ML algorithms,
we also sought to identify novel risk factors for trans-
formation to melanoma identified by the ML models.
Furthermore, we will investigate the efficacy and general-
izability of SAINTS to predict choroidal nevus behavior for
potential integration into clinical practice.

Methods

This project focuses on a supervised binary classification task
aimed at predicting the risk of choroidal nevus conversion into
melanoma based on initial presenting features. The project
analyzed tabular multimodal imaging data, including fundus
photography, fundus AF, spectral domain OCT, and B-scan ul-
trasonography. This study was approved by the Institutional Re-
view Board/Ethics Committees of Mayo Clinic and Wills Eye
Hospital and adhered to the tenets of the Declaration of Helsinki
and Health Insurance Portability and Accountability Act. All pa-
tients provided informed consent.

Detailed methodology regarding the training and testing set
from the Wills Ocular Oncology service has previously been
described.2 The external validation cohort was from a large
tertiary referral center (Mayo Clinic) and included a total of
514 nevi. If an eye contained more than 1 nevus, only the
largest nevus was included. Fundus photography was
performed with Zeiss camera (Carl Zeiss Meditec Inc) at Wills
Eye Hospital and the Topcon camera (Topcon Healthcare) at
Mayo Clinic. Fundus AF was performed with special filters
(580-nm excitation, 695-nm barrier filter) to avoid imaging the
AF of the crystalline lens. Autofluorescence features included
presence or absence of hyperautofluorescence (lipofuscin). The
OCT used enhanced depth imaging technology and was per-
formed through a dilated pupil (Heidelberg Spectralis HRAOCT;
Heidelberg Engineering). The OCT findings quantified total
subretinal and subfoveal fluid. Additional OCT features included
retinal pigment epithelium (RPE) (trough), the presence of
choroidal neovascularization and retinal invasion. Ultrasonogra-
phy was performed with standard A-scan and B-scan imaging of
the intraocular mass using Eye Cubed (Ellex) technology at Wills
Eye Hospital or the ABSolu A/B/S/UBM Ultrasound Platform
from Quantel Medical at Mayo Clinic. Ultrasound features
included B-scan tumor configuration, acoustic quality, and stan-
dardized A-scan internal reflectivity. All melanocytic lesions
were examined by an expert ocular oncologist (C.L.S., J.A.S.,
J.S.P., T.W.O., L.A.D.) with multimodal imaging and categorized
as choroidal nevus or melanoma based on prior definitions.6 For
larger lesions categorized as choroidal nevi, longitudinal follow-
up, absence of other high-risk features, and presence of features
of chronicity such as drusen and/or fibrous metaplasia were often
used to determine nevus vs. melanoma.

Data Abstraction, Processing, and Outcome
Definition

Data were manually extracted from the electronic medical record
for the training and test sets as previously described.2 Data from the
external validation set (Mayo Clinic) were extracted from a
prospectively collected database (The Prospective Ocular Tumor
Study). The ML algorithms (see below) utilized automatically
handle missing data by incorporating all available data without
ignoring records with missing information, so no imputation
2

methods were used for missing data. The outcome, or label, was
growth to melanoma as defined by an expert ocular oncologist
(C.L.S., J.A.S., J.S.P., T.W.O., and L.A.D.) via documented
growth (defined as �0.5 mm in �24 months) or cytopathologic
or histopathologic confirmation.

We used multiple tree-based ML algorithms (XGBoost,
LGBM, Random Forest, and Extra Tree). Tree-based models
have been shown to provide robust performance in the medical
field.4 SAINTS or Simple AI Nevus Transformation System
used XGBoost, a ML algorithm based on the gradient
boosting framework that both builds and iteratively refines an
ensemble of weak prediction models in this case decision trees
so that new models improve on a prior training model.7 All
imaging features available in both Wills Eye Hospital and
Mayo Clinic cohorts were used. We used variance inflation
factor (VIF) to test for multicollinearity. Features with VIF
>10 were removed from the models. Features only available
in 1 cohort were not used for model development. The Wills
cohort was randomly segmented into an 80% training setd
20% held-out test set. We used fivefold stratified cross-
validation of the training set for hyperparameter tuning and set
the optimization function as the area under receiver operating
characteristic curve (AUROC). The Mayo cohort was utilized as
an external validation set to assess the model’s generalizability
to independent external data. To identify the features most
predictive of transformation, we explored the Shapley Additive
exPlanations values for each model. Given our definition of
growth to melanoma, a subanalysis was performed where only
nevi with 5 or more years of follow-up were included on the top-
performing algorithm (XGBoost). We tested a streamlined
version of the top-performing algorithm, which utilized only 13
of the original 22 features (including age, race, sex, affected eye,
tumor thickness, largest tumor diameter, tumor shape, distance
to optic nerve, extent of subretinal fluid [SRF], distance to
fovea, and internal reflectivity). This ‘lite’ model aimed to
assess the algorithm’s reliability and performance with fewer
features. To establish threshold probabilities for both the full
and lite models, we identified the points where Youden’s J
statistic reached its maximum for each cohort. In the full and
long-term follow-up models, due to similar threshold probabil-
ities and consistent performance, we chose the midpoint as the
operational threshold. However, for the lite model, the threshold
probabilities varied more significantly at the maximal Youden’s
J statistic. Consequently, we selected an intermediate value as
the threshold to ensure a more balanced performance between
both models.

