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Simple Summary: Multiparametric magnetic resonance imaging (mpMRI) has become an important
diagnostic tool in the assessment of clinically significant prostate cancer. The disadvantages of this
technique are primarily related to its long examination time and limited availability. This prospective
study presents a novel accelerated deep learning image reconstructed T2-weighted turbo spin echo
(TSE) sequence providing an acquisition time reduction of more than 60%. The study results show
that the acquisition of three imaging planes of the prostate is feasible within 3:50 min, using deep
learning image reconstruction, compared to 10:21 min in standard imaging. Additionally, image
quality parameters were evaluated to be superior in deep learning imaging.

Abstract: Multiparametric MRI (mpMRI) of the prostate has become the standard of care in prostate
cancer evaluation. Recently, deep learning image reconstruction (DLR) methods have been introduced
with promising results regarding scan acceleration. Therefore, the aim of this study was to investigate
the impact of deep learning image reconstruction (DLR) in a shortened acquisition process of T2-
weighted TSE imaging, regarding the image quality and diagnostic confidence, as well as PI-RADS
and T2 scoring, as compared to standard T2 TSE imaging. Sixty patients undergoing 3T mpMRI
for the evaluation of prostate cancer were prospectively enrolled in this institutional review board-
approved study between October 2020 and March 2021. After the acquisition of standard T2 TSE
imaging (T2S), the novel T2 TSE sequence with DLR (T2DLR) was applied in three planes. Overall, the
acquisition time for T2S resulted in 10:21 min versus 3:50 min for T2DLR. The image evaluation was
performed by two radiologists independently using a Likert scale ranging from 1–4 (4 best) applying
the following criteria: noise levels, artifacts, overall image quality, diagnostic confidence, and lesion
conspicuity. Additionally, T2 and PI-RADS scoring were performed. The mean patient age was
69 ± 9 years (range, 49–85 years). The noise levels and the extent of the artifacts were evaluated to be
significantly improved in T2DLR versus T2S by both readers (p < 0.05). Overall image quality was
also evaluated to be superior in T2DLR versus T2S in all three acquisition planes (p = 0.005–<0.001).
Both readers evaluated the item lesion conspicuity to be superior in T2DLR with a median of 4 versus
a median of 3 in T2S (p = 0.001 and <0.001, respectively). T2-weighted TSE imaging of the prostate in
three planes with an acquisition time reduction of more than 60% including DLR is feasible with a
significant improvement of image quality.
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1. Introduction

Multiparametric magnetic resonance imaging (mpMRI) of the prostate has become
the standard of care in prostate cancer imaging during the last decade [1,2]. mpMRI plays
an important role in biopsy planning, local staging, as well as active surveillance [2–6].
The technical development and increasing experience with mpMRI reporting has finally
led to the establishment of the prostate imaging reporting and data system (PI-RADS).
The currently recommended protocol of the European Society of Urology consists of the
following sequences: T2-weighted turbo spin echo (TSE) imaging in three planes with a
slice thickness of 3 mm without gaps and with high morphological resolution. Furthermore,
diffusion-weighted imaging (DWI) including apparent diffusion coefficient maps (ADC)
as well as dynamic contrast-enhanced imaging should be acquired, to provide further
parameters for analysis. Additionally, a precontrast T1-weighted sequence of the pelvis
with a larger field of view should be acquired, for lymph node staging as well as for
assessment of pelvic bones. A disadvantage of this comprehensive protocol consists of
rather long acquisition times, ranging approximately from 30 to 45 min. This is especially
problematic as prostate cancer commonly affects elderly men who may have difficulties
remaining motionless during long MRI examinations. Furthermore, long examination times
are problematic due to the growing demand for mpMRI of the prostate, resulting from
extended life expectancy on the one hand and increasing importance of the examination
modality to prevent significant prostatic cancers on the other hand. Especially the role
in active surveillance might determine a significant contribution for increasing demands
regarding mpMRI in future.

Established methods to shorten the acquisition time include parallel imaging tech-
niques in TSE imaging or compressed sensing (CS) in gradient echo imaging. However,
a significant disadvantage of parallel imaging is the loss of signal-to-noise ratio (SNR)
proportional to the square root of the scan acceleration. Therefore, in clinical protocols,
parallel imaging acceleration does usually not exceed a factor of two for two-dimensional
acquisitions and a factor of four for three-dimensional acquisitions.

