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MOTIVATION Several computational tools exist for correcting gene-independent responses to CRISPR-
Cas9 targeting. Among these, CRISPRcleanR has been the first to correct such biases in an unsupervised
manner (i.e., not requiring input copy-number data of the screened model). To broaden the CRISPRcleanR
user base, we enriched it with original functionalities and developed CRISPRcleanRWebApp, a web applica-
tion front-end to the CRISPRcleanR R package. CRISPRcleanRWebApp provides an intuitive graphical inter-
face and automated workflows for complete CRISPR-Cas9 data processing, analysis, and visualization.
SUMMARY
A limitation of pooled CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes arising
fromcopy-number-amplifiedgenomics regions. To solve this issue,wepreviously developedCRISPRcleanR: a
computationalmethod implemented asR/pythonpackage and in a dockerized version. CRISPRcleanRdetects
and corrects biased responses to CRISPR-Cas9 targeting in an unsupervised fashion, accurately reducing
false-positive signals while maintaining sensitivity in identifying relevant genetic dependencies. Here, we pre-
sent CRISPRcleanRWebApp, a web application enabling access to CRISPRcleanR through an intuitive interface.
CRISPRcleanRWebApp removes the complexity of R/python language user interactions; provides user-friendly
access to a complete analytical pipeline, not requiring anydata pre-processing and generating gene-level sum-
maries of essentiality with associated statistical scores; and offers a range of interactively explorable plots
while supporting a more comprehensive range of CRISPR guide RNAs’ libraries than the original package.
CRISPRcleanRWebApp is available at https://crisprcleanr-webapp.fht.org/.
INTRODUCTION

The advent of genome editing methods based on the clustered

regularly interspaced short palindromic repeats (CRISPR) sys-

tem has revolutionized the way molecular biology is investigated

and potential therapeutic targets are discovered and priori-

tized.1–6 One of themain applications of this technology has con-

sisted of probing each gene’s potential in selectively reducing

the viability of cancer cells upon inactivation,7–10 and large

panels of immortalized tumor cell lines have been CRISPR

screened to identify genomic-context-specific cancer vulnera-

bilities that might be exploited therapeutically.6,11–14

The efficiency of the CRISPR-Cas9 system originates from its

mode of action: the induction of DNA double-strand breaks
Cell Re
This is an open access article under the CC BY-N
(DSBs) inflicted by the Cas9 enzyme on the genomic region

matched by a given single guide RNA (sgRNA).15 DSBs are re-

paired by non-homologous end joining, an error-prone mecha-

nism causing small insertions and deletions, resulting in prema-

ture stop codons and, thus, efficient gene silencing.16–21 A

significant downside of this system is that, when used to target

genomic copy-number (CN)-amplified regions, the Cas9 enzyme

causes a large number of DSBs, resulting in highly cytotoxic ef-

fects independent from the targeted gene’s function or expres-

sion, thus leading to false-positive essential gene calls.1,10,22–26

We and others have proposed computational methods

to address this problem in silico by analyzing sgRNA

counts and log fold changes (logFCs).1,24,25,27 We developed

CRISPRcleanR,1 the first tool working in an unsupervised way,
ports Methods 3, 100373, January 23, 2023 ª 2022 The Authors. 1
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not requiring any information on the CN-alteration profiles of the

screened models as input and not making any assumption on

the properties of the genome to which the gene-independent

responses to CRISPR-Cas9 targeting are due. CRISPRcleanR is

implemented as R (https://github.com/francescojm/CRISPRcleanR)

and Python package (https://github.com/cancerit/pyCRISPRcleanR),

and it is available as an image for docker and cloud environments

(https://dockstore.org/containers/quay.io/wtsicgp/dockstore-

pycrisprcleanr).

To make CRISPRcleanR more accessible, we have enriched it

with original capabilities and developed CRISPRcleanRWebApp, a

web-based, user-friendly, and interactive application that en-

ables using all CRISPRcleanR functionalities through an intuitive

web interface. CRISPRcleanRWebApp wraps the native R pack-

age, avoiding low-level programming language interactions

while providing the same processing and data analysis capabil-

ities as the original package, plus original interactive data/result

exploration modalities.

Here, we provide an overview of CRISPRcleanRWebApp func-

tionalities and data explorationmodalities. Furthermore, we report

results fromcomparingCRISPRcleanRWebApp outcomes obtained

on data from CRISPR-Cas9 screens of the same cell line per-

formed using newly supported libraries. A high level of concor-

dance across these outcomes indicates excellent compatibility

of CRISPRcleanRWebApp across supported libraries.

RESULTS

Overview
CRISPRcleanRWebApp is a client-server web app (Figure 1A) using

a recent release of the CRISPRcleanR R package (v.3.0.0, with

v.0.5.0 presented in Iorio et al.1) through a user-friendly browser

interface. CRISPRcleanRWebApp provides a complete user experi-

ence offering the same native analytical possibilities of

CRISPRcleanR. These encompass the workflows’ usage and in-

teractions plus original and interactive data exploration modalities

and the possibility of processing low-level sequencing files (in

FASTQ/BAM format). It consists of a web browser client single-

page application (SPA) for user interaction and a back-end

providing data storage and processing. It also includes a user

authentication/authorization mechanism through a login system

protecting submitted data and related results with a high level of

privacy (STAR Methods). A set of video tutorials are included on

the homepage of CRISPRcleanRWebApp, guiding the user through

every step: job submission and results identification, access,

exploration, and download. In addition, constant screen respon-

siveness is ensured, allowing a pleasant and effective user inter-

action on various screen sizes, including tablets and smart-

phones. The application is served through a containerized

architecture based at Human Technopole (the hosting research

institute), making CRISPRcleanRWebApp stable, easy to maintain,

and scalable.