The primary outcome was model performance as defined by its
discriminative performance with AUROC and area under
precisionerecall curve (AUPRC). The AUPRC is a metric that
evaluates the relationship between sensitivity and positive predic-
tive value (PPV) across various thresholds and provides a measure
of the model’s ability to predict the positive class. To calculate
95% confidence intervals (CIs) for AUROC and AUPRC, we
utilized 10 000 bootstrap samples with replacement. Microsoft’s
Fast and Lightweight AutoML Library was used for model
hyperparameter optimization. Additionally, we used Python
(version 3.7), pandas, scikit-learn, and seaborn for data analysis
and visualization. Chi-squared and ManneWhitney tests were used
to assess for differences between the Wills and Mayo cohorts.
Models were implemented and built for public use with Gradio and
Hugging Face Spaces. Both models SAINTS and SAINTS Lite are
available are the following links: Full Model (https://huggingfa-
ce.co/spaces/ptailor3/SAINTS_Large) Lite Model: (https://hug-
gingface.co/spaces/ptailor3/SAINTS_Lite).

https://huggingface.co/spaces/ptailor3/SAINTS_Large
https://huggingface.co/spaces/ptailor3/SAINTS_Large
https://huggingface.co/spaces/ptailor3/SAINTS_Lite
https://huggingface.co/spaces/ptailor3/SAINTS_Lite
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Results

There were 2870 nevi included in the study with 128 nevi
converted to melanoma. The rate of nevus to melanoma
transformation was 3.8% in the Wills cohort (2356 nevi; 90
transformation to melanoma) and 7.4% in the Mayo cohort
(514 nevi; 38 transformation to melanoma). The mean
follow-up for the Wills cohort was 3 years (median: 3;
range: <1e11 years).2 The mean follow-up for the Mayo
cohort was 5.5 years (median: 2.7 years; range: <1e11
years). The baseline characteristics for each cohort are
summarized in Table 1. There were differences between the
cohorts across multiple features as stated in Table 1,
including: age, visual acuity at presentation, largest tumor
basal diameter, largest tumor thickness, distance to optic
nerve, SRF extent, SRF in the fovea, choroidal
neovascular membrane, and internal reflectivity. Simple AI
Nevus Transformation System and other models were
trained on the following 22 features: age, race, sex,
history of cutaneous melanoma, welder occupation, known
germline BRCA1-associated protein 1 mutation, affected
eye, melanocytosis, presenting visual acuity, tumor
thickness, largest tumor diameter, tumor shape, distance to
optic nerve, SRF extent, distance to fovea, RPE invasion,
color, SRF in fovea, orange pigment, choroidal
neovascular membrane, RPE trough, and internal
reflectivity. One feature (anteroposterior location) was
removed based on VIF.

Simple AINevus Transformation System outperformed the
other algorithms across all cohorts (Table 2, Figs 1e4)
(P< 0.001; P< 0.001; P< 0.001). On theWills held-out test
set, SAINTS achieved an AUROC of 0.864 (95% CI:
0.864e0.865) and an AUPRC of 0.244 (95% CI:
0.243e0.246). On the Mayo cohort (external validation), the
model achieved an AUROC of 0.931 (95% CI: 0.930e0.931)
andAUPRCof 0.533 (95%CI: 0.531e0.535) (Fig 1).Detailed
model metrics are found in Table 3. Other models also
displayed acceptable performance. On the Wills held-out test
cohort, LGBM had AUROC value of 0.831 (95% CI:
0.831e0.832) and AUPRC value of 0.171 (95% CI:
0.169e0.172), whereas, on the external Mayo cohort, the
AUROC was 0.815 (95% CI: 0.814e0.815) and the AUPRC
was 0.277 (95% CI: 0.276e0.279) (Fig 2). On the Wills held-
out test set, Random Forest achieved AUROC values of 0.812
(95% CI: 0.811e0.813) and AUPRC value of 0.122 (95% CI:
0.121e0.123); on the external Mayo cohort, the model ach-
ieved AUROC of 0.866 (95% CI: 0.866e0.867) and AUPRC
of 0.418 (95% CI: 0.417e0.420) (Fig 3). Finally, on the Wills
cohort, Extra Tree had AUROC value of 0.826 (95% CI:
0.826e0.827) and AUPRC value of 0.119 (95% CI:
0.118e0.119); on the Mayo cohort, the AUROC value was
0.915 (95% CI: 0.915e0.916), and the AUPRC value was
0.511 (95% CI: 0.509e0.513) (Fig 4). Simple AI Nevus
Transformation System lite demonstrated reliable but worse
performance. On the Wills held-out test cohort, SAINTS lite
had AUROC value of 0.866 (95% CI: 0.866e0.867) and
AUPRC value of 0.216 (95% CI: 0.215e0.217), whereas on
the external Mayo cohort, the AUROC was 0.898 (95% CI:
0.898e0.899), and the AUPRC was 0.478 (95% CI:
0.476e0.480).

