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Abstract
Type 2 diabetes mellitus (T2DM) is one of the major chronic diseases, whose preva-
lence is increasing dramatically worldwide and can lead to a range of serious compli-
cations. Wnt ligands (Wnts) and their activating Wnt signalling pathways are closely 
involved in the regulation of various processes that are important for the occurrence 
and progression of T2DM and related complications. However, our understanding 
of their roles in these diseases is quite rudimentary due to the numerous family 
members of Wnts and conflicting effects via activating the canonical and/or non-
canonical Wnt signalling pathways. In this review, we summarize the current findings 
on the expression pattern and exact role of each human Wnt in T2DM and related 
complications, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, 
Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11 and 
Wnt16. Moreover, the role of main antagonists (sFRPs and WIF-1) and coreceptor 
(LRP6) of Wnts in T2DM and related complications and main challenges in design-
ing Wnt-based therapeutic approaches for these diseases are discussed. We hope 
a deep understanding of the mechanistic links between Wnt signalling pathways 
and diabetic-related diseases will ultimately result in a better management of these 
diseases.
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1  | INTRODUC TION

Diabetes, caused by the deficiency of insulin secretion and/or insulin 
resistance and characterized by chronic hyperglycaemia, is currently 
one of the most important metabolic diseases worldwide. Diabetic 
patients have a higher risk of developing a series of acute metabolic 
complications, such as diabetic ketoacidosis, and chronic vascular 
complications (angiopathy) including microvascular diseases such 
as diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), 
diabetic nephropathy (DN) and diabetic foot, and macrovascular 
diseases including cardiovascular disease manifesting as myocar-
dial infarction and cerebrovascular disease resulting in strokes.1,2 
The prevalence and incidence rate are increasing rapidly in most 
countries, according to the latest data from International Diabetes 
Federation, more than 463 million adults are suffering from diabetes 
and the number is expected to rise to 700 million by 2045. Diabetes 
caused 4.2 million deaths and 10% of total health expenditure on 
adults in 2019. More severely, about 50% people with diabetes have 
not been diagnosed and about 79% of adults with diabetes are liv-
ing in developing countries. Diabetes is mainly divided into type 1 
diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and ges-
tational diabetes mellitus (GDM); among them T2DM is the most 
common type and accounts for above 90% of all diabetes cases.3 It 
is commonly believed that insulin resistance is the initial factor for 
the occurrence of T2DM, whereas dysfunction of pancreatic β-cells 
is the determinant factor.4,5 There is no cure for T2DM currently, 
the cornerstone of the treatment is reducing insulin resistance and 
stimulating pancreas to secret more insulin. Therefore, it is urgent to 
reveal the underlying pathogenic mechanisms of T2DM for a better 
therapeutic management.

The aetiology of T2DM has not been fully elucidated, and it is 
considered to be a complex polygenetic disease attributed to the 
interaction between hereditary predisposition and multiple ac-
quired disposition; the latter of which includes the risk factors such 
as overweight, unhealthy diet, physical inactivity, increasing age 
and hypertension.6,7 The abnormalities in many important signalling 
transduction pathways are critically involved in the occurrence and 
progression of T2DM and related complications.8-11 Among them 
Wnt signalling pathways attract more attention due to the essen-
tial role in the embryogenesis and tissue homeostasis, and notorious 
role in the pathogenesis of multiple human diseases, especially in 
cancers.12-14 The relationship between Wnt signalling pathways and 
T2DM was firstly documented by Grant et al in 2006; they found 
genetic polymorphism of TCF7L2 gene, which encodes an import-
ant transcription factor TCF4 in Wnt signalling pathways, contrib-
uted to the risk of T2DM through regulation of the expression of 
proglucagon gene.15 Subsequently, emerging studies proved that 
dysregulation of Wnt signalling pathways participate in the occur-
rence and progression of T2DM through directly influencing the 
differentiation and proliferation of pancreatic β-cells and the secre-
tion and action of insulin.16-18 However, due to the numerous com-
ponents and resulting intricate networks, the role of Wnt pathways 
in the pathogenesis of T2DM and related complications seems to 

be contradictory, sometimes they function as protectors, while their 
activation is simultaneously required for the development of these 
disorders, and our understanding on their relationship is still quite 
rudimentary. Therefore, a more comprehensive understanding of 
their relationship will be helpful for a better therapeutic effect.

2  | THE C ANONIC AL AND NON-
C ANONIC AL WNT SIGNALLING PATHWAYS

The Wnt signalling pathway is roughly divided into β-catenin-
dependent (canonical) and β-catenin-independent (non-canonical) 
signalling pathways, which activates distinct intracellular signalling 
pathways (Figure 1). Among them the canonical Wnt signalling gets 
more attention and is well understood.19 The most crucial event in 
this signalling is the regulation in the turnover of β-catenin, a pivotal 
component that acts as a transcriptional co-activator in this cascade. 
In resting cells, the production of Wnts is suppressed and the protein 
level of cytoplasmic β-catenin is low due to the activity of destruc-
tion complex composed of Axin, adenomatosis polyposis coli (APC), 
casein kinase 1 (CK1α) and glycogen synthase kinase (GSK-3β). β-
catenin is captured and phosphorylated by the destruction com-
plex,20 followed by ubiquitinated by β-transducin repeat-containing 
protein (β-TRCP) and dispatched to the proteasome for complete 
degradation,21 without enough β-catenin in nucleus, the bidirectional 
T cell factor/lymphoid enhancer–binding factors (TCF/LEF) begin to 
recruit transducin-like enhancer protein (Groucho/TLE) and histone 
deacetylases (HDACs) to form a repressive complex, thus to inhibit 
the transcription of Wnt target genes. Conversely, the activation 
of canonical Wnt signalling is initiated by the formation of complex 
among Wnts, their cognate receptor Frizzled (Fzd) and coreceptor 
low-density lipoprotein receptor–related protein 5/6 (LRP5/6) on the 
cell membrane. Consequently, the effector protein dishevelled (DVL) 
is recruited and polymerized to inactivate the destruction complex, 
which leads to the stabilization and accumulation of β-catenin in 
the cytoplasm and the subsequent translocation into the nucleus 
to form an active complex with TCF/LEF by removing TLE/Groucho 
complexes and recruiting transcriptional co-activators such as B cell 
CLL/lymphoma 9 (BCL9), Brahma-related gene 1 (BRG1), CBP/p300 
and Pygo. Finally, the transcription of Wnt target genes is driven and 
results in the changes of series of cellular processes. Collectively, the 
activation of canonical Wnt signalling mainly includes the following 
biological processes: the production and secretion of Wnts, the rec-
ognition of Wnts by their receptors, the inactivation of destruction 
complex, the accumulation of β-catenin and translocation into nu-
cleus and the activation of transcriptional complex of target genes.