One of the newest techniques applied for MRI acquisition acceleration is based on deep
learning (DL). While DL techniques have been primarily applied to facilitate and support
diagnosis so far, recent applications concentrate on the acceleration of MRI protocols [7–11].
In previous studies, it could be shown that DL, e.g., via variational networks, is able to
significantly accelerate MRI protocols of the abdomen, knee or of the pituitary [12–15].
However, literature regarding the clinical impact of DL strategies in accelerated MRI
protocols is still sparse.

Due to the increasing importance of prostate MRI that is hampered by the long
examination times, a thorough, systematic investigation of the potential benefits of DL
reconstruction techniques in mpMRI seems worthwhile. Therefore, the aim of this study
was to investigate the impact of DL reconstruction in accelerated T2 TSE imaging of the
prostate in three orthogonal planes on image quality, lesion conspicuity, and diagnostic
confidence, compared to standard T2 TSE imaging.

2. Materials and Methods
2.1. Study Design

This prospective study was approved by the institutional review board. Inclusion
criteria were: examination for evaluation of prostate cancer on appropriate 3T MRI scanners
with installed DL reconstruction algorithm. Exclusion criteria were: non-conditional im-
plants, severe claustrophobia, and status post prostatectomy. Figure 1 shows the flowchart
of this study (Figure 1). Sixty patients who underwent 3T MRI of the prostate for evalua-
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tion of carcinoma between October 2020 and March 2021 were finally included (Table 1).
Study participation was voluntary, and all patients gave informed consent to participate
in this study. All study procedures were in line with the declaration of Helsinki and its
later amendments.
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Table 1. Patients’ characteristics.

Characteristics Values

Number of patients n = 60
Age, mean ± standard deviation 69 ± 9 years

Sex 100% male
PSA, median (interquartile range) 7.2 ng/mL (5.9–9.7 ng/mL)

2.2. Deep Learning Image Reconstruction Technique

An unrolled variational network was employed for reconstruction [16,17]. Inspired
by the iterative optimization used in CS, the trainable network alternated between data
consistency steps and image regularization steps using a convolutional network. From this
viewpoint, the approach can be considered a natural development from CS in that the regu-
larization is not postulated but instead determined on representative data. Similar to CS, the
input to the network consists of undersampled k-space data, coil sensitivity maps estimated
from reference lines, and for the network used in the present study also a normalization
field for image homogenization. Conventional sampling patterns also used in parallel
imaging were used for acceleration. As the reconstruction was not designed to modify the
image contrast, but instead mainly focused on signal-to-noise enhancement, this procedure
had the additional advantage that the effect of acquisition parameters, such as echo time,
repetition time, and echo train length was identical to conventional reconstructions.

The parameters of the model were determined through supervised training using
about 10,000 slices from volunteer TSE acquisitions on various clinical 1.5T and 3T scanners
(MAGNETOM scanners, Siemens Healthcare). The fully sampled training data was ac-
quired in different body regions (head, pelvis, and knee) and with different image contrasts.
The input data was gained via retrospective downsampling by a factor of 4 and usage of a
phase resolution of 75%. An L1-norm and multiscale version of the structural similarity
(SSIM) content between network prediction and ground truth images encompassed the
loss function. The training was integrated in PyTorch and performed on a commercially
available GPU cluster with 32 GB of memory. Finally, the trained network was converted
for use in a scanner-integrated inference framework. Inference time for a single slice in the
actual deployment was about 3 s for CPU on average and 0.5 s for GPU.
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2.3. Imaging Protocol

All MRI studies were performed in clinical routine using three different scanners
(MAGNETOM Skyra, MAGNETOM Prismafit, and MAGNETOM Vida, Siemens Health-
care). Butylscopolamine bromide was applied prior to the examination, given no present
contraindications (e.g., cardiac arrhythmia or glaucoma). Patients were scanned in dorsal
position using a setup of 12 elements of a 32-channel spine coil as well as an 18-channel
body coil. No endorectal coil was applied in our imaging center. The institution’s standard
mpMRI protocol consisted of the following sequences: T2w TSE imaging in three planes;
DWI with three different acquired b-values in axial plane (50 s/mm2, 500 s/mm2, and
1000 s/mm2) as well as one calculated b-value of 2000 s/mm2 and ADC mapping; for
evaluation of possible bone lesions and lymph node status, a T1w precontrast TSE imaging
with a larger field of view was obtained. Furthermore, after application of contrast media
(0.1 mmol/kg body weight gadobutrol; Gadovist, Bayer Healthcare) using a flow rate
of 1.5 mL/s followed by a saline flush of 20 mL, dynamic contrast-enhanced gradient
echo imaging was acquired in axial direction followed by an additional post-contrast
gradient-echo axial sequence.