Further evaluation of the top-performing SAINTS model
and its simplified variant, SAINTS Lite, both utilizing
XGBoost, was conducted across both cohorts, focusing on
optimal threshold probabilities and a range of key perfor-
mance metrics (Table 3). The SAINTS model, set at a
threshold probability (TP) of 0.38, showcased
commendable accuracy in both the Wills Test Held-out
cohort (0.910) and the Mayo External Validation cohort
(0.889). A marked contrast was observed in its sensitivity,
which was significantly higher in the Mayo cohort (0.869)
compared with that of the Wills cohort (0.635), while
maintaining robust specificity in both groups. Simple AI
Nevus Transformation System Lite exhibited varying
optimal TPs tailored to each cohortd0.545 for Wills and
0.383 for Mayo. At a TP of 0.383, the Wills cohort showed
notably low accuracy and PPV but high sensitivity (1.0) and
specificity (0.922). Contrastingly, in the Mayo cohort,
SAINTS Lite demonstrated a substantial improvement with
an accuracy of 0.897 and a PPV of 0.397. With a TP of
0.545, the model’s accuracy and PPV were more favorable
in the Mayo cohort than in the Wills cohort. Operating at a
balanced TP of 0.5, SAINTS Lite achieved comparable
accuracies of approximately 0.9 in both cohorts, albeit with
reduced PPV and sensitivity. Notably, specificity remained
consistently high across all scenarios and cohorts.

SHapley Additive exPlanations values were calculated to
identify the most important features for prediction of nevus
transformation to melanoma (Fig 5). The top 5 most
important features in SAINTS were: tumor thickness,
largest tumor basal diameter, tumor shape, distance to
optic nerve, and SRF extent. The top 5 most important
features included in the top 5 features of all 4 models
were: tumor thickness (4/4), largest tumor diameter (4/4),
patient age at presentation (2/4), tumor shape (2/4), tumor
distance to optic nerve (2/4), SRF extent (2/4), distance to
fovea (2/4), presenting visual acuity (1/4), and tumor
internal reflectivity (1/4).

Given the definition of transformation in this study is based
on growth, an additional model utilizing XGBoost was con-
structed solely using patients with at least 5 years of follow-up
in both cohorts (Wills n ¼ 573, Mayo n ¼ 289). This model
achieved a slightly worse AUROC in both the Wills (0.824
[95% CI: 0.823e0.824]) and Mayo cohorts (0.864 [95% CI:
0.864e0.865]); however, this model did achieve the best
AUPRC in both theWills (0.591 [95%CI: 0.591e0.592]) and
Mayo cohorts (0.651 [95%CI: 0.651e0.652]) (Fig 6). The top
5 features of this model in order of SHapley Additive
exPlanations value were: tumor thickness, largest tumor
diameter, tumor shape, SRF extent, and tumor distance to
optic nerve. Detailed evaluation of this model based on an
optimal TP was also performed and demonstrated this model
had the highest F1-score and PPV (Table 4).
3



Table 1. Predicting Choroidal Nevus Transformation to Melanoma with Machine Learning: Summary Statistics for Wills Eye Hospital
Cohort and Mayo Clinic Cohort

Nevi Demographics Wills Cohort (n [ 2356) Mayo Cohort (n [ 514) P Values

Age (yrs) mean � std (median, range) 71.1 � 16.0 (73, 11e107) 65.81 � 16.7 (69, 8e98) <0.001
Race (%)
White 95.63 (2253) 98.83 (508) >0.99
African American 0.76 (18) 0 (0)
Hispanic 0.85 (20) 0.39 (2)
Asian 0 (1) 0.19 (1)
Indian 0.25 (6) 0.19 (1)
Others 0 (2) 0 (0)
Unknown 2.38 (56) 0 (0)
Middle Eastern 0 (0) 0.19 (1)

Sex (%) >0.99
Male 37.01 (872) 38.33 (197)
Female 62.82 (1480) 61.67 (317)

History of cutaneous melanoma (%) >0.99
Yes 4.84 (114) 0 (0)
No 95.16 (2242) 100 (514)

Welder occupation (%) >0.99
Yes 0.34 (8) 0 (0)
No 99.66 (2348) 100 (514)

Germline BAP1 (%) >0.99
No 100 (2356) 100 (514)