The core function of CRISPRcleanRWebApp applies a circular bi-

nary segmentation algorithm28,29 to patterns of sgRNA depletion

logFCs on a per-chromosome basis. It identifies genomic regions

containing sgRNA clusters with sufficiently similar depletion

logFCs, which are, on average, significantly different from those

in the flanking genomic regions. Since it is unlikely to observe
2 Cell Reports Methods 3, 100373, January 23, 2023
the same fitness effect from targeting large numbers of contig-

uous genes, the logFCs in regions characterized by a stretch of

essential genes (at least 3 in the default settings) are deemed as

biased by some local features of the genomic segment (e.g.,

CN amplification). Subsequently, they are corrected via mean-

centering. CRISPRcleanRWebApp also includes a suite of tools to

(1) measure, assess, and visualize the effect of said correction,

(2) assemble gene-level summaries of essentiality and signifi-

cance scores (collapsing sgRNA logFCs by averaging on a tar-

geted gene basis), and (3) assess the performances of a depletion

logFC rank-based classifier of prior known sets of essential/non-

essential genes pre-/post-correction. CRISPRcleanRWebApp also

uses this latter classifier to identify and output genes significantly

depleted at a fixed 5% false discovery rate of prior known non-

essential genes using the approach we introduced and used in

Pacini et al.30,31 Finally, CRISPRcleanRWebApp implements an in-

verse transformation function through which corrected sgRNA

counts are derived from corrected depletion logFCs. These cor-

rected sgRNAs are used by CRISPRcleanRWebApp to compute

other summaries of gene essentiality, and associated significance

scores, via mean-variance modeling (using MAGeCK32).

These featuresmakeCRISPRcleanRWebApp a one-stop tool for

processing and analyzing CRISPR-Cas9 screens, producing re-

sults readily usable and interpretable by non-computational

scientists.

Interface and workflow setup
CRISPRcleanRWebApp implements two workflows: the first one

pre-processes input files (i.e., raw sgRNA counts as FASTQ,

BAM, or pre-computed) as well as normalizes and corrects

sgRNAs counts and depletion logFCs, and the second one imple-

ments a series of data quality control (QC) assessments and

outputs interactive visualizations and result files. The first work-

flow encompasses calls to the complete set of CRISPRcleanR

functions.

FASTQ files are converted to sgRNA counts using the map-

ping sequences included in the sgRNA library annotation

(derived from one of the CRISPRcleanR built-in data objects or

a plain text file provided by the user; STAR Methods). BAM

format is also supported; in this case, the sequence identifiers

are mapped to the guide identifiers to generate the sgRNA

counts (STAR Methods). Users can optionally upload pre-

computed sgRNA counts as plain text files.

For the subsequent normalization step, users can select

different setups. For instance, sgRNA raw counts can be normal-

ized either by scaling sample-wise based on the total number of

reads or via the median ratios method.33 In addition, users can

specify the number of control samples should this be greater

than one (default value). Another option is to specify the minimal

value of read counts for a sgRNA in the control sample for that

sgRNA to be included in the follow-up analyses (default value =

30, as in Behan et al.6).

The second workflow encompasses all steps needed to

assess the quality of a CRISPR-Cas9 screen and visualize the re-

sults. For instance, common quality checks are based on the

computation of the area under the receiver operating character-

istic and precision-recall curves (AUROC and AUPRC, respec-

tively). A profile of gene/sgRNA depletion logFCs is used as a

https://github.com/francescojm/CRISPRcleanR
https://github.com/cancerit/pyCRISPRcleanR
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-pycrisprcleanr
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-pycrisprcleanr


Input
Front-end

Output

Back-end

workflow

Normalisation and
depletion fold-change (FC)
computation

Output
data

FCsnormalised
counts

sgRNA library
annotation

FC Genome sorting
Job summary Results folder

For each chromosome
circular segmentation

FC smoothing

Pre/post-correction QC

Positive/negative control gene-sets
Interactive

plots

WebApp

Copy-number correction

ROC or Precision/Recall curve

Chromosome charts

Interactive plots
Normalisation

Authorization
token

Fo
rm

 v
al

id
at

io
n

Fo
rm

 s
ub

m
is

si
on

control replicates

Job 
submission

form

+
sgRNAs’ counts

OR

control replicates

Job 
submission

form

+
FASTQ/BAM files

Computation of read counts

Mapping of sequencing data to 
annotation file

Static plots
(png format)

Static plots
(pdf format)

Results assessment

Gene-level summary of essentiality

sgRNA FCs
aggregation to

gene FCs
*
*

*
*

significant
significant

significant
non-significant

AUC = 0.864

True negative rate

R
ec

al
l

0

1

2

3

4

1 2

A B

C

1st column: sgRNA IDs
2nd column:

targeted gene’s symbol

3rd column:
Control

sample counts

Following columns:
post-trasfection count

replicates

Figure 1. Overview of CRISPRcleanRWebApp design

(A) Schematic of the CRISPRcleanRWebApp architecture. In the front-end, the user fills out a job submission form and uploads input files in FASTQ/BAM formats or

pre-computed single-guide RNA read counts derived from a genome-wide CRISPR-Cas9 screen, alongside experiment metadata and library specification. The

form is then validated and submitted to the back-end, where the data are processed following the CRISPRcleanR workflow. Results are then made available to

the web interface and are explorable through a set of interactive plots on a dedicated results page.

(B) Step 1 of the CRISPRcleanRWebApp job submission form: the entry point for starting any new job request after secure login. As illustrated, there are fields that

the user is asked to fill out before submitting the job.

(C) Example of tab-separated file containing single-guide RNA pre-computed counts. This file is derived from screening the HT-29 cell line with the Sanger KY

library. The first column contains sgRNA unique identifiers, the second one targeted gene symbols, then counts of the plasmidic DNA, followed by counts

obtained 14 days post-transfection and selection of the library in three replicates.
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Table 1. Fields to be filled in by the user and buttons/checkboxes in the job submission form

Submission

form step Field Type Mandatory? Description

1 (job info) title string yes used to identify the output in

the results section once the

job is completed

charts label string yes a string that will be used as a

title for all the plots generated

by CRISPRcleanR

send e-mail checkbox optional if selected, the user will receive

a notification e-mail upon job

completion

notes string optional additional notes describing the job

2 (settings) minimal no.

reads in the

control sample

integer yes (default value = 30) minimal no. reads that each sgRNA

should have in the control sample (or

on average across control samples)

in order to be included in the

analysis

normalization

method

multiple selection yes (default value = scaling

by total numbers of reads)

normalization method for the read

counts (scaling by total numbers of

reads or median ratios)