The non-canonical Wnt signalling is mainly subdivided into Wnt/
Ca2+ and Wnt/planar cell polarity (PCP) signalling pathways, which 
are activated by some Wnts proteins, such as Wnt5a, Wnt5b and 
Wnt11, and eventually regulate the cellular polarity and migration-
related signalling pathways that have important roles in cell orienta-
tion during development and cell migration in metastasis formation.22 
The Wnt/Ca2+ signalling is activated by the complex formation 
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among Wnt, Fzd, DVL and G proteins and the resulting activation 
of phospholipase C (PLC) activity and subsequent calcium influx, 
increased intracellular Ca2+ concentration activates various signal-
ling pathways, including protein kinase C (PKC), Ca2+/calmodulin-
dependent protein kinase II (CAMKII) and Ca2+/calcineurin, leading 
to the phosphorylation of retinoic acid–related orphan nuclear re-
ceptor α (RORα) and/or the translocation of transcription factors, 
such as nuclear factor activated in T cells (NFAT) and Nemo-like 
kinase (NLK).23 Intriguingly, RORα and NLK function as inhibitors 
of canonical Wnt signalling via reducing the binding of β-catenin to 
TCF/LEF transcription factors.24,25 In the Wnt/PCP signalling, Wnts 
bind to the receptor like tyrosine kinase (RYK) to active SRC, or to 
the receptor tyrosine kinase–like orphan receptor 1/2 (ROR1/2)-Fzd 
complex to activate DVL and further activate small Rho GTPases, 

including Rac family small GTPase 1 (RAC1), RhoA and cell division 
cycle 42 (CDC42), in a DVL-dependent way. RhoA triggers ROCK and 
c-Jun N-terminal kinase (JNK) but RAC1 only activates JNK, thereby 
regulating rearrangements of cytoskeleton and/or activating related 
transcription factors, such as activator protein 1 (AP-1) and NFAT. 
Moreover, some new non-canonical Wnt signalling pathways, in-
cluding Wnt/STOP signalling, Wnt/TOR signalling, Wnt-YAP/TAZ 
signalling, Wnt/LRP5/mTOR/Akt signalling and Wnt/Hippo signal-
ling have been discovered gradually and their roles in physiology and 
pathology has been well explored and discussed.26-29 Theoretically, 
changes in any component involving in Wnt signalling pathways may 
result in the abnormalities of these pathways, and several studies 
have elaborately summarized the impact of Wnt pathways on T2DM 
and related complications.16-18 In this review, we only focus on the 

F I G U R E  1   Multiple Wnt signalling pathways. Various Wnts regulate the canonical Wnt/β-catenin pathway, the non-canonical Wnt/planar 
cell polarity (PCP) pathway and Wnt/Ca2+ pathway. AP-1, activator protein 1; APC, adenomatosis polyposis coli; BCL9, B cell CLL/lymphoma 
9; BRG1, Brahma-related gene 1; β-TRCP, β-transducin repeat-containing protein; CAMKII, calmodulin-dependent protein kinase II; CDC42, 
cell division cycle 42; CK1α, casein kinase 1; COX2, cytochrome c oxidase subunit 2; DVL, dishevelled; Fzd, frizzled; GSK-3β, glycogen 
synthase kinase; HDACs, histone deacetylases; JNK, JUN N-terminal kinase; LEF, lymphoid enhancer–binding factor; LRP5/6, low-density 
lipoprotein receptor–related protein 5/6; MMPs, matrix metalloproteinases; NFAT, nuclear factor of activated T cells; NLK, nemo-like kinase; 
PKC, protein kinase C; PLC, phospholipase C; RAC1, Rac family small GTPase 1; ROCK, Rho kinase; ROR1/2, receptor tyrosine kinase–like 
orphan receptor 1/2; RORα, retinoic acid–related orphan nuclear receptor α; RYK, receptor like tyrosine kinase; TCF, T cell factor; TLE, 
transducin-like enhancer protein
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current insights and recent advances in the role of each human Wnt 
and main related antagonists (sFRPs and WIF-1) and coreceptor 
(LRP6) in the pathogenesis of T2DM and related complications.

3  | ROLES OF WNTS IN T2DM AND 
REL ATED COMPLIC ATIONS

As initiators of Wnt signalling pathways, Wnts are a cluster of con-
served secreted glycoproteins and widely expressing in all metazoan 
species; humans carry 19 members of Wnts with 40%-90% amino 
acid sequence identity. Among them Wnt2b, Wnt3, Wnt3a, Wnt8a, 
Wnt8b, Wnt9a and Wnt10b mainly activate the canonical path-
way, Wnt5b and Wnt11 activate the non-canonical pathway, and 
Wnt1, Wnt2, Wnt4 Wnt5a, Wnt6, Wnt7a, Wnt7b, Wnt9b, Wnt10a 
and Wnt16 function as initiators for both signalling pathways. The 
structural characteristics and the maturation of all human Wnts have 
been elaborately summarized by our group and Kikuchi et al.19,30 
However, the detailed mechanism by which single Wnt is chosen 
to produce and activate specific Wnt pathway has not been fully 
clarified. In the following parts, the exact role of each Wnt in the 
development of T2DM and related complications will be discussed 
separately (Table 1).

3.1 | Wnt1, Wnt2 and Wnt2b

At present, no direct evidence is available for the link between Wnt1 
and T2DM; few studies on its role in different diabetic complications 
is also controversial. In T1DM-induced rats, the inhibition of Wnt1/
β-catenin signalling by salidroside, a hypoglycaemic and antioxidant 
glycoside, was found to protect against DN, indicating a deleterious 
role of Wnt1 in diabetes.31 However, Chong et al showed that eryth-
ropoietin (EPO) could protect endothelial cells (ECs) against elevated 
glucose exposure through activating Wnt1/β-catenin pathway, sug-
gesting a protective role of Wnt1 against diabetic microvascular dis-
ease.32 Similarly, there are few studies concerning the role of Wnt2 
in T2DM. An in vivo study shows that the mRNA and protein levels 
of Wnt2, β-catenin and Wnt target genes are all increased progres-
sively in myocardial tissues from rat following streptozotocin (STZ)-
induced diabetes, which is accompanied by the cardiac dysfunction 
and progressive cardiomyocyte apoptosis, suggesting that the acti-
vation of Wnt2/β-catenin pathway may facilitate the development of 
diabetic cardiomyopathy.33 Furthermore, a recent study shows that 
circular RNA circHIPK3 promotes DR by increasing the expression of 
Wnt2 in retinal ECs.34 These data suggest that Wnt2 may be a po-
tential target to control these diabetic complications. Wnt2b shares 
70% amino acid sequence identity with Wnt2. Zhou et al found the 
epistasis between Wnt2b and TCF7L2 genes was associated with the 
susceptibility of T2DM in Chinese Han population.35 The expression 
of Wnt2b and mediated canonical Wnt pathway is induced and in-
versely correlated with insulin expression in islets of T2DM patients, 
indicating inhibition of this pathway might be a new route to prevent 

the failure of β-cells.36 Moreover, Wnt2b is up-regulated in serum 
of patients with DN and mesangial cells cultured in high glucose en-
vironment, and high glucose treatment could enhance the inflam-
mation and extracellular matrix via activating the Wnt2b/β-catenin 
pathway induced by two different long non-coding RNAs, provid-
ing new mechanisms for understanding the development of DN and 
promising target for its treatment.37,38