Affected eye (%) >0.99
Right 46.01 (1084) 44.75 (230)
Left 40.49 (954) 46.3 (238)
Both 13.5 (318) 8.95 (46)

Melanocytosis (%) >0.99
No 100 (2356) 100 (514)

Visual acuity at presentation (logMAR) mean � std (median, range) 0.16 � 0.29 (0.1, 0e4) 0.13 � 0.33 (0, 0e4) <0.001
Largest tumor quadrant (%) >0.99
Macula 26.95 (635) 12.84 (66)
Inferior 21.05 (496) 23.54 (121)
Temporal 20.29 (478) 26.26 (135)
Superior 17.23 (406) 23.15 (119)
Nasal 14.47 (341) 14.2 (73)

Anteroposterior location of epicenter (%) >0.99
Macula 27.72 (1428) 30.35 (156)
Macula to equator 60.61 (653) 63.42 (326)
Equator to ora 11.63 (274) 6.23 (32)

Largest tumor basal diameter (mm) mean � std (median, range) 4.74 � 3.19 (4, 0.1e20) 6.49 � 3.42 (6, 1e25) <0.001
Largest tumor thickness (mm) mean � std
(median, range)

1.48 � 0.70 (1.5, 0.1e6.7) 1.10 � 0.80 (1, 0e5.9) <0.001

Distance to optic nerve (mm) mean � std (median, range) 5.17 � 3.78 (5, 0e23) 5.94 � 4.61 (5, 0e24) <0.001
Distance to fovea (mm) mean � std
(median, range)

4.99 � 3.89 (4, 0e20) 5.63 � 4.87 (4, 0e24) 0.081

Color (%) 0.112
Pigmented 83.4 (1965) 74.12 (381)
Mixed 9.8 (231) 14.98 (77)
Nonpigmented 6.79 (160) 10.89 (56)

Orange pigment (%) 0.672
Yes 4.29 (101) 15.37 (79)
No 95.71 (2255) 84.44 (434)

Subretinal fluid extent (%) <0.001
None 93.38 (2200) 76.26 (392)
Cap over nevus 3.74 (88) 19.46 (100)
Greater than Cap 2.89 (68) 4.28 (22)

Subretinal fluid in fovea (%) 0.011
Yes 1.23 (29) 3.5 (18)
No 91.38 (2153) 96.5 (496)

RPE trough (%) 0.612
Yes 1.4 (33) 5.06 (26)
No 98.6 (2323) 94.94 (488)

CNVM (%) <0.001
Yes 0.55 (13) 0.97 (5)

Ophthalmology Science Volume 5, Number 1, Month 2025
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Table 1. (Continued.)

Nevi Demographics Wills Cohort (n [ 2356) Mayo Cohort (n [ 514) P Values

No 99.45 (2343) 99.03 (509)
RPE invasion (%) >0.99
Yes 0.3 (7) 0 (0)
No 99.7 (2349) 100 (514)

Tumor shape (%) 0.073
Flat 60.14 (1417) 26.65 (137)
Dome 32.64 (769) 71.6 (368)

Internal reflectivity (%) <0.001
Low 1.15 (27) 21.21 (109)
Medium 36.88 (869) 15.37 (79)
High 53.61 (1263) 63.42 (326)

BAP1 ¼ BRCA1-associated protein 1; CNVM ¼ choroidal neovascular membrane; logMAR ¼ logarithm of the minimum angle of resolution;
RPE ¼ retinal pigment epithelium; std ¼ standard deviation.
Statistical testing used were chi-squared and ManneWhitney U Tests.

Tailor et al � Nevus to Melanoma Transformation with ML
Discussion

In thismulticenter retrospective study,we developed, externally
validated and released a ML algorithm (SAINTS; https://hug-
gingface.co/spaces/ptailor3/SAINTS_Large; SAINTS Lite;
https://huggingface.co/spaces/ptailor3/SAINTS_Lite) to pre-
dict choroidal nevus to melanoma transformation based on
initial presenting features. Simple AI Nevus Transformation
System, the best performingmodel performedwell with tabular
data due to the: (1) ability to handle diverse features, (2)
robustness in handling outliers and missing values, and (3) so-
phisticated regularization parameters that helped prevent over-
fitting while maintaining high predictive accuracy.7 The model
performed the best of the 4 ML algorithms on both the Wills
held-out test set and the Mayo external validation set, demon-
strating that the model’s performance is generalizable to other
independent data. In fact, the model had better AUROC and
AUPRC on the external validation set than the test set. We
postulate the differences in performance are related to the dif-
ferences in practice settings between the cohorts and the trans-
formation rates. The Wills Eye Hospital Ocular Oncology
Service serves not only as a tertiary or quaternary referral center
but also serves a large community-based population. This dif-
fers from the Mayo Clinic cohort because the Mayo Clinic
practice setting is primarily a tertiary care referral center for
high-risk choroidal nevi that have been referred by outside
providers. Lower risk nevi from the community are often seen at
Table 2. Predicting Choroidal Nevus Transformation to Melanoma w
Based on AUROC