3 (library selection) library type mutually exclusive

radio buttons

yes (default value = built-in) switch between one of the natively

supported sgRNA libraries or other

(external) library

built-in library multiple selection yes if the selected library type

is ‘‘built-in’’; inactive otherwise

allows selecting one of the natively

supported sgRNA libraries (AVANA,

Brunello, GeCKO, KY v.1.0, KY

v.1.1, MiniLibCas9, and Whitehead)

library annotation file file upload yes if the selected library type

is ‘‘other’’; inactive otherwise

allows uploading a library

annotation file

4 (files upload) data type mutually exclusive

radio buttons

yes (default value =

sgRNA counts)

allows switching between pre-

computed sgRNA counts (in plain

text format), FASTQ, or BAM files

sgRNA counts file file upload yes if the selected data type

is ‘‘sgRNA counts’’; inactive

otherwise

allows uploading pre-computed

sgRNA counts as plain text file

no. of controls integer yes with default value = 1

(if selected data type is ‘‘sgRNA

counts’’; inactive otherwise)

no. of control samples in the screen,

i.e., columns in the sgRNA count file

FASTQ controls file upload yes if the selected data type

is ‘‘FASTQ’’; inactive otherwise

allows uploading control sample(s)

as FASTQ files

FASTQ samples file upload yes if the selected data type

is ‘‘FASTQ’’; inactive otherwise

allows uploading screen replicates

as FASTQ files

BAM controls file upload yes if the selected data type

is ‘‘BAM’’; inactive otherwise

allows uploading control sample(s)

as BAM files

BAM samples file upload yes if the selected data type

is ‘‘BAM’’; inactive otherwise

allows uploading screen replicates

as BAM files

5 (review) submit button yes job submission finalization
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rank-based classifier of two built-in sets of prior known essential

and non-essential genes (or their targeting sgRNAs). All the re-

sults are then summarized in data plots that can be queried

through interactive visualizations or downloaded in static

graphic formats (i.e., PNG or PDF).

These workflows are seamlessly integrated within CRISPR

cleanRWebApp. After secure login, the user only needs to fill out

the initial parameters, including experimental metadata, in a
4 Cell Reports Methods 3, 100373, January 23, 2023
job submission form (Figure 1B; Table 1) and upload properly

formatted input files containing sequencing data (FASTQ/BAM

files) or the sgRNA pre-computed counts (Figure 1C) to run the

analyses.

If the user opts to upload pre-computed read counts, these

need to be in a comma- or tab-separated plain text with csv or

tsv extensions. In this file, the first two columns must include

unique sgRNA identifiers and their targeted gene symbol,



(legend on next page)
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followed by one or more (in case of multiple controls) columns

containing plasmid/control read counts. The remaining columns

must contain replicates of the sgRNA counts obtained post-se-

lection and amplification in the CRISPR screen (Figure 1C). The

entire form is checked for potentially incorrect file formats or

missing parameter specifications to prevent incomplete or

inconsistent input data. After job submission, the user is notified

of the outcome of this process (i.e., successful submission or

submission error).

The CRISPRcleanRWebApp homepage contains a link to down-

load example input files in a single compressed folder. This

folder contains pre-computed sgRNA read counts obtained by

screening the HT-29 cell line with the Sanger KY library,7 derived

from Behan et al.6 It includes one control sample and three post-

selection/amplification read count replicates. Read counts from a

similar experiment are also included in FASTQ format (one for the

plasmid/control DNA, i.e., test_plasmid.fq.gz, and two for the

screen replicates, i.e., test_sample1.fq.gz and test_sam-

ple2.fq.gz, downsampled to reduce file size). Finally, the example

data folder contains a text file with the annotation of the KY v.1.0

library and a README file describing the folder’s content.

Results exploration and interactive plots
Following job submission, the CRISPRcleanRWebApp back-end

server starts an offline computation, sending an e-mail message

to the user once finished (if this option was selected in the job

submission form). A results entry is immediately listed on the re-

sults page (Figure 2A), where a data table offers a configurable

pagination size for splitting large sets of entries into smaller

chunks. In this table, each row refers to a job submitted by the

logged user, and it shows main details such as submission

date and time, job title, and job status (succeed, failed, or

pending). Furthermore, the table allows job filtering and sorting

according to any of the column fields. Through this page, the

user can access and interactively explore the results obtained

from their job submissions (Figure 2B). The job results page

shows a detailed summary that recapitulates the parameters

specified by the user in the job submission form and a series

of sections allowing exploring and downloading all data and re-

sults and access to all the interactive plots outputted by

CRISPRcleanRWebApp. The downloads section contains links to

all the results, which can be downloaded as zipped folders,

and to all the plots, downloadable as static images in PDF or

PNG format.

All the plots can also be visualized interactively and are equip-

ped with a tooltip providing detailed information when hovering

the pointer on a graphic component. The job results page also

includes a summary gene-signature plot. The other plots are

collected within image accordions, containing clickable thumb-

nails, and partitioned into three different sections (Figure 2B):

normalized counts and depletion logFC charts, chromosome
Figure 2. Results section of CRISPRcleanRWebApp

(A) The results list page: here, the user can find all results obtained from their su

(B) Job results are accessible by selecting a job ID in the results list page. Thepage is

summary plot where all the screened genes are ranked based on their depletion fold

accordions contain clickable thumbnails for opening the related interactive plot ren

plots as static images (in PDF or PNG format), as well as to both input and proces

6 Cell Reports Methods 3, 100373, January 23, 2023
charts, and QC assessment charts. All charts include a zoom

area, often showing a mini graph representation of the overall

chart, where users can select an area to magnify in the main

chart. The gene-signature plot interactively shows results from

the normalization and the depletion logFCs and count correc-

tion, i.e., the chromosome plots. On the top left of the results

page, a plot shows all screened genes with coordinates indi-

cating depletion logFCs (x axis) and depletion rank position

(y axis), respectively (Figure 2B). The user can select one of

seven control gene sets known as essential or non-essential

genes1,34–36 and explore how they rank based on their depletion

logFCs on the right part of the chart. A red line indicates the rank

position, above which a false discovery rate (FDR) of non-essen-

tial genes is <5% (when considering all genes in the previous

rank positions as positive predictions), and it is determined using

the logFC distributions of the BAGEL essential and non-essential

genes (STAR Methods).