3.2 | Wnt3 and Wnt3a

Wnt3 and Wnt3a share 85% amino acid sequence identity. At pre-
sent, studies on Wnt3 are mainly focused on its role in malignancies 
rather than in diabetes; we have revealed the carcinogenic role of 
Wnt3 in the development of gastric and colorectal cancers,39,40 and 
the current few studies on Wnt3 are mainly about its role in diabetic 
complication of central nervous system. A recent study revealed 
that the impaired cognitive function and loss of neurogenesis was 
associate with the inhibition of Wnt3/β-catenin pathway in diabetic 
rat, and insulin treatment promoted neurogenesis via increasing the 
expression of Wnt3 in astrocytes.41 Similarly, the canonical Wnt3 
pathway is inhibited in the hippocampus of diabetic rat, and treadmill 
exercise alleviated Alzheimer disease–associated memory loss in di-
abetic rats by increasing neurogenesis through activating this signal-
ling.42 These results shed lights on the implementation of Wnt3 as a 
therapeutic candidate for targeting diabetic complication of central 
nervous system. Compared to its homologue, Wnt3a is known to 
regulate the pathogenesis of T2DM from several processes but its 
role is controversial. Under the similar hyperglycaemia condition in 
STZ-induced diabetic rat, Wnt3a/β-catenin pathway was found to be 
inhibited in cardiomyocytes,43 but swimming exercise was proved 
to alleviate insulin resistance through inhibiting the overactivated 
Wnt3a/β-catenin pathway in skeletal muscles.44 Wnt3a is an impor-
tant modulator of the differentiation and maturation of β-cells, over-
expressing Wnt3a promotes the proliferation of porcine pancreatic 
stem cells (PSCs), which are valuable in transplantation application of 
T2DM.45 Similarly, activation of the canonical Wnt pathway by treat-
ing exogenous Wnt3a enhances the differentiation of human embry-
onic stem cells (hESCs) to pancreatic lineage cells and induces the 
proliferation of β-cells and insulin secretion in vitro.46,47 However, 
in a latest study on human-induced pluripotent stem cell (hiPSC)–
derived S7 cells, activating the canonical Wnt3a/β-catenin and non-
canonical Wnt4/5a/5b signalling pathways simultaneously did not 
alter or improve glucose-simulated insulin secretion (GSIS); instead, 
inhibition of these endogenous Wnts even modestly promoted the 
maturation of β-cells.48 In another study, activation of Wnt3a/β-
catenin pathway was found to improve the impaired osteointegra-
tion under diabetic condition.49 Wnt3a/β-catenin signalling is also 
overactivated in the kidneys of diabetic patients and animal models, 
hence inhibiting this signalling by PPARα displays a protective effect 
on DN.50 Consistently, a significantly higher level of Wnt3a is de-
tected in vitreous fluid samples from patients with proliferative DR 
compared with that in healthy subjects,51 and the levels of Wnt3a 
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TA B L E  1   Wnt activating the canonical and non-canonical Wnt signalling pathways in the pathogenesis of diabetic-related diseases

Wnts
Expression Pattern in diabetic 
samples Effect on diabetic-related diseases

Type of Wnt 
signalling Reference

Wnt1 No data Deleterious Diabetic nephropathy Canonical 31

Protective Diabetic microvascular 
disease

Canonical 32

Wnt2 Increased in myocardial tissues Deleterious Diabetic cardiomyopathy Canonical 33

Increased in retinal endothelial cells Deleterious Diabetic retinopathy No data 34

Wnt2b Increased in islets Deleterious Dysfunction of islet Canonical 36

Increased in serum Deleterious Diabetic nephropathy Canonical 37,38

Wnt3 Decreased in olfactory bulbs and 
hippocampus

Protective Diabetic central nervous 
system complication

Canonical 41,42

Wnt3a Decreased in cardiomyocytes Protective Diabetic cardiomyopathy Canonical 43

Increased in gastrocnemius Deleterious Insulin resistance Canonical 44

No data Protective Impaired proliferation of β-
cells and insulin secretion

Canonical 47,48

No data Protective Impaired bone formation Canonical 49

Increased in kidney Deleterious Diabetic nephropathy Canonical 50

Increased in vitreous fluid Deleterious Diabetic retinopathy No data 51

Increased in aortic tissues Deleterious Diabetic macrovascular 
disease

No data 52

Decreased in adipose tissues Protective Adipogenesis and obesity Canonical 53,54

Wnt4 Decreased in pre-diabetic but 
increased in diabetic in islets

Deleterious Impaired proliferation of β-
cells and insulin secretion

Non-canonical 59,60

Decreased in islets Protective Apoptosis and dysfunction 
of islet

Canonical 61

Decreased in kidney Protective Diabetic nephropathy Canonical 62

Increased in kidney Deleterious Diabetic nephropathy Canonical 67,68

Increased in carotid arteries Deleterious Diabetic macrovascular 
disease

Canonical 69

Wnt5a Increased in islets Deleterious Apoptosis and dysfunction 
of islet

Canonical/ 
Non-canonical

61,82

Decreased in islet stellate cells Protective Impaired insulin secretion Canonical 70,84

Increased in adipose tissues Deleterious Impaired insulin secretion Non-canonical 78

Decreased in kidney Protective Diabetic nephropathy Canonical 62

Increased in plasma Deleterious Insulin resistance Non-canonical 75,76

Increased in peripheral blood 
macrophages

Deleterious Diabetic macrovascular 
disease

Non-canonical 87,88

Increased in ischaemic muscles and 
endothelial cells

Deleterious Diabetic foot ulcers Non-canonical 92

Increased in plasma, decreased in 
glomerular mesangium

Protective Diabetic nephropathy Canonical 95,96

Wnt5b Increased in adipose tissues Deleterious Adipogenesis and obesity Non-canonical 99,100

Wnt6 Decreased in adipose tissues Protective Adipogenesis and obesity Canonical 101,102

Decreased in kidney Protective Diabetic nephropathy Canonical 103

Wnt7a Increased in aortic tissues Deleterious Diabetic macrovascular 
disease

Canonical 52,108,111

Decreased in wounded skin tissues Protective Diabetic wounds Canonical 108

Decreased in hippocampus Protective Diabetic central nervous 
system complication

No data 109

(Continues)
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and Wnt7a are up-regulated in aortic tissues from mice with diabetic 
macrovascular disease.52 Of note, Wnt3a also participates in the oc-
currence of T2DM by impacting adipocyte differentiation. Wnt3a 
and Wnt10b inhibits adipogenesis and related obesity via activating 
the canonical Wnt pathway.53,54 Therefore, activation of canonical 
Wnt3a pathway has the effect of bidirectional regulation on T2DM 
and complications, depending on context, and further studies are 
needed to elucidate detailed mechanism of Wnt3a action in these 
disorders.