After completion of standard T2w TSE imaging (T2S), the novel T2w TSE imaging
with deep learning image reconstruction (T2DLR) was acquired using a prototype sequence.

Imaging parameters are displayed in Table 2. Acquisition time of axial T2S was
4:37 min as compared to 1:38 min of T2DLR (65% reduction of acquisition time), of coronal
T2S was 3:07 min versus 1:10 min of T2DLR (63% reduction of acquisition time), and of
sagittal T2S was 2:37 min versus 1:02 min of T2DLR (61% reduction of acquisition time).
Overall, acquisition time for T2S resulted in 10:21 min versus 3:50 min for T2DLR.

Table 2. MRI acquisition parameters.

Axial Coronal Sagittal

T2S T2DLR T2S T2DLR T2S T2DLR

TR (ms) 4470 4470 7480 7760 7480 6900
TE (ms) 104 104 101 101 101 101

Averages 3 1 3 1 2 1
Voxel size (mm) 0.3 × 0.3 × 3.0 0.3 × 0.3 × 3.0 0.3 × 0.3 × 3.0 0.3 × 0.3 × 3.0 0.3 × 0.3 × 3.0 0.3 × 0.3 × 3.0

Field of view (mm) 200 200 200 200 200 200
Slice thickness (mm) 3 3 3 3 3 3

Parallel imaging factor 3 3 3 3 2 3
Acquisition time

(min:sec) 4:37 1:38 3:07 1:10 2:37 1:02

2.4. Image Analysis

Image analysis was performed independently by two radiologists with five and eight
years of experience. Reading sessions were carried out in a blinded random order consisting
of datasets of T2 imaging (DLR or standard), dynamic contrast-enhanced imaging, as well
as DWI, including ADC maps. One hundred and twenty imaging sets were created
(60 datasets with T2S and 60 datasets with T2DRL). Both readers were blinded to the
description of sequence names, to patient data as well as to the official radiological report.

T2 score and PI-RADS score according to PI-RADS v.2.1 were assessed for all datasets.
The exact location and lesion size were reported for the most suspicious lesions given a
PI-RADS score ≥ 3.

Additionally, image quality parameters were assessed for the following items using
an ordinal Likert scale ranging from 1 to 4 (1 = non-diagnostic; 4 = excellent): noise levels,
lesion conspicuity, magnitude of artifacts, diagnostic confidence of the readers and image
quality overall.

Furthermore, T2S and T2DLR sequences of each patient were presented to both radiol-
ogists mentioned above and were evaluated regarding the naturality of image impression
using a Likert scale ranging from 1 to 4 (1 = unnatural; 4 = very natural).
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2.5. Statistical Evaluation

Statistical evaluation was performed using commercially available statistical software
(SPSS Statistics Version 26; IBM). Continuous variables are shown using mean ± standard
deviation (std), ordinal scaled variables are shown using median and interquartile range
(IQR). The Wilcoxon signed-rank test was used for paired data of ordinal structure and
non-normally-distributed parametric variables. p-values were adjusted using Bonferroni
procedure. Intra- and inter-reader variability were assessed using Cohen’s kappa. The
significance level alpha was set at 0.05.

3. Results
3.1. Patients’ Characteristics

The mean patient age was 69 ± 9 years (range, 49–85 years). The median prostate
specific antigen (PSA) level was 7.2 ng/mL (IQR 5.9–9.7) (Table 1).

The results of the more experienced reader 1 are described in the following. All results
are available within the tables of this manuscript.