XGBoost

AUROC
Wills test held-out cohort (95% CI) 0.864 (0.864e0.865) 0
Mayo external validation cohort (95% CI) 0.931 (0.930e0.931) 0

AUPRC
Wills test held-out cohort (95% CI) 0.244 (0.243e0.246) 0
Mayo external validation cohort (95% CI) 0.533 (0.531e0.535) 0

AUROC ¼ area under receiver operating characteristics curve; AUPRC ¼ are
95% CIs were generated by bootstrapping 10 000 samples with replacement.
Mayo Clinic by providers outside of the Ocular Oncology
Service and, therefore, may not have been included in the
dataset. We only used Mayo Clinic data that included nevi
evaluated with a full panel of multimodal imaging. These dif-
ferences likely also contributed to the difference in conversion
to choroidalmelanoma rates (3.8%vs. 7.4%).We postulate that
the model performs better on the Mayo cohort, due to both a
higher transformation rate and PPV for transformation. This is
seen in the AUPRC curve between the 2 models. Despite
differing patient populations and practice settings, robust
discriminative model performance was observed in both
cohorts.

In an appropriate clinical context, the algorithms devel-
oped in this study will assist the clinician to stratify risk for
patients with choroidal nevi and help determine cases that
warrant referral to ocular oncology or inform monitoring
frequency. Early referral of high-risk nevi to an expert
ocular oncologist is essential. Early treatment of choroidal
melanoma, when small, has a better long-term prognosis.7

Of course, this model relies on accurate input of
demographic and imaging data that may be challenging
obtain in a general ophthalmology practice. This limitation
necessitates future research to train models to recognize
many differing multimodal imaging features. At the
subspecialty care level, an ocular oncologist could
leverage information from ML prediction models to tailor
follow-up and management.
ith Machine Learning: Discriminative Performance of all Models
and AUPRC

LGBM Random Forest Extra Tree

.831 (0.831e0.832) 0.812 (0.811e0.813) 0.826 (0.826e0.827)

.815 (0.814e0.815) 0.866 (0.866e0.867) 0.915 (0.915e0.916)

.171 (0.169e0.172) 0.122 (0.121e0.123) 0.119 (0.118e0.119)

.277 (0.276e0.279) 0.418 (0.417e0.420) 0.511 (0.509e0.513)

a under precisionerecall curve; CI ¼ confidence interval.
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Figure 1. Receiver operating characteristics (ROC) curves and precisionerecall (PR) curves for SAINTS (XGBoost). Receiver operating characteristics
(A) and PR (B) curves for SAINTS (XGBoost) plot (A) true positive rate (sensitivity) vs. false positive rate (1-specificity) and (B) precision (positive
predictive value) vs. recall (sensitivity) for a machine learning algorithm based on XGBoost. The 95% confidence intervals were generated using 10 000
bootstrapped samples with replacement. Pooled area under the curve values are given for the Wills held-out test set (blue) and Mayo external validation set
(yellow) for ROC (A) and PR (B) curves. SAINTS demonstrates good discriminative performance on ROC curves (Wills: 0.86; Mayo: 0.93); however, has
worse performance on PR curve (Wills: 0.24; Mayo: 0.53). AUC ¼ area under the curve; SAINTS ¼ Simple AI Nevus Transformation System.

Figure 2. Receiver operating characteristics (ROC) curves and precisionerecall (PR) curves for LBGM. Receiver operating characteristics (A) and PR (B)
curves for LGBM plot (A) true positive rate (sensitivity) vs. false positive rate (1-specificity) and (B) precision (positive predictive value) vs. recall
(sensitivity) for the LGBM model. The 95% confidence intervals were generated using 10 000 bootstrapped samples with replacement. Pooled area under
the curve values are given for the Wills held-out test set (blue) and Mayo external validation set (yellow) for ROC (A) and PR (B) curves. LGBM
demonstrates good discriminative performance on ROC curves (Wills: 0.83; Mayo: 0.81); however, has worse performance on PR curve (Wills: 0.17; Mayo:
0.28). AUC ¼ area under the curve.
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Figure 3. Receiver operating characteristics (ROC) curves and precisionerecall (PR) curves for Random Forest. Receiver operating characteristics (A) and
PR (B) curves for Random Forest plot (A) true positive rate (sensitivity) vs. false positive rate (1-specificity) and (B) precision (positive predictive value) vs.
recall (sensitivity) for the Random Forest model. The 95% confidence intervals were generated using 10 000 bootstrapped samples with replacement. Pooled
area under the curve values are given for the Wills held-out test set (blue) and Mayo external validation set (yellow) for ROC (A) and PR (B) curves.
Random Forest demonstrates good discriminative performance on ROC curves (Wills: 0.81; Mayo: 0.87); however, has worse performance on PR curve
(Wills: 0.12; Mayo: 0.42). AUC ¼ area under the curve.