3.3 | Wnt4

Wnt4 is the most abundantly expressed Wnt protein in β-cells, 
whereas its role in diabetes is also contradicting because it func-
tions as a biphasic initiator for canonical and non-canonical Wnt 
pathways. Wnt4 is enriched in pancreatic islets of health mice and 
more abundant in insulin-resistant obese mice, Wnt4 alone does 
not affect GSIS in primary murine β-cells, but can antagonize the 
activation of canonical Wnt pathway mediated by Wnt3a and the 
resulting increase in cellular proliferation as well as GSIS in islets and 
β-cell line INS1,55,56 and depletion of Wnt4 results in a decrease in 
proliferation of INS1 cells.57 Similarly, cellular proliferation and GSIS 
of β-cell line MIN6 are not affected when exposed to Wnt4 protein, 
but suppressed significantly when knockdown of Wnt4.58 Recently, 
Kozinski et al revealed the dynamic equilibrium of canonical and 
non-canonical Wnt signalling pathways activated by Wnt3a and 
Wnt4 separately in β-cells during the development of T2DM; they 
believed that in pre-diabetic state, the increased secretion of Wnt3a 
and decreased secretion of Wnt4 by insulin-resistant tissues were 

responsible for the increase in insulin secretion and β-cell prolifera-
tion to adapt the systemic insulin resistance, whereas the expression 
profiles of Wnt3a and Wnt4 were reversed in a severe diabetic state, 
which correlated with the down-regulated β-cell proliferation and 
deficiency in insulin production.59 Wnt4 also induces the expression 
of transcriptional factors that are indispensable for islet differen-
tiation such as NKX6.1 and PDX1 in human islets by activating the 
non-canonical Wnt pathway.60 However, in another study, Wnt4 was 
found to reduce the protein levels of PDX1 and MAFA, and inhibiting 
Wnt4-mediated non-canonical signalling promoted the maturation 
of β-cells.48 These opposite results might be attributed to the heter-
ogeneity of islet, a mixture of different cell types that may dilute the 
effect of different transcriptional factors during the differentiation 
and maturation processes. In addition, Wnt4 was found to activate 
the canonical Wnt pathway in islet endothelium, and mesenchymal 
stromal cell (MSC)–based therapies ameliorated oxidative stress–
induced apoptosis and functional impairment of islet endothelium 
via activating the canonical Wnt4 signalling.61 Moreover, Wnt4 is 
closely linked to the development of diabetic complications, espe-
cially in DN. High glucose condition induces transforming growth 
factor-β1 (TGF-β1)–mediated fibrosis in glomerular mesangial cells 
by inhibiting Wnt4- and Wnt5a-mediated canonical pathways; 
therefore, restoring Wnt4 or Wnt5a significantly alleviates TGF-β1-
mediated fibrosis in diabetic kidneys.62 Similarly, melatonin, simvas-
tatin, Salvia miltiorrhiza extracts and liraglutide treatment block the 
apoptosis of mesangial cells and improve the renal injury of diabetic 
rat by restoring the canonical Wnt signalling mediated by Wnt4 and 
Wnt5a.63-66 However, sitagliptin or soybean isoflavones treatment 
was reported to alleviate the renal tubulointerstitial fibrosis in rat 
with DN by inhibiting the canonical Wnt4 pathway.67,68 Moreover, 

Wnts
Expression Pattern in diabetic 
samples Effect on diabetic-related diseases

Type of Wnt 
signalling Reference

Wnt7b No data Protective Diabetic arteriosclerosis No data 110

Wnt8a No data

Wnt8b No data

Wnt9a No data Deleterious Impaired differentiation of 
β-cells

Canonical 113

No data Protective Impaired Insulin secretion No data 114

Wnt9b No data Protective Diabetic foot ulcers Canonical 115

Wnt10a Increased in brown pre-adipocyte 
cells

Protective Adipogenesis and obesity Canonical 117,118

Increased in spinal cord tissues Deleterious Diabetic neuropathy Canonical 119

Wnt10b Decreased in white adipose and 
skeletal muscle tissues

Protective Adipogenesis and obesity, 
insulin resistance

Canonical 120-125

Decreased in bone Protective Diabetic bone loss Canonical 127

Wnt11 Increased in adipose tissues Deleterious Adipogenesis and obesity Non-canonical 129,130

Wnt16 Decreased in cortical bone Protective Diabetic osteopenia Canonical/
Non-canonical

132,133

Decreased in corpus cavernosum 
tissues

Protective Diabetic erectile dysfunction No data 134

TA B L E  1   (Continued)
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the canonical Wnt4 pathway is up-regulated in carotid arteries of 
diabetic rats with carotid artery injury, and silencing this cascade 
by microRNA-24 is sufficient to attenuate proliferation of vascular 
smooth muscle cells (VSMC) and neointimal hyperplasia.69 Overall, 
the role of Wnt4 varies depending on the tissue type; it mainly acti-
vates the non-canonical Wnt pathway and acts as a negative regu-
lator of canonical Wnt pathway in the context of islet, but mainly 
activates the canonical Wnt pathway in other tissues. In short, the 
general effect of Wnt4 seems to be deleterious, and further studies 
are required for a deeper understating of precise role of Wnt4 in 
diabetic-related diseases.

3.4 | Wnt5a and Wnt5b

Wnt5a, another initiator that activates the canonical and non-
canonical Wnt pathways, is closely related to a variety of meta-
bolic disorders such as obesity and T2DM. Compared with that in 
healthy subject, plasma Wnt5a level is significantly decreased in pa-
tients with the onset T2DM, and a negative correlation is found be-
tween the Wnt5a level and fast blood glucose (FBG)/HbA1c levels. 
However, Wnt5a level is gradually increased in patients with long-
term T2DM or after 3 months of treatment,70,71 and more studies 
demonstrate that the protein and mRNA levels of Wnt5a in circula-
tion are elevated in obese individuals and patients with T2DM and 
positively correlated with IL-6 concentration and metabolic disor-
ders, such as increased triglyceride and FBG levels as well as insulin 
resistance.72,73 Moreover, a mutual stimulation relationship between 
Wnt5a and inflammation cytokines is detected in cultured human 
adipocytes.74 Wnt5a is widely expressed in adipose tissues, and 
the deleterious role of Wnt5a through activating the non-canonical 
Wnt pathway in the development of inflammation and insulin resist-
ance has been clearly revealed.18,75,76 Recent studies showed that 
increased secretion of Wnt5a by enlarged adipocytes in the obese 
state could block insulin signalling and cause glucose intolerance via 
activating the non-canonical Wnt5a/PCP pathway and systemic in-
flammation,75,77 and an obviously positive correlation between the 
up-regulated Wnt5a/PCP pathway and profound vascular insulin re-
sistance were observed in visceral adipose tissue arterioles of obese 
individuals.78 Therefore, treatment of anti-inflammatory cytokine 
IL-10 in 3T3-L1 pre-adipocytes or celecoxib in diabetic rat could sup-
press the adipogenesis and reverse the non-alcoholic steatohepatitis 
(NASH) via targeting this non-canonical Wnt5a pathway.79,80