3.2. Evaluation of Qualitative Imaging Parameters

Analysis of the inter-reader agreement between both readers regarding image quality
parameters using Cohen’s kappa resulted in 0.76 for T2S and 0.79 for T2DLR. The impact
and extent of image noise was rated to be significantly less in T2DLR compared to T2S with
the following ratings: median of 4 (IQR 4–4) for T2DLR versus a median of 3 (IQR 3–3) for
T2S in axial imaging, a median of 4 (IQR 4–4) for T2DLR versus a median of 3 (IQR 3–3)
for T2S in coronal imaging, and a median of 4 (IQR 3–4) for T2DLR versus a median of
3 (IQR 3–3) for T2S in sagittal imaging (all p < 0.001). The extent of artifacts was also rated
to be less in T2DLR versus T2S in axial imaging with a median of 4 (IQR 4–4) compared to
3 (3–4) (p = 0.003). The extent of artifacts in T2DLR was also significantly less in coronal
(p = 0.002) and sagittal imaging (p = 0.002). There was no significant difference regarding
the natural appearance of both sequences in all planes with a median of 4 for T2S and T2DLR
(p > 0.05). Overall image quality was rated higher in axial T2DLR (median of 4 (IQR 4–4))
as compared to T2S (median of 3 (IQR 3–4)) (p < 0.001). Similar results regarding image
quality were obtained for T2DLR versus T2S in coronal (p = 0.002) and sagittal imaging
(p = 0.002). Diagnostic confidence was evaluated to be higher in T2DLR with a median of
4 (4–4) as compared to T2S with a median of 4 (3–4) (p = 0.03). Table 3 shows the image
quality results of both readers.

Table 3. Image quality in standard T2-weighted imaging (T2S) and deep learning reconstructed T2-weighted imaging (T2DLR).

Characteristics Reader 1 Reader 2

T2S T2DLR p-Value T2S T2DLR p-Value

Image noise axial 3 (3–3) 4 (4–4) <0.001 3 (3–3) 4 (4–4) <0.001
Image noise coronal 3 (3–3) 4 (4–4) <0.001 3 (3–4) 4 (4–4) <0.001
Image noise sagittal 3 (3–3) 4 (3–4) <0.001 4 (3–4) 4 (3–4) 0.005

Artifacts axial 3 (3–4) 4 (4–4) 0.003 4 (3–4) 4 (4–4) 0.003
Artifacts coronal 3 (3–4) 4 (4–4) 0.002 3 (3–4) 4 (4–4) 0.014
Artifacts sagittal 3 (3–4) 4 (3–4) 0.002 3 (3–4) 4 (3–4) 0.011

Natural appearance axial 4 (4–4) 4 (4–4) 1 4 (4–4) 4 (4–4) 0.630
Natural appearance coronal 4 (4–4) 4 (4–4) 1 4 (4–4) 4 (4–4) 1
Natural appearance sagittal 4 (3–4) 4 (3–4) 1 4 (3–4) 4 (3–4) 1
Overall image quality axial 3 (3–4) 4 (4–4) <0.001 3 (3–4) 4 (4–4) <0.001

Overall image quality coronal 3 (3–4) 4 (4–4) 0.002 3 (3–4) 4 (4–4) <0.001
Overall image quality sagittal 3 (3–4) 4 (3–4) 0.002 3 (3–4) 4 (3–4) 0.005

Diagnostic confidence 4 (3–4) 4 (4–4) 0.03 4 (3–4) 4 (4–4) 0.06
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3.3. PI-RADS Scoring and Lesion Conspicuity

In no case was a different scoring affecting patient management (<3 versus ≥3) found
between the readers and between the sequences. Table 4 shows the detailed results of the
T2 and PI-RADS scoring of both readers. In 39 cases, a PI-RADS score ≥3 was found as the
most suspicious lesion. In eight of these 39 cases, the most suspicious lesions were found in
the transition zone, and in 31 cases in the peripheral zone. Inter-reader agreement regarding
T2-scoring was 0.823 for T2S and 0.932 for T2DLR (Table 5). Cohen’s kappa for inter-reader
agreement of PI-RADS scoring was 0.905 for T2S and 0.946 for T2DLR (Table 5). Lesion
conspicuity was rated superior in T2DLR by both readers compared to T2S with a median
of 4 (4–4) versus a median of 3 (3–4) for both readers (p = 0.001 and p < 0.001, respectively).
There was no significant difference between lesion size measurements between T2S and
T2DLR (Table 6). Figures 2–5 show examples of T2S and T2DLR.

Table 4. T2 and PI-RADS scoring in standard T2-weighted imaging (T2S) and deep learning recon-
structed T2-weighted imaging (T2DLR).

T2 and PI-RADS Scoring
Reader 1 Reader 2

T2S T2DLR T2S T2DLR

T2 score
1 0 0 0 0
2 21 21 21 21
3 14 13 13 14
4 15 16 16 15
5 10 10 10 10

PI-RADS score
1 0 0 0 0
2 21 21 21 21
3 4 5 5 5
4 25 24 24 24
5 10 10 10 10

Table 5. Intra- and inter-reader agreement.