Figure 4. Receiver operating characteristics (ROC) curves and precisionerecall (PR) Curves for Extra Tree. Receiver operating characteristics (A) and PR
(B) curves for Extra Tree plot (A) true positive rate (sensitivity) vs. false positive rate (1-specificity) and (B) precision (positive predictive value) vs. recall
(sensitivity) for the Extra Tree model. The 95% confidence intervals were generated using 10 000 bootstrapped samples with replacement. Pooled area under
the curve values are given for the Wills held-out test set (blue) and Mayo external validation set (yellow) for ROC (A) and PR (B) curves. Extra Tree
demonstrates good discriminative performance on ROC curves (Wills: 0.83; Mayo: 0.91); however, has worse performance on PR curve (Wills: 0.12; Mayo:
0.51). AUC ¼ area under the curve.
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Table 3. Predicting Choroidal Nevus Transformation to Melanoma with Machine Learning: Detailed Model Performance Metrics for
SAINTS and SAINTS Lite

Accuracy PPV Sensitivity F1-Score Specificity

SAINTS (TP ¼ 0.38)
Wills test held-out
cohort (95% CI)

0.910 (0.910e0.910) 0.238 (0.237e0.239) 0.635 (0.633e0.638) 0.344 (0.342e0.345) 0.981 (0.978e0.982)

Mayo external validation
cohort (95% CI)

0.889 (0.889e0.890) 0.389 (0.388e0.390) 0.869 (0.868e0.870) 0.535 (0.534e0.536) 0.984 (0.982e0.986)

SAINTS Lite
TP (0.383)

Wills test held-out
cohort (95% CI)

0.037 (0.037e0.037) 0.037 (0.037e0.037) 1.0 (1.0e1.0) 0.072 (0.071e0.072) 0.922 (0.922e0.923)

Mayo external
validation cohort (95% CI)

0.897 (0.897e0.897) 0.397 (0.396e0.399) 0.763 (0.762e0.765) 0.520 (0.519e0.522) 0.911 (0.911e0.911)

TP (0.545)
Wills test held-out

cohort (95% CI)
0.896 (0.896e0.897) 0.217 (0.216e0.218) 0.681 (0.679e0.683) 0.327 (0.326e0.328) 0.967 (0.965e0.968)

Mayo external
validation cohort (95% CI)

0.907 (0.906e0.907) 0.400 (0.399e0.401) 0.525 (0.523e0.527) 0.451 (0.450e0.453) 0.977 (0.976e0.979)

Balanced TP (0.5)
Wills test held-out

cohort (95% CI)
0.808 (0.808e0.809) 0.136 (0.135e0.136) 0.772 (0.770e0.774) 0.230 (0.229e0.231) 0.953 (0.952e0.952)

Mayo external
validation cohort (95% CI)

0.906 (0.906e0.907) 0.400 (0.398e0.401) 0.526 (0.524e0.528) 0.451 (0.450e0.453) 0.948 (0.948e0.948)

CI ¼ confidence interval; PPV ¼ positive predictive value; SAINTS ¼ Simple AI Nevus Transformation System; TP ¼ threshold probability.
95% CIs were generated by bootstrapping 10 000 samples with replacement. Threshold probabilities for both models determined by Youden’s J statistic. The
threshold probabilities for SAINTS were 0.36 and 0.40 with similar performance so we show the performance for the midpoint.
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The implications of false positive and false negatives
results from ML models are also important to consider. A
false negative in the model would predict that a nevus does
not convert to melanoma, when it truly converts to a mel-
anoma. A false positive would involve the model predicting
nevus conversion to melanoma when the lesion remains a
benign nevus. Given the risk to life if a melanoma is missed,
we advocate for models with a low false negative rate.
Clearly, we also understand the challenges associated with
potential over treatment from false positive results. Because
monitoring low risk choroidal nevi is not an insignificant
cost in the health care system, we believe AI-based algo-
rithms may provide a cost-effective solution to improve
patient outcomes and ensure timely follow-up.8 An ideal
model should minimize the risk of both false negative and
false positive errors. The AUROC values in this study
were high, indicating that the model has a high likelihood
of effectively differentiating benign nevi that convert to
melanoma. In our study, we optimized the SAINTS model
by setting its probability threshold at 0.38. This decision
was guided by the maximization of Youden’s J statistic,
striking a balance between sensitivity and specificity
across the 2 cohorts. At this calibrated threshold, the
SAINTS model exhibited a sensitivity of 0.635 in the
Wills cohort and a significantly higher sensitivity of 0.869
in the Mayo cohort. Conversely, for SAINTS Lite, we
selected a balanced TP of 0.5, aiming for a more
equilibrated model performance. This adjustment yielded
sensitivities of 0.772 in the Wills cohort and 0.526 in the
Mayo cohort. Notably, both models maintained high
specificity levels, with SAINTS Lite achieving 0.953 in
8

the Wills cohort and 0.948 in the Mayo cohort,
underscoring the robustness of the models in accurately
identifying true negatives.