Wnt5a is another regulator with dual function regarding the ef-
fect on islet function, induction of Wnt5a expression blocks glucose-
induced β-cell proliferation,81 and treating β-cells with exendin-4, a 
glucagon-like peptide-1 receptor agonist regarded as a therapeutic 
reagent for T2DM, was found to promote β-cell proliferation via 
inhibiting the expression of Wnt5a and mediated canonical Wnt 
pathway.82 However, in diabetic mice, the levels of Wnt5a and its 
receptor Fzd5 are significantly decreased in islet stellate cells (ISCs), 
a type of stellate cell located in islet and activated in T2DM, and 
down-regulation of Wnt5a expression in ISCs could decrease insulin 

secretion,83 demonstrating a protective role of Wnt5a in maintain-
ing the insulin secretion homeostasis of β-cells. Similarly, Kuljanin 
et al found that the glucose-lowering and islet regenerative capaci-
ties of bone marrow (BM)–derived multipotent stromal cells (MSCs) 
after transplantation into diabetic mice were mainly attributed to the 
activation of canonical Wnt5a pathway.84

Wnt5a is essential for normal development of heart, and in-
creased oxidative stress in diabetic pregnancies causes heart de-
fects in foetuses by inhibiting the expression of Wnt5a and its 
induced canonical and non-canonical Wnt pathways; hence, over-
expressing superoxide dismutase 1 (SOD1) in vivo could ameliorate 
heart defect through restoration of non-canonical Wnt5a/Ca2+ 
pathway.85 However, the concentration of Wnt5a is elevated in the 
plasma and epicardial adipose tissue of patients with coronary ar-
tery disease (CAD) and independently associated with the presence 
of CAD and progression of calcified coronary plaque,86 and adipose 
tissue–derived Wnt5a in obesity induces arterial oxidative stress 
and migration of vascular smooth muscle cells (VSMCs) via activat-
ing a new Wnt5a/USP17/RAC1/NADPH oxidases axis.87 Moreover, 
oxidized low-density lipoprotein (oxLDL)–induced activation of 
non-canonical Wnt5a pathway and inhibition of canonical Wnt3a 
pathway could promote foam cell formation in human aortic VSMCs 
but inhibit their migration and proliferation.88 Overactivation of 
Wnt5a/PCP pathway is also detected in ECs from patients with 
T2DM, thus inhibiting this signalling could ameliorate insulin resis-
tance and dysfunction of ECs from T2DM patients.78,89 Wnt5a is 
also highly expressed in circulating monocytes and macrophages 
in patients with peripheral artery disease and in ischaemic mus-
cle of ob/ob mice or mice fed with high-fat and high-sucrose diet. 
Myeloid-specific Wnt5a overexpression blunts regenerative an-
giogenesis in ischaemic hind limbs by activating the non-canonical 
Wnt5a/JNK pathway and mediated elevation of VEGF-A165b, an 
antiangiogenic VEGF-A splice isoform90; therefore, treatment with 
recombinant sFRP5, an extracellular inhibitor of non-canonical 
Wnt signalling, could alleviate cardiac inflammation and protect the 
heart from ischaemia/reperfusion injury through inhibiting the non-
canonical Wnt5a/JNK signalling and the expression of inflammatory 
cytokine/chemokine in macrophages and ischaemic myocardium.91 
Likewise, Wnt5a is highly expressed in ischaemic muscles and ECs 
from mice overexpressing glutaredoxin-1, an oxidation-promoting 
enzyme which is increased in T2DM patients, and exogenous Wnt5a 
treatment could inhibit the revascularization in hind limb ischaemia 
via activating the non-canonical Wnt pathway,92 indicating a del-
eterious role of Wnt5a in diabetic foot. Although the increase in 
serum concentration of Wnt5a and a negative correlation between 
serum Wnt5a and glomerular filtration rate are detected in patients 
with DP,93 more studies tend to prove the protective role of Wnt5a 
in the development of DP. It has been shown that a weak Wnt5a 
expression is detected in glomerular mesangium of diabetic rat 
and glomerular cells cultured in high glucose condition. Therefore, 
curcumin and exogenous superoxide dismutase administration as 
well as nitric oxide (NO) donor treatment could significantly allevi-
ate the apoptosis of glomerular cells and diabetic renal fibrosis by 
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restoring the canonical Wnt5a pathway.94-96 Ando et al also showed 
that Wnt5a induced renal AQP2 expression via the activation of the 
non-canonical Wnt5a/Ca2+ pathway could increase the urine con-
centration of mice with heritable nephrogenic diabetes insipidus 
(NDI), a hereditary disease characterized by defective urine con-
centration ability in kidney.97 Taken together, these findings suggest 
the complicated roles of Wnt5a in the development of T2DM and 
related complications in a tissue-specific manner.

Wnt5b shares 78% amino acid sequence identity with Wnt5a, 
and its expression is detectable in pancreas, adipose and liver. 
Wnt5b expression is up-regulated in islets of mice fed with high-fat 
diet (HFD), and UK Caucasian individuals carrying IVS3C>G vari-
ant (rs2270031) in the Wnt5b gene are predispose to T2DM.58,98 
Although the exact role of Wnt5b in the regulation of β-cell prolif-
eration and functions has not been elucidated, silencing the non-
canonical Wnt pathways induced by Wnt4/Wnt5a/Wnt5b and 
canonical Wnt3a/β-catenin signalling together could drive the im-
mature hiPSC-derived S7 cells towards a mature phenotype, indi-
cating the potential inhibitory effect of Wnt5b on the maturation 
of β-cells.48 Subsequent in vitro experiments showed that com-
pared with the inhibitory effect on adipogenesis via activation of 
canonical Wnt signalling mediated by Wnt1 and Wnt10b, Wnt5b 
was overexpressed in 3T3-L1 cells at an early phase of adipogen-
esis and could stimulate adipogenesis by antagonizing the canon-
ical Wnt pathway,99,100 suggesting that Wnt5b may contribute to 
the susceptibility to T2DM; therefore, down-regulation of non-
canonical Wnt5b pathway could therefore decrease adipogenesis 
and increase β-cell functions of T2DM subjects.

3.5 | Wnt6

Wnt6 is highly homologous to Wnt1 but these two Wnts only share 
43% amino acid sequence identity. The expression level of Wnt6 
is decreased during adipogenesis and ectopic expression of Wnt6 
suppresses the differentiation of 3T3-L1 pre-adipocytes through a 
β-catenin-dependent pathway,101 and activation of Hedgehog sig-
nalling has been shown to prevent HFD-induced obesity in mice by 
inducing the canonical Wnt6 pathway in adipose tissues.102 Thus, 
induction of Wnt6 could ameliorate metabolic abnormalities such as 
obesity and T2DM. Moreover, Wnt6 is expressed in mesonephros of 
the developing mouse embryo, and loss of Wnt6 is obvious in tubu-
lointerstitium of patients with DN and animal models with renal fi-
brosis; therefore, activating the canonical Wnt6 pathway suppresses 
renal fibrosis through inhibiting TGF-β1-induced activation of NF-κB 
pathway.103 The activation of ATF3/NFAT axis causes podocyte in-
jury during the development of DN, and ATF3 is increased in glo-
meruli from proteinuric patients with DP, and Wnt6 is up-regulated 
in ATF3-overexpressed podocytes and identified as a target of this 
axis, indicating Wnt6 may aggravate podocyte injury and loss.104 
Furthermore, the activation of Wnt6/β-catenin pathway in diabetic 
context establishes a pathological link between T2DM and cancer 
due to the inducing effect of this signalling on the amplification 

of centrosome, a symbolic event associated with high-grade tu-
mours and poor prognosis.105 Thus, further studies are needed to 
explore the role of Wnt6 in the development of T2DM and related 
complications.