Intra-Reader Agreement

Reader 1 T2 score 0.931
Reader 2 T2 score 0.905

Reader 1 PI-RADS score 0.960
Reader 2 PI-RADS score 0.946

Inter-Reader Agreement

T2 score T2S 0.823
T2 score T2DLR 0.932
PI-RADS T2S 0.905

PI-RADS T2DLR 0.946

Table 6. Lesion size and conspicuity in standard T2-weighted imaging (T2S) and deep learning
reconstructed T2-weighted imaging (T2DLR).

Characteristics
Reader 1 Reader 2

T2S T2DLR p-Value T2S T2DLR p-Value

Lesion size (mm) 13 (10–16) 13 (11–16) 1 12 (10–16) 13 (10–17) 0.840
Lesion conspicuity 3 (3–4) 4 (4–4) <0.001 3 (3–4) 4 (4–4) 0.001
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Figure 2. A 59-year-old male patient with suspicion of prostate cancer. Example of axial standard T2-weighted TSE imag-
ing (T2S) on the top left-hand side and deep learning–reconstructed (T2DLR) imaging on the top right-hand side. The bottom 
row shows apparent diffusion coefficient (ADC) map on the left-hand side and dynamic contrast-enhanced (DCE) imaging 
on the right-hand side. PI-RADS 5 lesion in the transition zone was found by both readers in both sequences. Motion 
artifacts are especially reduced in T2DLR demonstrating the advantages of reduced acquisition time. 

Figure 2. A 59-year-old male patient with suspicion of prostate cancer. Example of axial standard
T2-weighted TSE imaging (T2S) on the top left-hand side and deep learning–reconstructed (T2DLR)
imaging on the top right-hand side. The bottom row shows apparent diffusion coefficient (ADC)
map on the left-hand side and dynamic contrast-enhanced (DCE) imaging on the right-hand side.
PI-RADS 5 lesion in the transition zone was found by both readers in both sequences. Motion artifacts
are especially reduced in T2DLR demonstrating the advantages of reduced acquisition time.

Cancers 2021, 13, 3593 8 of 12 
 

 

 
Figure 3. A 72-year-old male patient with suspicion of prostate cancer. Example of axial standard T2-weighted TSE imag-
ing (T2S) on the left-hand side and deep learning–reconstructed (T2DLR) imaging on the right-hand side. Similar to Figure 
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Figure 4. A 67-year-old male patient with suspicion of prostate cancer. Example of coronal standard T2-weighted TSE 
imaging (T2S) on the left-hand side and deep learning–reconstructed (T2DLR) imaging on the right-hand side. Advantages 
of T2DLR are demonstrated, regarding less image noise and improved delineation of anatomic structures. 

Figure 3. A 72-year-old male patient with suspicion of prostate cancer. Example of axial standard T2-
weighted TSE imaging (T2S) on the left-hand side and deep learning–reconstructed (T2DLR) imaging
on the right-hand side. Similar to Figure 2, less motion artifacts occurred in T2DLR with sharper
depiction of the prostate.
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Figure 4. A 67-year-old male patient with suspicion of prostate cancer. Example of coronal standard
T2-weighted TSE imaging (T2S) on the left-hand side and deep learning–reconstructed (T2DLR)
imaging on the right-hand side. Advantages of T2DLR are demonstrated, regarding less image noise
and improved delineation of anatomic structures.
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coils in mpMRI without compromising the image quality regarding noise [25]. However, 
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times. DL-based reconstructions can be used for the acceleration of MRI sequences via the 
increased undersampling of the acquired data, e.g., via a variational neural network [16]. 
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Figure 5. A 76-year-old male patient with suspicion of prostate cancer. Example of sagittal standard
T2-weighted TSE imaging (T2S) on the left-hand side and deep learning–reconstructed (T2DLR)
imaging on the right-hand side. This figure demonstrates the advantages of deep learning image
reconstruction, regarding image noise and sharpness of organ structures.

4. Discussion

This prospective study investigated the feasibility and impact of DL image recon-
struction in accelerated T2w TSE imaging of the prostate in three planes. The results
demonstrate that the application of DL image reconstruction in T2-weighted TSE imaging
of the prostate is robust and ready to be clinically implemented, as well as being able to
achieve a reduction of acquisition time above 60% and superior image quality, compared
to a standard T2 acquisition. No significant difference between PI-RADS scoring and T2
scoring could be observed between the sequences.