The AUPRC curve provides visualization for ML perfor-
mance of the positive class (i.e., the subset of nevi with
transformation to melanoma) while also showing the rate of
false negatives. The AUPRC values were notably lower than
the corresponding AUROC values, indicating that despite
good overall discriminative abilities, the tradeoff between
precision (PPV) and recall (sensitivity) regarding conversion to
melanoma is suboptimal. Subanalysis demonstrated signifi-
cantly improved performance when only evaluating nevi with
long-term follow-up (>5 years), which indicates that
excluding cases with shorter follow-up periods reduces noise
and enhances the model’s ability to correctly identify true
positives. This reduction in noise leads to better sensitivity and
PPV, as the model is trained on more representative and
comprehensive data. Additionally, longer follow-up periods
ensure more accurate CIs and higher predictive value, reflect-
ing the true long-term risk of transformation. Although the
features used demonstrate predictive value, additional features
in the raw images or novel biomarkers that remain undiscov-
ered could enhancemodel performance. The use of tabular data
suffers from being reductive as it simplifies complex multi-
modal imaging data and is reliant onuser input. Future research
leveraging direct deep learning analysis of the multimodal
images would help address this shortcoming.

The aggregate features identified by the models are sup-
ported by prior studies and are part of already existing risk
assessment tools.2 Tumor thickness is a well-established risk
factor withmultiple studies correlating increased thicknesswith



Figure 5. SHapley Additive exPlanations (SHAP) for 4 machine learning models for prediction of choroidal nevus transformation to melanoma (A,
SAINTS; B, LGBM; C, Random Forest;D, Extra Tree). The graphs show the SHAP values for features that contribute to the prediction of each model. The
SHAP values measure the impact of each feature on the model output. The features are ordered by their average absolute SHAP value across all samples. The
color represents the feature value (red high, blue low). The top 5 features for each model (in order of SHAP value) are (A) SAINTS: tumor thickness,
largest tumor basal diameter, tumor shape, distance to ON, and subretinal fluid extent; (B) LGBM: Tumor distance to fovea, patient age, tumor thickness,
largest tumor basal diameter, and VA at presentation; (C) Random Forest: tumor thickness, largest tumor basal diameter, patient age, tumor distance to
fovea, and distance to ON; (D) tumor shape, tumor thickness, largest tumor basal diameter, subretinal fluid extent, and internal reflectivity. CNVM ¼
choroidal neovascular membrane; DFS ¼ days first seen; logMAR ¼ logarithm of the minimum angle of resolution; ON ¼ optic nerve; RPE ¼ included
retinal pigment epithelium; SAINTS ¼ Simple AI Nevus Transformation System; SHAP ¼ SHapley Additive exPlanations; SRF ¼ subretinal fluid; VA ¼
visual acuity.
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increasing melanoma risk.2,9 Furthermore, increasing thickness
of uveal melanoma is associated with increasing risk for
metastasis.10,11 Larger tumor diameter has also associated
been associated with higher risk.2,11 Tumor shape, specifically
dome-shaped configuration, has been linked to trans-
formation.2 Greater SRF can be a sign of early transformation.2

Interestingly, one of themost predictive factors identified in this
studywas tumor shape, not a top discriminating feature in other
studies (e.g., Shields et al. 2019).2 This highlights the
complexity of predicting choroidal nevus transformation and
suggests that ML approaches could identify novel predictive
combinations of variables not captured by traditional
statistical methods. The gradient boosting framework used by
SAINTS aggregates the effects of multiple weak decision tree
models into a more robust predictor. This flexible nonlinear
approach appears better suited to unraveling the intricacies of
factors underlying nevus progression compared to prior
logistic regression-based risk tools. The expanded set of
9



Figure 6. Receiver operating characteristics (ROC) curves and precisionerecall (PR) curves for XGBoost for nevi with long-term follow-up (>5 years).
Receiver operating characteristics (A) and PR (B) curves for XGBoost plot (A) true positive rate (sensitivity) vs. false positive rate (1-specificity) and (B)
precision (positive predictive value) vs. recall (sensitivity) for the XGBoost model. The 95% confidence intervals were generated using 10 000 bootstrapped
samples with replacement. Pooled area under the curve values are given for the Wills held-out test set (blue) and Mayo external validation set (yellow) for
ROC (A) and PR (B) curves. XGBoost demonstrates good discriminative performance on ROC curves (Wills: 0.82; Mayo: 0.86) and on PR curves (Wills:
0.59; Mayo: 0.65).Nevus to melanoma transformation with ML/tailor/. AUC ¼ area under the curve; ML ¼ machine learning.
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variables driving the model underscores the multifaceted clin-
ical nature of this problem.