3.6 | Wnt7a and Wnt7b

Wnt7a and Wnt7b are also secreted proteins with 78% amino acid 
sequence identity, and both can activate the canonical and non-
canonical Wnt pathways. Although their expression levels have 
not been determined in islets of diabetic patients, some studies 
showed that Wnt7a and Wnt7b are required for pancreatic devel-
opment through autocrine and paracrine mechanisms106,107; there-
fore, stably expressing Wnt7a or Wnt7b alone could enhance the 
proliferation of human pancreatic progenitor cells (PPCs) through 
activating the non-canonical Wnt/PKC signalling, suggesting their 
promising application in developing cell therapies for diabetes.107 
Moreover, the expression level of Wnt7a is decreased significantly 
in cultured human umbilical vein endothelial cells (HUVECs) treated 
with high glucose and in wounded skin tissues from diabetic rat; 
thus, localized injection of Wnt7a could reverse the overwhelmed 
inflammation in wounded skins and accelerate the wound healing 
rate of diabetic rat.108 Similarly, dietary supplementation with res-
veratrol enhances the expression of hippocampal Wnt7a and neu-
rogenesis of diabetic mice, indicating a potential neuroprotective 
role of Wnt7a in diabetes.109 Moreover, Wnt7b has dual effect dur-
ing diabetic arteriosclerosis. Wnt7b is detected in aortic tissues and 
essential for stabilizing normal phenotype and integrity of aortic 
endothelial cells (AoECs); therefore, specific deletion of Wnt7b in 
AoECs induces the arteriosclerotic injury in LDLR knockout mice 
fed diabetogenic diets.110 However, the expression of Wnt7a and 
induced canonical pathway is also induced in aortic tissues from 
diabetic mice exhibiting cardiovascular calcification; therefore, sup-
pressing vascular calcification could inhibit the aortic mRNA level of 
Wnt7a.52,111 In general, most studies tend to prove that Wnt7a and 
Wnt7b are potential therapeutic candidates to ameliorate T2DM 
and related complications.

3.7 | Wnt8a, Wnt8b, Wnt9a and Wnt9b

Wnt8a and Wnt8b share 63% amino acid sequence identity. At pre-
sent, little is known about their role in the development of diabe-
tes, and only one study indirectly showed that chimeras between 
Xenopus Wnt8 and mouse Fzd1 or Fzd2 could inhibit adipogen-
esis through the canonical and non-canonical Wnt pathways.112 
Wnt9, formerly named Wnt14, shares 63% amino acid sequence 
identity with its analogue Wnt9b. Wnt9a is expressed in embry-
onic pancreas but not necessary for the formation and growth of 
pancreas; Wnt9a ablation inhibits the canonical Wnt pathway and 
leads to the up-regulation of some genes in endocrine differentia-
tion programme but increase in pancreatic endocrine cell number, 
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including α-cells, β-cells and δ-cells, supporting its negative regula-
tion on endocrine differentiation.113 However, there are few stud-
ies regarding the role of Wnt9b in the development of T2DM and 
related complications. Rundqvist et al found a positive correlation 
between Wnt9a expression and insulin sensitivity, and sprint ex-
ercise markedly induced the expression of Wnt9a in human skel-
etal muscles and up-regulated the secretion of plasma insulin.114 
Wnt9b may play a deleterious role in the development of diabetic 
foot ulcers, because inhibiting the canonical Wnt9b pathway by 
circulating exosomal miR-20b-5p from T2DM patients is found to 
suppress the angiogenenic effect of HUVECs in vitro and delay the 
wound healing in vivo.115

3.8 | Wnt10a and Wnt10b

Wnt10a is another biphasic Wnt ligand that shares 62% amino 
acid sequence identity with Wnt10b. Although the exact role of 
Wnt10a in diabetes remains unclear, it is indeed important for 
adipogenesis and several studies have revealed their potential 
connection.116 Wnt10a inhibits the pre-adipocyte-adipocyte 
transition, and the expression of Wnt10a and mediated canoni-
cal Wnt pathway is induced in brown pre-adipocyte cells that 
show decreased ability to differentiate.117 In another study, 
disruption of circadian clocks in mice results in increased adi-
pogenesis and obesity through silencing the canonical Wnt10a 
pathway, indicating the protective role of Wnt10a in the devel-
opment of obesity.118 However, Wnt10a and mediated canonical 
Wnt signalling are also induced in spinal cord of diabetic rat, and 
dexmedetomidine treatment could alleviate diabetic neuropathy 
pain by inhibiting the canonical Wnt10a pathway.119 The role of 
Wnt10b in the development of T2DM is comparatively well un-
derstood. Among all Wnts, Wnt10b is important negative regu-
lator of adipocyte differentiation via activating the canonical 
Wnt pathway; lower Wnt10b expression and down-regulation 
of Wnt10b/β-catenin pathway are detected in white adipose 
and skeletal muscle tissues from men with overweight and pre-
diabetes,120 and inactivation of Wnt10b/β-catenin pathway pro-
motes the adipogenesis and diet-induced obesity in mice.121 On 
the contrary, transgenic mice in which Wnt10b is overexpressed 
in adipose resist body fat accumulation and glucose intolerance 
when fed with HFD or on ob/ob background.122,123 Similarly, 
ectopic expression of Wnt10b in skeletal muscles decreases 
adipose deposits, hyperinsulinaemia and triglyceride plasma 
levels and improves glucose homeostasis in adult diet-induced 
obese rats.124 Activation of Wnt10b/β-catenin pathway also 
increases the insulin sensitivity of skeletal muscle cells by de-
creasing lipid deposition in myoblasts through down-regulation 
of SREBP-1c125 and participates in curcumin-induced suppres-
sion of adipocyte differentiation.126 Moreover, the expres-
sion of Wnt10b is inhibited in bone of mice with T1DM, and 
elevation of TNF-α is found to be a critical factor leading to its 
down-regulation and bone loss in diabetic environment; thus, 

overexpression of Wnt10b in bone has a potential utility for the 
treatment of bone loss in diabetic patients.127 These findings 
demonstrate that Wnt10b blocks the development and function 
of adipose tissues and improves the glucose homeostasis and 
insulin sensitivity of whole body.

3.9 | Wnt11

Wnt11 shows no homology to other Wnts and only shares 41% amino 
acid sequence identity with Wnt4. Wnt11 is expressed at low level 
throughout the development; it is mainly expressed in mesenchymal 
cells of the pancreas but weakly in the areas of endocrine cells.128 
Studies on adiponectin transgenic mice showing higher sensitivity to 
insulin revealed that hyperadiponectinaemia resulted in the down-
regulation of Wnt11 expression and chronic inflammation in adipose 
tissue, but the increase in the number of small adipocyte, a type of 
‘good’ adipocyte.129 Consistently, high levels of glucose selectively 
enhanced the expression of Wnt11 in mesenchymal progenitor cells 
(MPCs) to stimulate adipogenesis through the non-canonical Wnt/
PCP pathway.130 These findings suggest that Wnt11 in adipose tissue 
contributes to the development of obesity-linked disorders including 
T2DM.