The ‘‘normalized counts and depletion logFCs’’ section con-

tains two interactive plots: the first one shows a comparison be-

tween raw and normalized sgRNA read counts (Figure 3A),

whereas the second shows uncorrected depletion logFCs (Fig-

ure 3C) across samples in the input file.

The user can toggle between raw and normalized read counts

by clicking on a switch button in the upper left corner of the cor-

responding interactive plot (Figure 3A). A tooltip provides infor-

mation on a given point, i.e., guide ID, exon, gene, and raw

or normalized read count, when moving the mouse over it.

The same functionalities, except for the switch button, are

accessible in the interactive plot showing the uncorrected

logFCs (Figure 3C).

The ‘‘QC assessment’’ section contains a series of plots sum-

marizing data quality checks performed on the sgRNA/gene-

level depletion logFCs corrected by CRISPRcleanRWebApp

(Figures 3B and 3D). Particularly, they include visualizations of

ROC and precision/recall curves (Figures 3B and 3D) computed

on sgRNA- or gene-level-corrected depletion logFC profiles

when considering rank-based classifiers of essential and non-

essential genes. A tooltip provides information regarding the

logFC threshold, below which a certain level of recall (for the

AUROC plot) or precision (for the AUPRC plot) is achieved.

The ‘‘chromosome charts’’ section (Figure 3E) shows one plot

per chromosome, with segments of sufficiently similar sgRNA

depletion logFCs on the x axis and the corresponding average

logFC pre-/post-CRISPCcleanR correction on the y axis (with

the 23rd and 24th charts corresponding to X and Y/X chromo-

somes, respectively). Each chromosome chart has two check-

boxes in the upper left corner that allow the user to focus on

the segments (black lines) or the components of the sgRNA

depletion logFC (green dots). A switch button in the upper right

corner allows toggling between uncorrected and corrected

logFCs. Also in this case, the segment tooltip shows relevant
bmitted jobs.

madeof several sections including a detailed descriptionof the job, an interactive

changes, with overlaid signatures of control genes. On the bottom, three image

dered by the web application. Finally, the downloads section includes links to all

sed data and results (as unique zipped folder of plain text files).
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information about the segment location on the genome and

average depletion logFC of the mapped sgRNAs; the sgRNA

tooltip provides information about the gene portion targeted by

the sgRNA and depletion logFCs (uncorrected or corrected).

Extended sgRNA libraries’ support
The original version of CRISPRcleanR (v.0.5.0) supported only the

AVANA37 and Sanger KY6,7 CRISPR-Cas9 sgRNA libraries.

CRISPRcleanRWebApp builds upon and uses CRISPRcleanR

v.3.0.0, which we have extended to support the following addi-

tional genome-wide libraries: Brunello,38 GeCKOv2,5,39 White-

head,9,10,40 and the recent MiniLibCas941 library of minimal

size. Except for GeCKOv2, all these libraries’ (publicly available)

annotations include genomic coordinates of the sgRNAs’ tar-

geted sequences. CRISPRcleanR needs this information to

genome sort sgRNA depletion logFCs before correction. For

the GeCKOv2 library, this information was not available. We re-

mapped the GeCKOv2 sgRNA sequences onto the human

genome (GRCh38 - hg38) and assembled a CRISPRcleanR-

compatible annotation object (STAR Methods) for this library.

CRISPRcleanRWebApp also supports any other genome-wide

CRISPR library provided that the user uploads a custom library

annotation file. In this case, the sgRNA sequences in the read

count files are matched to the ones provided in the library

annotation file, and the workflow proceeds in the case of

successful retrieval of at least 80% of the guides (STAR

Methods). This functionality further extends the applicability of

CRISPRcleanRWebApp to a larger pool of CRISPR screens per-

formed on 2D cell lines or alternative cancer models (e.g., pri-

mary cultures, organoids, or patient-derived xenografts).

We tested the ability of CRISPRcleanR to support the

extended set of libraries described above in terms of correction

performances and results conservation across analyses of

screens of the same cell line. We tested CRISPRcleanR on

screens performed with different genome-wide CRISPR-Cas9 li-

braries on HT-29, a human cancer cell line derived from colo-

rectal carcinoma that is frequently used to assess the sensitivity

and specificity of CRISPR-Cas9 libraries, and with multiple pub-

lic available CRISPR screen datasets.6,37

First, we compared the extent of CRISPRcleanR correction on

the different screens. We contrasted gene depletion logFCs

pre- versus post-correction and compared differences across li-

braries (Figure 4A). Before this comparison, we averaged

sgRNA-level depletion logFCs on a targeted gene basis to obtain

gene-level depletion logFCs. As the tested screens presented

different depletion logFC ranges and phenotype penetrance

due to inherent differences in the employed sgRNAs’ sequences
Figure 3. Interactive plots rendered by CRISPRcleanRWebApp

(A and C) Overview of the normalization plots: (A) boxplots for raw and normalized

CRISPRcleanR uncorrected log fold changes (logFCs). Both plots have a vertica

When hovering on each point, a tooltip shows information regarding the correspo

and-whisker plots show interquartile ranges and 5th–95th percentiles; centers in

(B and D) Quality control (QC) assessment plots. Examples of interactive receiver

from profiles of corrected depletion logFCs when considering them as rank-based

essential and non-essential genes.

(E) Interactive plot showing the sgRNA logFCs’ (green dots) obtained targeting ge

copy numbers (black lines), which are corrected by CRISPRcleanR. Each point

information such as chromosome number, guide ID, start and end position, and
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and for interscreen comparability, we concatenated screen-wise

the pre- and post-correction logFC vectors. We applied a min-

max normalization (STAR Methods) and then split each normal-

ized vector back into the original components and computed dif-

ferences between pre-/post-corrected logFCs.

We observed an average median of computed logFC differ-

ences across libraries equal to �0.012 (min = �0.002 for KY

and max = �0.02 for GeCKOv2) and an average interquartile

range equal to 0.0245 (min = 0.015 for MiniLibCas9 and max =

0.037 for AVANA; Figure 4A). These results show that the

CRISPRcleanR correction has limited effects on the whole

screen; it regards small sets of genes, and its minimal impact

is consistent across screens of the same cell line performed

with the different supported libraries.