The potential of DL techniques has been previously demonstrated in several stud-
ies [18–21]. However, most studies have primarily investigated DL methods regarding
diagnosis support, e.g., regarding the detection of cancer or analysis of lung tissue [8,18,22].
It was shown in recent studies on prostate MRI that DL can be applied for cancer detection
and classification and also for registration with histopathological images [10,11,23,24].
Wang et al. demonstrated that DL could also be applied for the omission of endorectal coils
in mpMRI without compromising the image quality regarding noise [25]. However, one of
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the most important recent developments regarding DL is related to MRI acquisition times.
DL-based reconstructions can be used for the acceleration of MRI sequences via the in-
creased undersampling of the acquired data, e.g., via a variational neural network [16]. The
clinical applicability of this technique was already demonstrated in knee MRI examinations
by Recht et al. [13]. However, in this study, the authors used retrospectively undersampled
data. Meanwhile, the potential of DL-based reconstructions for the acceleration and/or
improvement of image quality has also been demonstrated in studies with “real” under-
sampled data, e.g., in prostate MRI and MRI of the pituitary gland [12,17]. However, in a
previous prostate DL MRI investigation only a small number of patients were examined in
only one imaging plane, limiting the generalizability of the results [17]. The present study
demonstrates the first systematic prospective approach with the analysis of three imaging
planes in a much larger patient cohort.

Conventional methods for shortening acquisition times involve parallel imaging
or CS [26–29]. Although by using parallel imaging, a drastic reduction of acquisition
time is theoretically possible, in clinical routine only factors of 2–4 are routinely applied.
The reasons for this are due to SNR loss proportional to the square root of the scan
acceleration and typical artifacts as noise bands [30]. CS is an established method for
MRI acquisition acceleration that is based on redundancy of imaging data; however, a
common disadvantage of this technique is the unnatural appearance of these images, as
well as the long processing time [26]. In the present study, the DL-reconstructed images
were evaluated as superior, regarding both image quality and noise. The very low degree
of noise in some T2DRL images may cause an unrealistic image perception. Despite this
issue, both readers evaluated the appearance of T2DLR images to be very natural, without
significant difference to the T2S.

Despite the drastic shortening of acquisition time and improved image quality, the
question arises as to which clinical benefits might be drawn from these results. MRI of
the prostate has undergone an extraordinary evolution during the last decade, nowadays
leading to a structured and standardized analysis via the PI-RADS classification system [2].
mpMRI is an important tool for biopsy planning and also for prostate cancer detection [4,31].
Furthermore, in the future, mpMRI might play an important role for patients under
active surveillance [32]. However, an increase in demand for an examination does not
automatically lead to an increase in supply, due to the restricted availability of MRI scanners
and comparably long examination times using standard techniques. This is especially
problematic due to the long examination times necessary for mpMRI of the prostate, to
align with current guidelines and to achieve sufficient image and report quality. Therefore,
the demonstrated approach of a drastic reduction of T2 TSE acquisition time above 60%
provides enormous potential for the increase of scanner availability. T2 TSE imaging in
three planes in less than 4 min might even allow ultra-short screening protocols for prostate
cancer to be created. This is even more important, due to the updated PI-RADS version 2.1
with the possibility of acquiring only two planes of T2 TSE imaging and further research
regarding biparametric MRI with omission of dynamic contrast-enhanced imaging [33].

Limitations

This study investigated only DL reconstructions of T2w TSE imaging. No other se-
quences were reconstructed using DL technology. However, due to the time-consuming
acquisition process of high-resolution morphological T2 images, this sequence was pre-
ferred for initial DL implementation. Further studies will be necessary to investigate the
impact on other sequences. Furthermore, it is possible to change the image perception
via a change of DL networks or artificial increase of noise (dithering). However, these
approaches were beyond the scope of our study and, therefore, not further analyzed. Addi-
tionally, as many patients were examined in an outpatient setting, possible biopsy results
were not available and therefore diagnostic accuracy regarding histopathologic correlation
was not part of this study.
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5. Conclusions

This prospective study demonstrates the potential of a new DL reconstruction algo-
rithm in accelerated T2w TSE imaging of the prostate in three planes with a reduction
of acquisition times above 60% combined with an improvement of image quality and a
reduction of artifacts, compared to standard T2w imaging. Concluding, DL reconstructions
may be of great importance for establishing ultrafast screening protocols in prostate MRI.
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