3.10 | Wnt16

Wnt16 is another Wnt ligand having two distinct mRNA isoforms, 
Wnt16a and Wnt16b, which only differ in the composition of 
5’-untranslational region and one exon. Wnt16b is expressed ubiq-
uitously at significant levels in most adult tissues, whereas Wnt16a 
is barely expressed with high levels in pancreas.131 Therefore, most 
studies on Wnt16 mainly refer to Wnt16b, and it is known to be a 
major determinant of bone homeostasis and fracture susceptibility 
in humans. Interestingly, osteoblast-derived Wnt16 only activates 
the non-canonical Wnt pathway in osteoclast progenitors to inhibit 
osteoclastogenesis, but activates both canonical and non-canonical 
Wnt pathways in osteoblasts to increase osteoprotegerin expres-
sion and decrease osteoclastogenesis; mice with targeted deletion 
of Wnt16 in osteoblasts will develop spontaneous fractures due to 
low cortical bone thickness.132 Diabetic patients have higher risk of 
fracture; the reduction in Wnt16 expression and mediated canonical 
Wnt signalling activity in cortical bone in diabetic environment might 
be responsible for the osteopenia, and activating Wnt16/β-catenin 
pathway improves the bone strength and provides a therapeutic op-
portunity for the treatment of osteopenia in diabetic patients.133 
Moreover, the expression of Wnt16 is decreased in the penises 
of mice with diabetic erectile dysfunction and overexpression of 
Wnt16 accelerated the tube formation in cultured mouse cavern-
ous ECs, suggesting the up-regulation of Wnt16 might contribute to 
the treatment of diabetic-related erectile dysfunction.134 However, 
further studies are still required to clarify the role of Wnt16 in the 
development of diabetes.
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4  | ROLES OF MAIN ANTAGONISTS AND 
CORECEPTOR OF WNTS IN T2DM AND 
REL ATED COMPLIC ATIONS

The signalling transduction of Wnt pathways will be blocked if their 
receptors are bound by competitive antagonists. Secreted frizzled-
related proteins (sFRPs) and Wnt inhibitory factor-1 (WIF-1) are 
classical Wnt antagonists that block all Wnt signalling pathways. 
As a family of soluble glycoproteins with five members containing 
cysteine-rich domain (CRD) homologous to Fzd, sFRPs inhibit all 
Wnt signalling pathways by competing with Wnt ligands for bind-
ing Fzd and play important roles in the pathogenesis of T2DM and 
related complications. Human foetal aorta-derived CD133+ pro-
genitor cells accelerate the wound healing of diabetic ischaemic ul-
cers by activating Wnt pathways, whereas the presence of sFRP-1 
could abolish the reparative process by reducing CD133 expression 
in progenitor cells. Moreover, the expression of sFRP1, sFRP3 and 
sFRP4 is up-regulated when foetal CD133(+) cell differentiation into 
CD133(−) cells,135 indicating the deleterious role of sFRPs in diabetic 
wounds. However, inhibiting the expression of sFRP-1 by miR-27a 
could aggravate diabetic nephropathy by activating the canonical 
Wnt signalling.136 In human subjects, circulatory sFRP2 is increased 
in patients with impaired glucose tolerance (IGT) and promotes 
the adipose angiogenesis through enhancing VEGF expression.137 
sFRP3 levels in serum and skeletal muscles are significantly reduced 
in T2DM patients and positively correlated with insulin sensitivity; 
thus, the treatment of myotubes with recombinant sFRP3 could 
significantly restore the inhibited insulin signalling induced by cy-
tokine.138 The gene expression of sFRP4 is increased in adipose tis-
sues from obese individuals and T2DM patients and in islets from 
T2DM patients. Circulatory sFRP4 levels are also increased in pa-
tients with IGT and T2DM. Moreover, sFRP4 expression is positively 
correlated with the NAFLD activity score, elevated HbA1c level 
and insulin resistance, and reduced GSIS, suggesting that elevated 
SFRP4 is a valuable biomarker of β-cell dysfunction, insulin resist-
ance and T2DM.139-141 Therefore, systemically elevated sFRP4 not 
only inhibits insulin secretion and GSIS in pancreatic β-cells,139 but 
induces the insulin resistance and lipogenesis in the liver.141 sFRP5 is 
an anti-inflammatory adipokine that exerts a promising therapeutic 
effect on inflammatory diseases, including obesity and T2DM, via 
antagonizing the non-canonical Wnt5a signalling pathway, and the 
exact roles of sFRP5 in the pathogenesis of these diseases have been 
systematically outlined by Shen et al.142

The inhibitory effect of WIF-1 on Wnt pathways is exerted by its 
directly binding to Wnt ligands. However, there is little evidence on 
the role of WIF-1 in the pathogenesis of T2DM and related compli-
cations. It is reported that the circulatory WIF-1 and sFRP-1 levels 
were significantly higher in non-diabetic subjects who developed 
cardiovascular disease during the follow-up period, suggesting the 
elevation in WIF-1 may be a valuable predictor for future cardio-
vascular events.143 The expression of WIF-1 is also much higher in 
diabetic rat induced by STZ treatment. Jinmaitong (JMT), a com-
pound prescription of traditional Chinese medicine, was found to 

ameliorate DPN in rat via relieving the inhibitory effect of WIF-1 on 
the canonical Wnt pathway.144 In short, the general effect of WIF-1 
seems to be deleterious diabetic environment.

LRP5/6 are essential coreceptors for the signalling transduction 
of the canonical Wnt signalling, whereas LRP5 is less effective than 
LRP6 for the activation of the Wnt pathway. Here, we only discuss the 
role of LRP6 in the pathogenesis of T2DM and related complications 
due to the limited space. LRP6 is required for the normal expression 
of insulin receptor and the stability of IGF receptor in humans, and 
a rare missense mutation in Wnt coreceptor LRP6 (R611C) is the ae-
tiology of the autosomal dominant early-onset coronary artery dis-
ease, T2DM and metabolic syndrome through blocking the canonical 
Wnt signalling.145-147 The homozygote LRP6 knockout is lethal for 
mice, whereas the heterozygote LRP6 knockdown mice are resistant 
to glucose intolerance and obesity on HFD; this is associated with 
the inhibition in the canonical Wnt pathway and resultant increase 
in mitochondrial biogenesis and reduce in endogenous hepatic glu-
cose output.148 Moreover, the concentration of LRP6 is higher in the 
vitreous samples from patients with proliferative DR,149 indicating 
the deleterious role of LRP6 in diabetes. However, reduced LRP6 
expression and inactivation of canonical Wnt pathway are found to 
promote the progression of DN via enhancing GSK3β-p53 interac-
tion and the apoptosis of podocyte, and the deleterious effect can 
be prevented by green tea.150 Interestingly, Towler and colleagues 
found that vascular smooth muscle LRP6 could inhibit the progres-
sion of diabetic arteriosclerosis in mice by restraining a novel non-
canonical Wnt/USF1 signalling, indicating a protective role of LRP6 
in diabetes.151 Therefore, the exact role of LRP6 in the pathogenesis 
of T2DM and related complications remains an intriguing question 
and needs in-depth study.