Next, we checked the extent of CRISPRcleanR correction

consistently affecting each gene’s logFC across screens. We

computed a normalized Shannon entropy (also known as effi-

ciency) for each gene, quantifying the homogeneity of the

correction effects on its logFC across screens. A low entropy

value indicated that a gene’s logFC was affected consistently

across screens, whereas a high entropy value indicated the

opposite (STAR Methods). We coded the gene-wise correction

outcomes in a given screen as follows. A 0 indicated that the

logFC of the gene under consideration was not corrected by

CRISPRcleanR, i.e., the logFCs of its targeting sgRNAs were

not detected as biased. A 1 indicated a positive correction,

meaning that the sgRNAs targeting the gene under consideration

were mapped onto a genomic segment detected as biased to-

ward negative values by CRISPRcleanR and that their logFC

increased. Following the same logic, a �1 indicated a negative

correction. Applying this coding across all screens yielded for

each gene a vector of 6 entries (one per each tested library)

with values in {�1, 0, 1}, from which we computed the normal-

ized Shannon entropy.

A summary of the results is provided in Figure 4B, showing the

percentages of genes across efficiency values and concordance/

discordance of correction effects for each value. For example, the

first bar from the left (corresponding to a 0 efficiency) accounted

for all the genes for which the correction outcomes were identical

across screens. The second bar accounts for the corrections that

agree across all the screens but one, and so on.

For over 95% (Figure 4B) of the genes, we observed the same

correction effect in at least four screens out of six (effi-

ciency < 0.63), with the absolute majority (42%) showing

different outcomes in a 4:2 proportion. Finally, only 4.31% of

the genes presented all three different correction outcomes

across screens, and 0.39% presented them equally partitioned
single-guide RNA (sgRNA) read counts across samples in the input file, and (C)

l scrollbar on the right that allows zooming in on specific portions of the plot.

nding sgRNA, i.e., guide ID, exon, gene, and read count/depletion logFC. Box-
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nes in the chromosome 1. The logFCs are clustered within segments of equal

is an sgRNA, and, when moving the mouse over it, a tooltip will show related
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Figure 4. Assessment of CRISPRcleanR correction across different supported CRISPR-Cas9 libraries on the HT-29 cell line

(A) Comparison of CRISPRcleanR pre- and post-correction depletion fold changes (FCs) across screens. Box-and-whisker plots show interquartile ranges and

5th–95th percentiles; centers indicate medians.

(B) Normalized Shannon entropy (efficiency) of gene-wise correction outcomes (�1, 0, 1) across screens. Only genes shared across libraries were considered.

(C) Recall at 5% FDR of six prior known gene sets observed when considering pre- and post-correction (as indicated by the different colors) sgRNA logFCs’

profiles as rank-based classifiers.
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(i.e., two �1s, two 0s, and two 1s). These results show that the

CRISPRcleanR correction affected individual genes’ logFCs ho-

mogeneously across screens of the same cell line performed

with the different supported libraries.
Finally, we measured the extent to which the CRISPRcleanR

correction tendency in reducing false-positive gene-essentiality

calls while maintaining true-positive calls was conserved across

processed screens. To this aim, we considered six control sets
Cell Reports Methods 3, 100373, January 23, 2023 9
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of genes (Table S1): the Hart2017 essentials34 and Hart2014 non-

essentials,35 respectively, as positive and negative controls, plus

knownessential gene sets derived from theMSigDB30,36 account-

ing for cellular housekeeping processes and two final sets of HT-

29-specific putative negative controls, i.e., CN-amplified genes

(from two different public resources),42–44 as well as amplified

and non-expressed genes (FPKM<0.1 inHT-29; STARMethods).

For each gene set, we computed the recall at 5% FDR (STAR

Methods) for pre- and post-corrected logFCs across the six

screens (Figure 4C). For the negative controls (expected to be

biased), we observed consistent reductions in recall across

screens (median = 29.48%, 19.65%, and 20.53%, respec-

tively). In contrast, for the positive controls, we observed negli-

gible recall reductions across screens (median = 3.61%,

0.16%, and 1.74%, respectively). Thus, CRISPRcleanR can

effectively correct the logFCs of amplified gene sets with high

specificity without compromising the logFCs of other genes

regardless of their phenotype intensity and employed sup-

ported library.

DISCUSSION

We presented CRISPRcleanRWebApp, a web-based application

integrating the complete suite of functionalities of the CRISPR

cleanR R/python package.1 Differently from other methods,

CRISPRcleanR works in an unsupervised way, not requiring

any input related to the gene CN profiles of the processed/

screened model. In addition, CRISPRcleanR corrects screens

on a single-sample basis, preserving the overall heterogeneity

of the data and making this tool especially suited for identifying

context-specific dependencies and biomarkers.30

We showed that CRISPRcleanRWebApp does not require any

prior knowledge of programming languages like R and python

and offers a user-friendly interface giving full workflow control

and fully customizable execution of the correction procedure

on user-provided data.

The homepage of CRISPRcleanRWebApp includes comprehen-

sive video tutorials and toy datasets for testing. The job submis-

sion form can take in input FASTQ/BAM files (subject to quality

checks and mapped to the library annotation file to obtain

sgRNA counts) or pre-computed sgRNA counts in a plain text

format. A results page allows users to download the output

data and explore results through a portfolio of interactive plots.

We also enabled users to upload data from screens performed

with custom libraries: in this case, sgRNA IDs are checked for con-

sistency with respect to the library annotation file. We believe that

this feature will extend the services of CRISPRcleanRWebApp to a

much larger audience, allowing the analysis of CRISPR-Cas9

screens performed in various models besides 2D cell lines (e.g.,

primary cultures, organoids, or patient-derived xenografts). These

screens are amenable to CRISPRcleanR correction provided they

are executed using libraries with sufficient sgRNA density and

related annotation.