There are few previous studies applying ML for
choroidal nevus transformation. One related study by Zabor
et al developed a logistic regression model to diagnose small
choroidal melanoma, achieving similar AUROC values to
SAINTS.5 However, there are notable differences between
studies. Simple AI Nevus Transformation System was
developed using a larger cohort for both model training
(2870 vs. 123 patients) and external validation (514 vs.
240 patients).5 This was true even in the long-term nevi
cohort (>5 years of follow-up). Additionally, the proportion
of nevi transforming to melanoma was lower in both the
Wills Eye and Mayo Clinic cohorts (3.8% and 7.4%)
compared with the training (49.6%) and validation (15.8%)
sets in the Zabor et al study.5 Larger sample sizes that better
Table 4. Predicting Choroidal Nevus Transformation to Melanoma w
Long-Term (>5 years

Accuracy PPV

Model (TP ¼ 0.76)
Wills test held-out cohort
(95% CI)

0.820 (0.818e0.820) 0.458 (0.456e0.

Mayo external validation cohort
(95% CI)

0.831 (0.830e0.831) 0.536 (0.535e0.

CI ¼ confidence interval; PPV ¼ positive predictive value; TP ¼ threshold pr
95% CIs were generated by bootstrapping 10 000 samples with replacement. T
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reflect the true clinical prevalence of transformation are
critical for achieving generalizable models. Despite these
differences, Zabor et al also identified tumor thickness,
optic nerve proximity, and SRF as predictive factors,
providing further evidence that such factors have
predictive value.5 Both studies demonstrate that ML has
potential for identifying the risk of transformation from
nevi to choroidal melanoma.

The strengths of this study include its large multicenter
cohort of 2870 choroidal nevi from both community and
tertiary settings, use of multiple imaging modalities to
comprehensively phenotype nevi, and external validation
demonstrating model robustness. However, limitations
include the retrospective design relying on existing records,
lack of tissue confirmation of disease in most cases, a primary
White population in both datasets, use of clinician annotations
ith Machine Learning: Detailed Model Performance Metrics for
) Follow-Up Nevi

Sensitivity F1-Score Specificity

460) 0.695 (0.694e0.697) 0.548 (0.546e0.549) 0.837 (0.836e0.837)

537) 0.819 (0.817e0.820) 0.646 (0.645e0.647) 0.833 (0.832e0.833)

obability.
hreshold probabilities for both models determined by Youden’s J statistic.



Tailor et al � Nevus to Melanoma Transformation with ML
and tabular data rather than raw imaging feature extraction,
the imbalanced nature of the classification problem with
relatively uncommon transformation events, use of only the
largest nevus in each eye when multiple were present, and the
risk of overstating utility without further validation guiding
clinical integration. In our study, the definition of choroidal
nevus is empirical and widely used.6 However, we recognize
its limitation, as morphologic features of large nevi and small
melanomas have been shown to overlap and cause
misclassifications12,13 While clinical criteria are useful in
everyday practice to separate high risk from low-risk le-
sions efficiently, they can have limited utility in classifying
borderline cases or predicting metastatic potential. Fine nee-
dle aspiration of tissue with subsequent genetic analysis al-
lows confirmation of malignancy and prediction of metastatic
risk14,15 Indeed, the very definition of nevus growth vs
malignant transformation will benefit from future molecular
studies, since nevus growth does not necessarily mean the
lesion is malignant, and a growing benign tumor does not
necessarily have the capacity to metastasize. Overall, while
this study provides evidence that ML can risk-stratify nevi,
more research is needed for model optimization and valida-
tion using even larger cohorts.
In conclusion, we have developed and validated
SAINTS, a ML model to predict choroidal nevus trans-
formation into melanoma. Simple AI Nevus Transformation
System demonstrated strong discriminative ability on both
the internal and external validation sets, supporting its po-
tential for generalization to new clinical settings. The model
identified tumor thickness, largest basal diameter, shape,
distance to optic nerve, and SRF extent are the most robust
predictive factors for nevus transformation to melanoma.
While promising, there is room for improvement of the
model by bypassing tabular data and utilizing deep learning
to predict transformation based on raw images. This study
provides proof-of-concept for the potential of ML to
identify high-risk choroidal melanocytic lesions. Further
prospective studies are warranted to further refine such
models and test clinical integration. Simple AI Nevus
Transformation System represents an important step
towards leveraging AI for personalized data-driven
management of choroidal nevi.
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A machine learning model, Simple AI Nevus Transformation System, was created and
validated to have good discriminative performance on test (area under receiver operating
characteristic curve [AUROC] 0.864) and external (AUROC 0.931) validation cohorts for
predicting choroidal nevus transformation to melanoma.
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