5  | OPPORTUNITIES AND CHALLENGES IN 
DE VELOPING THER APEUTIC S FOR T2DM 
AND COMPLIC ATIONS BA SED ON WNTS

As mentioned above, there is a close relationship between the dys-
regulation of Wnt signalling pathways and development of T2DM 
and related complications. Therefore, appropriate therapeutic ap-
proaches targeting Wnt signalling pathways are attractive for the 
treatment of these disorders, and some reagents that activate or 
inhibit Wnt signalling pathways have been developed and are un-
dergoing pre-clinical and clinical trials. For related information de-
scribed in detail, please refer to review by Aamir et al152; herein, we 
only discuss main challenges in developing therapeutics for T2DM 
and related complications based on Wnts.

It remains elusive concerning mechanisms that control the gen-
eration of distinct Wnts from a single Wnt gene. It may be attributed 
to different promoters regulating the expression of Wnt gene and 
regulators controlling the post-translational modification, and both 
of which are simultaneously regulated by a wider range of other sig-
nalling pathways. Recently, sFRPs are found to act as the molecular 
switch to repress or promote specific non-canonical Wnt signalling 
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branches. Kaufmann and colleagues revealed that the presence of 
sFRP2 in the extracellular space could activate the non-canonical 
Wnt5a/Ror2 signalling by stabilizing Wnt5a-Ror2 complexes, but 
reduce the non-canonical Wnt5a signalling mediated by Fzd7, a 
main receptor that activates the non-canonical Wnt/PCP signal-
ling, by preventing Fz7 endocytosis.153 Moreover, Wnt signalling 
pathways are complicated networks in which different Wnts bind 
to various receptors and activate different effector pathways in a 
highly dose-specific and tissue-specific manner; thus, canonical and 
non-canonical Wnt pathways activated by different Wnts may coun-
teract with each other by different concentrations or in different 
tissues. Interestingly, the interaction of different Wnts could even 
change the activity of different Wnt signalling pathways. For instant, 
despite being the biphasic Wnt ligands, Wnt5a and Wnt11 mainly 
activate the non-canonical Wnt signalling pathway when secreted 
alone. However, the post-translational O-sulphation of specific 
tyrosine residues in Wnt11 and Wnt5a will facilitate their interac-
tion and enhance the canonical signalling activity that is required 
for the initiation of embryonic development.154 Therefore, it is not 
surprising that we observe contradiction in the role of Wnts during 
the development of T2DM and complications, or even opposite ef-
fect of a specific Wnt on different tissues in similar diabetic envi-
ronment. However, there is increasing evidence that Wnt signalling 
pathways have certain function in common. In brief, canonical Wnt 
pathway mediated by most Wnts plays a protective role in allevi-
ating β-cell dysfunction, excessive adipogenesis in obesity, insulin 
resistance and T2DM. Thus, activation of canonical Wnt pathway 
has potential therapeutic effect on obesity and T2DM, and several 
Wnt activators, such as genistein, kirenol, curcumin and isoquer-
citrin, have shown beneficial effects on obesity and T2DM at pre-
clinical level via activating the canonical Wnt pathway.152 However, 
most of these activators are targeting components in canonical Wnt 
pathway rather than Wnts, and their efficacy and safety are only 
evaluated in cells or diseased animal models rather than in clinical 
trials. Furthermore, activation of canonical Wnt pathway may accel-
erate the progression of some diabetic complications, and diabetic 
patients have an increased risk of cancers due to the direct effect 
of hyperglycaemia and indirect effects of insulin resistance, hyper-
insulinaemia and chronic inflammation,155,156 and overactivation 
of canonical Wnt pathway serves as primary determinant for most 
human malignancies; hence, systemic application of Wnt activators 
on diabetic patients may aggravate certain diabetic complications or 
increase the risk of cancer incidence.

Compared with the conflicting role of canonical Wnt pathway, 
non-canonical Wnt pathways are consistently overactivated in 
diabetes and related complications, and the expression of related 
Wnts, including Wnt4, Wnt5a, Wnt5b and Wnt11, is increased 
in diseased tissues in diabetic environment. Therefore, inhibition 
of the non-canonical Wnt pathway is a promising therapeutic 
approach for the treatment obesity, T2DM and related compli-
cations. Post-translational lipidation of Wnts is indispensable for 
their secretion and activity; almost all Wnts are modified with 
palmitic acid at conserved serine residue by porcupine (Porcn), a 

membrane-bound O-acyltransferase,157 and several small mole-
cule inhibitors targeting Porcn have been developed to prevent 
Wnts-driven diseases. LGK974, a Porcn inhibitor, has neuropro-
tective potential and could ameliorate DPN in rats.158 However, 
our unpublished data showed that treating diabetic mice with an-
other Porcn inhibitor, C59, could exacerbate DPN by activating 
some crucial inflammatory pathways induced by the silence of 
canonical Wnt pathway. Consistently, C59 blocks the progression 
of mammary cancer in mice via down-regulating the canonical 
Wnt1/β-catenin pathway.159 We predict the conflicting results 
might be attributed to the heterogenous function and balance 
of canonical and non-canonical pathways during different time 
windows. Importantly, the normal signalling transduction of Wnt 
pathways is essential for the maintenance of tissue homeostasis 
and regeneration; therefore, systemic application of Wnt inhib-
itors may inhibit some protective Wnts and has unwanted side 
effects or even toxic on normal tissues when treating diabetic-
related diseases. Therefore, overexpressing Wnts that are aber-
rantly decreased or inhibiting overexpressed Wnts in determined 
tissues by using tissue-specific delivery systems may be viable for 
treating these disorders. Indeed, several Wnt-neutralizing anti-
bodies and decoy receptors for Wnts have been developed and 
promising pre-clinical trail results have been obtained in treating 
some human malignancies,160 and there is an urgent need to eval-
uate their efficacy and safety in treating diabetic-related diseases 
at clinical level.

6  | CONCLUSIONS

The dysregulation of Wnt signalling pathways is important patho-
genetic basis of series of human diseases, including T2DM and 
related complications. In recent decades, we have witnessed the 
remarkable progress in understanding of Wnt signalling path-
ways in these diseases on a mechanistic level. The function of 
non-canonical Wnt pathways activated by few Wnts is consist-
ent in diabetic-related diseases, while the canonical Wnt pathway 
activated by most Wnts is either protective or deleterious in a 
context-dependent manner, and it is impossible to produce ther-
apeutic effect on these diseases via silencing or activating Wnt 
pathways alone. Therefore, it is required to have a comprehensive 
understanding of activation mechanisms and interactions of ca-
nonical and non-canonical Wnt pathways in specific tissues and 
time windows during the occurrence and progression of diabetic-
related diseases. In this review, we systematically summarize the 
existing findings on the role of all human Wnts, their main antago-
nists (sFRPs and WIF-1) and coreceptor (LRP6) in the development 
of T2DM and related complications and discus current main chal-
lenges in designing novel therapeutic strategies targeting Wnts for 
the treatment of these disorders. We believe a comprehensive un-
derstanding of their functions may pave the way for Wnts to serve 
as promising therapeutic targets for the prevention and treatment 
of diabetic-related diseases.
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