Here,wehaveprovidedanoverviewof theCRISPRcleanRWebApp

implementation, design, and interface and demonstrated that

it yields consistent results across different technical settings

and supported libraries. The features provide an easy-to-use

framework for pre-processing and correcting data derived
10 Cell Reports Methods 3, 100373, January 23, 2023
from CRISPR-Cas9 screens, which might significantly widen the

CRISPRcleanR user community.
Limitations of the study
While CRISPRcleanRWebApp is a user-friendly web application

accessible to non-computational scientists, its current version

still lacks some functionality of the original package, which we

will include in subsequent versions. For instance, we are plan-

ning to extend the number of input parameters upon job submis-

sion as experienced users may require more advanced setups.

In addition, CRISPRcleanR is equipped with functions to test

the depletion logFCs of sgRNAs targeting different reference

gene sets (for example, prior known essential genes or CN-

amplified genes) for statistically significant differences concern-

ing the background pre- and post-CRISPRcleanR correction.

This analysis aims to show that the CRISPRcleanR correction

reduces false-positive essential gene calls while maintaining

true-positive rates. We will visually render all these functions in

future versions of CRISPRcleanRWebApp.

Furthermore, CRISPRcleanR includes the ccr.impactOnPhe-

notype function, which computes the percentages of genes

whose depletion signal is attenuated post-CRISPRcleanR

correction or is potentially ‘‘distorted’’ (i.e., loss-of-fitness genes

in the uncorrected screens becoming gain-of-fitness genes

post-correction, and vice versa). In Iorio et al.,1 we demonstrated

that the amount of this distortion introduced by CRISPRcleanR is

negligible; however, this analysis will also be possible in future

versions of CRISPRcleanRWebApp.

Finally, another featurewe plan to integrate into future versions

is the possibility to pipeline CRISPRcleanRWebApp with existing

tools that robustly estimate gene essentiality after depletion

logFC correction supervisedly (like BAGEL).45,46
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akoc, E., van der Meer, D., Barthorpe, A., Lightfoot, H., Jaaks, P., et al.

(2021). Integrated cross-study datasets of genetic dependencies in can-

cer. Nat. Commun. 12, 1661.

31. Dempster, J.M., Pacini, C., Pantel, S., Behan, F.M., Green, T., Krill-Burger,

J., Beaver, C.M., Younger, S.T., Zhivich, V., Najgebauer, H., et al. (2019).

Agreement between two large pan-cancer genome-scale CRISPR

knock-out datasets. Nat. Commun. 10, 5817.

32. Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu,

J.S., Brown, M., and Liu, X.S. (2014). MAGeCK enables robust identifica-

tion of essential genes from genome-scale CRISPR/Cas9 knockout

screens. Genome Biol. 15, 554.

33. Maza, E., Frasse, P., Senin, P., Bouzayen,M., and Zouine,M. (2013). Com-

parison of normalization methods for differential gene expression analysis

in RNA-Seq experiments: a matter of relative size of studied transcrip-

tomes. Commun. Integr. Biol. 6. e25849.

34. Hart, T., Tong, A.H.Y., Chan, K., Van Leeuwen, J., Seetharaman, A., Are-

gger, M., Chandrashekhar, M., Hustedt, N., Seth, S., Noonan, A., et al.

(2017). Evaluation and design of genome-wide CRISPR/SpCas9 knockout

screens. G3 7, 2719–2727.

35. Hart, T., Brown, K.R., Sircoulomb, F., Rottapel, R., and Moffat, J. (2014).

Measuring error rates in genomic perturbation screens: gold standards

for human functional genomics. Mol. Syst. Biol. 10, 733.

36. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,

and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles. Proc.

Natl. Acad. Sci. USA 102, 15545–15550.

37. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Dono-

van, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Opti-

mized sgRNA design to maximize activity and minimize off-target effects

of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191. https://doi.org/10.1038/

nbt.3437.
12 Cell Reports Methods 3, 100373, January 23, 2023
38. Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullen-

der, M.E., Vaimberg, E.W., Goodale, A., Root, D.E., Piccioni, F., and

Doench, J.G. (2018). Optimized libraries for CRISPR-Cas9 genetic

screens with multiple modalities. Nat. Commun. 9, 5416. https://doi.org/

10.1038/s41467-018-07901-8.

39. Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and

genome-wide libraries for CRISPR screening. Nat. Methods 11,

783–784. https://doi.org/10.1038/nmeth.3047.

40. Park, R.J., Wang, T., Koundakjian, D., Hultquist, J.F., Lamothe-Molina, P.,

Monel, B., Schumann, K., Yu, H., Krupzcak, K.M., Garcia-Beltran,W., et al.

(2017). A genome-wide CRISPR screen identifies a restricted set of HIV

host dependency factors. Nat. Genet. 49, 193–203.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HT-29 raw read counts from AVANA library (Doench et al. 2016)37 https://github.com/francescojm/

CRISPRcleanR

HT-29 raw read counts from Brunello library (Sanson et al. 2018)38 https://github.com/francescojm/

CRISPRcleanR

HT-29 raw read counts from GeCKOv2

library

(Shalem et al. 2014; Sanjana et al. 2014)5,39 https://github.com/francescojm/

CRISPRcleanR

HT-29 raw read counts from KY library (Tzelepis et al. 2016; Behan et al. 2019)6,7 https://github.com/francescojm/

CRISPRcleanR

HT-29 raw read counts from MinLibCas9

library

(Gonçalves et al. 2021)41 https://github.com/francescojm/

CRISPRcleanR

HT-29 raw read counts from Whitehead

library

(Wang et al. 2014; Wang et al. 2015; Park

et al. 2017)9,10,40
https://github.com/francescojm/

CRISPRcleanR

Software and algorithms

CRISPRcleanRWebApp This manuscript https://crisprcleanr-webapp.fht.org/(code

https://doi.org/10.5281/zenodo.7347952)

CRISPRcleanR (v3.0.0) This manuscript https://github.com/francescojm/

CRISPRcleanR

https://doi.org/10.5281/zenodo.7347915

R (v4.2.1) The R foundation https://www.r-project.org/

Other

Hart2014 reference nonessential gene-set (Hart et al., 2014)35 https://github.com/hart-lab/bagel

Hart2017 reference essential gene-set (Hart et al., 2017)34 https://github.com/hart-lab/bagel

MSigDB independent essential (Subramanian et al. 2005; Iorio et al.

2018)1,36
https://github.com/francescojm/

CRISPRcleanR

GDSC amplified (Iorio et al. 2016)42 https://github.com/francescojm/

CRISPRcleanR

CCLE amplified (Mermel et al. 2011)43 https://github.com/francescojm/

CRISPRcleanR

Amplified non-expressed (Iorio et al. 2016)42 https://github.com/francescojm/

CRISPRcleanR
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and analyses should be directed to and will be fulfilled by the lead contact, Francesco

Iorio (francesco.iorio@fht.org).

Material availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data, whose accession numbers are listed in the key resources table.

d CRISPRcleanRWebApp is available at: https://crisprcleanr-webapp.fht.org (front-end code https://doi.org/10.5281/zenodo.

7347952). The latest version of the original CRISPRcleanR package (v3.0.0) can be found at the following GitHub repository:

https://github.com/francescojm/CRISPRcleanR (https://doi.org/10.5281/zenodo.7347915).

d The raw read count files obtained from six screens performed on the HT-29 cell line using different genome-wide CRISPR-Cas9

libraries are available as external data in the CRISPRcleanR package: https://github.com/francescojm/CRISPRcleanR/tree/

master/inst/extdata.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Web-application architecture
Front-end

The front-end web application (also known as client) is implemented as a Single Page Application (SPA). Dynamic data is retrieved

from a backend API server, returning data in JSON format, which is then used from the SPA to render HTML/CSS accordingly.

Example files are made downloadable from the API server, while all job related files are managed through a dedicated file server.

The client is based on Vue.js JavaScript framework (https://vuejs.org/). Interactive charts are implemented as scalable vector

graphics documents managed through Vue components leveraging the D3.js library (https://d3js.org/). Design and styling were

done entirely from scratch with Sass stylesheets, compiled as CSS during the application bundling process. Screen layout and

responsiveness is achieved with Flexbox, CSS Grid layouts and Javascript. The bundled web application is served through a Dock-

erized (https://www.docker.com/) version of Nginx (https://www.nginx.com/), hosted on a virtual machine within HT IT infrastructure.

Back-end

The back-end consists of a docker multi-container app built upon the following containers and underlying technologies (see also

Methods S1):

d Application Programming Interface (API) server: FastAPI python framework (https://fastapi.tiangolo.com/)

d File server: NodeJS with Express.js framework

d Background queue: Celery Python (https://docs.celeryproject.org/en/stable/getting-started/introduction.html)

d Message Broker: Redis (https://redis.io/)

d Database: MongoDB (https://www.mongodb.com/)

An on premises S3 bucket compliant object storage is used to store all job related files (both input and output).

Application Programming Interface

The API server is implementedwith FastAPI, amodern and popular Python API framework. It is provided as a Docker container based

on a python bullseye official docker image.

File server

A NodeJS server is used to manage the files’ upload and download. This allows to directly and reliably stream data files to and from

the S3 bucket, since it is not possible with FastAPI. A redis-based pub-sub messaging system exists to ensure the file server informs

back the API main server about the upload outcome.

Task queue and message broker

To maintain the backend API server responsive while processing a job, we implemented an offline job processing mechanism.

More specifically, job processing is delegated to another container that receives jobs and processes them asynchronously with

respect to the actual job submission, following a producer-consumer pattern. When the backend receives a new submitted job,

this is forwarded to the background task queue through the message broker to inform consumers about new tasks to be

executed.

Background processing is implemented through Celery, a common python task queue manager. Celery is executed on a dedi-

cated Docker container based on a python bullseye official docker image, further customised to perform R processing. This custom-

ised image installs a Debian-compatible R distribution, along with all required CRISPRcleanR dependencies. Communication with

CRISPRcleanR package is performed throughRpy2 (https://rpy2.github.io/), a python package that enables us to register R functions

and environments into python wrapping objects, such that R interactions can be directly executed from python code.

During job processing, the background queue container instantiates a single celery consumer, called worker, that consumes job

computation requests from the message queue. In order to obtain parallel processing over multiple jobs, distinct independent

workers can be spawned on container replicas by properly configuring the underlying container orchestrator. The message broker

is then able to automatically send new job computations according to each worker’s current workload, while still avoiding the same

job execution to be performed on different workers. The communication between FastAPI backend and task queue is accomplished

through a Redis-based message broker, the latter running on a dedicated container.

Database container

Our database container runs a MongoDB instance, a cross-platform document-oriented NoSQL database. In addition, the backend

container communicates withMongoDB using aMotor asyncio driver (https://motor.readthedocs.io/en/stable/), whereas the Celery-

based background queue uses a Pymongo driver (https://pymongo.readthedocs.io/en/stable/), not being based on asyncio

patterns.

Security

CRISPRcleanRWebApp implements an authorization schema based on OAuth2 protocol (https://datatracker.ietf.org/doc/html/

rfc6749), following the Authorization Code Flowwith a public client. A further layer of authentication is provided through OpenID Con-

nect (https://openid.net/connect/), which enables us to transmit user information, such as username and e-mail, to the client appli-

cation. This highly secure schema allows for great flexibility in configuration and it might easily be extended to implement federated/

third party access through external acknowledged identity providers.
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The security schema is implemented through Keycloak (https://www.keycloak.org/), an integrated authorization/authentication

system which provides a comprehensive solution for managing users and providing an authorization server for managing authenti-

cation and applications’ tokens. Our hosting infrastructure at Fondazione Human Technopole is equipped with a dedicated Keycloak

system made accessible both from the backend (for token validation) and frontend (for issuing tokens).

CRISPRcleanRWebApp management of input files
Computation of read count from FASTQ or BAM files

CRISPRcleanRWebApp accepts trimmed FASTQ as well as BAM file formats as input to derive single-guide RNA (sgRNA) counts. For

the FASTQ format, a preliminary quality control is performed on the sequencing data based on the quality scores of the correspond-

ing nucleotide sequences. The sgRNA sequences are then mapped to the library index, which it’s generated from the sequences

retrieved in the library annotation file using the Rsubread R package.47 In order to provide the most reliable counts estimation

the alignment doesn’t allow N bases, mismatches or gaps. All alignment summary statistics are provided in a text file available

in the downloadable results. BAM files generated by the alignment step or supplied as input are processed using the

GenomicAlignments R package.48 The occurrence of the ‘‘seqnames’’ of the aligned reads are counted andmatchedwith the sgRNA

IDs in the library annotation to provide the counts for each sample. All sample count data are then merged to create a count matrix

that is downloadable from the results page and used in the following steps of the pipeline.

Upload of custom genome-wide CRISPR-Cas9 library

In case of upload of a customgenome-wideCRISPR library (i.e. not part of the six built-in libraries of CRISPRcleanRWebApp), the anno-

tation file must include a ‘‘seq’’ field including the sgRNA sequences used in the screening. The application will then convert those

sequences in a library index suitable for the alignment and then proceed to evaluate the read counts as described for the standard

libraries. Thematching has to be exact (i.e. nomismatches allowed), and at least 80%of the guidesmust be recapitulated to proceed

with the workflow of the application and correct the depletion fold-changes for biases.

Validation of the supported CRISPR-Cas9 libraries in the new version of CRISPRcleanR
Data acquisition

We validated CRISPRcleanR (v2.2.1) on six screens obtained from transducing popular CRISPR-Cas9 libraries into the HT-29 cell

line. We tested the following libraries: AVANA,37 Brunello,38 GeCKOv2,5,39 KY,6,7 MiniLibCas941 and Whitehead.9,10,40 All raw read

count files are available in the followingGitHub repository: https://github.com/francescojm/CRISPRcleanR/tree/master/inst/extdata.

GeCKOv2 library mapping onto the human genome

We mapped the protospacer sequence of each sgRNA in the GeCKOv2 library onto the human genome (GRCh38 - hg38) using the

short read mapping method bwa-mem. Most of the reads were mapped uniquely to the reference genome sequence and their po-

sitions were found within their targeted genes. On the other hand, the remaining guides were mapped ambiguously and with some

mismatches. We remapped them to the reference human genome using first BLATt and then BLASTn. For the guides mapped onto

multiple locations, we only considered those included in the targeted genes declared in the original library annotation file. The anno-

tations of the genes were extracted fromGencode v38. Finally, the remaining sequences weremapped to the reference genomewith

mismatches, and the positions with the minimum mismatches within the targeted genes were selected. All the guides were mapped

to a position on the reference genome within their targeted genes.

Comparison of CRISPRcleanR pre- and post-correction logFCs across screens

To compare the differences in log fold-changes (logFCs) pre- and post-correction, we first normalised the sgRNAs’ raw read counts

by scaling for the total number of reads, after filtering out those guides having a plasmid read count less than 30. This is implemented

in the ccr.NormfoldChanges function and resulted in uncorrected depletion logFCs. Following the pipeline implemented in https://

github.com/francescojm/CRISPRcleanR/blob/master/Quick_start.pdf, we applied the ccr.GWclean function with default settings

to correct the logFCs of each screen.

We obtained gene-level logFCs by averaging the score of sgRNAs targeting the same gene, and considering only the genes in

common across the six screens, leading to 8473 genes. In order to reduce technical variability due to the usage of different libraries,

we applied for each screen a min-max normalisation on the concatenated vector of pre- and post-corrected gene-level logFCs. We

then split back the vector in pre- and post-corrected logFCs, and computed gene-wise logFC differences across screens.

Gene-wise correction agreement across screens

In information theory, Shannon entropy is used to quantify the uncertainty of a random variable. It is formally defined as the average

auto information associated with each outcome of the random variable. Efficiency (or normalised Shannon Entropy) is defined as the

Shannon entropy divided by the maximum value that the entropy can assume (which depends on the size of the spectrum of the

random variable under consideration). In our case: the lower the efficiency the higher the homogeneity in the CRISPRcleanR out-

comes across screens. Thus, a low efficiency score means a high agreement of correction outcomes across the screens. We

computed gene-wise normalised Shannon entropy across screens when considering the three possible correction outcomes

outputted by the ccr.GWclean function.

We considered only the genes in common across the screens, leading to 8473 genes, and removed those found at the conjunction

of two segments, totalling to 7923 genes. Then, we computed the gene-wise normalised Shannon entropy Hn, following the

Equation 1:
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Hn =
Hg

Hmax

=

� Pc

i = 1

pðgiÞ,log2ðpðgiÞÞ
log2ðCÞ

(Equation 1)

whereHg is the Shannon entropy of a gene g, computed as the sum over the variable’s probability values, gi˛ {-1, 0, 1} andC is the

total number of possible correction outcomes (i.e. 3 in this case), divided by the maximum expected entropy (log2 of C).

Recall of genes in six predefined gene-sets following CRISPRcleanR correction

We assessed the effect of CRISPRcleanR correction on six predefined sets of genes, namely Hart2017 essential, Hart2014 nones-

sential, independent sets of essential genes derived from theMSigDB, copy number amplified genes fromGDSC dataset, copy num-

ber amplified genes from CCLE dataset, and copy number amplified genes from GDSC that were not expressed (FPKM <0.1 in

HT-29).

For each screen, we computed the essentiality threshold at 5% false discovery rate (FDR) for the pre- and post-corrected screens,

using the Hart2017 essential and Hart2014 nonessential as source of reference essential (EG) and nonessential genes (NEG), respec-

tively. In particular, we ranked the gene-level depletion logFCs of the EG and NEG in increasing order. For each rank position i, we

calculated a set of predicted fitness genes (PFG) as follows:

PFGðiÞ =
�
g ˛ EGWNEG

��rank
�
FCg

�
R i

�
; (Equation 2)

where rank(FCg) is the corresponding rank position of gene g in the reference gene set based on its depletion logFC. The ranked list is

then used to calculate positive predictive values (PPV) for the ith rank position as follows:

PPVðiÞ = jPFGðiÞXEGj=jPFGðiÞj: (Equation 3)

We determined the highest threshold of depletion logFC (logFC*) in rank position i* such that PPV(i*)R 0.95, which is equivalent to

an FDR of 5%. We considered all genes with a logFC < logFC* as essential for the viability of HT-29. For each gene-set S, we

computed the recall by dividing the size of genes gs below the 5%FDR threshold (logFC*) by the total size of gs included in the screen,

according to (4):

Recall =
jgs < log2 FC

�j
jgsj (Equation 4)
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