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Abstract

Background: Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and
assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted
in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the
country’s routine case reporting system.

Methods: A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace
approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children
from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model
was informed by a suite of environmental and socio-demographic covariates known to influence infection
prevalence. Spatio-temporal trends were quantified across the country.

Results: Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased
substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country’s population lived in areas
of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population.
Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in
2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of
the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak
transmission season.

Conclusions: Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps
developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey
input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as
the country aims for geographically progressive elimination.
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Background
Malaria remains an important public health problem in
Madagascar despite concerted efforts over decades to con-
trol transmission. At times, these interventions, which
have been primarily focussed on targeted vector control,
have successfully reduced transmission to very low levels
[1–3]. The island’s malaria epidemiology is highly varied,
reflecting a diverse ecological environment, with differing
seasonal trends across the country [4], which can be
further affected by unpredictable cyclonic activity that im-
pedes malaria control efforts. Epidemics have punctuated
the history of malaria in Madagascar [5]. They are closely
associated with the spread of rice production [6] and re-
main an important component of the disease epidemi-
ology [7]. Domestic political support and international
investment following the turn of the century led to im-
pressive reductions in transmission up to 2008, but were
followed by a period of stagnation and subsequent reversal
of progress in the aftermath of political instability in 2009
and funding disbursement delays [4].
The National Malaria Control Programme (NMCP) of

Madagascar has recently entered a new phase, marked by
the inauguration of the 2018–2022 National Strategic Plan
for Malaria, which includes ambitious targets for progress
towards elimination during this period [8]. Central to opti-
mising the intervention policy strategy for the coming 5
years is a thorough understanding of the current epi-
demiological situation across the country and of the im-
pact of investments in recent years. While routinely
reported clinical case data can provide insight into general

tendencies in the burden of malaria in Madagascar [4],
important uncertainties associated with this stream of data
present difficulties with robustly quantifying spatio-
temporal trends. Madagascar has benefited from three
Malaria Indicator Surveys (MIS 2011, 2013 and 2016),
which provide standardised and rigorous measures of mal-
aria endemicity at high spatial resolution from representa-
tive population samples from across the island [9–11].
A recent overview of Madagascar’s routine malaria

case data from 2010 to 2015 described the trends in
reported case data across eight ecozones, which are pro-
grammatically relevant clusters of spatially contiguous
districts that share similar malaria epidemiological
characteristics [4] (Fig. 1). This sub-national perspective
offered insight into important variation in malaria bur-
den across the island’s different environmental zones.
The overview identified an increase in numbers of
confirmed malaria cases. This is explained in part by
increased access to rapid diagnostic tests, but also by a
growing malaria burden, which is indicated by a signifi-
cant rate of increase in the diagnostic positivity rate
between 2010 (33%) and 2015 (50%) (p < 0.0001). The
routine reported case data, therefore, indicate there was
an increasing malaria burden from 2010 to 2015.
The quality of data reporting through a country’s rou-

tine health information system, however, can vary, poten-
tially impacting the reliability of the nationally aggregated
health statistics as malariometric indicators, especially in a
resource-limited setting such as Madagascar, which has a
fragile health and communications infrastructure [12]. At

Fig. 1 Malaria Indicator Survey screening sites for (a) 2011, (b) 2013 and (c) 2016. The coloured regions represent the country’s eight malaria ecozones [4]
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every step of the data reporting chain, cases are lost from
the system [13], for example from patients not interacting
with public health facilities during malaria episodes [14],
rapid diagnostic test stock-outs resulting in unconfirmed
infections, or accessibility difficulties for health workers
submitting monthly activity reports to the centralised
database etc. [4]. Reported numbers can, therefore, be
strongly influenced by factors external to the true under-
lying epidemiology.
MIS datasets provide a complementary perspective on

recent trends in malaria endemicity, free from the intrin-
sic limitations of reported case data. Their strength lies
in their standardised methodology applied repeatedly
over multiple years across nationally representative sites.
This present study uses the MIS data to map the preva-
lence of infection by Plasmodium falciparum in those
under 5 years old (6 to 59 months in age: PfPR6–59mo) to
obtain a deeper insight into epidemiological trends than
that available from the published MIS overview analyses,
which reported aggregated national prevalence rates of
6.2% for 2011 [9], 9.1% for 2013 [10] and 7.0% for 2016
[11]. This study aims to generate spatially continuous
prevalence maps that account for disparities in sample
collection dates between the different MIS years. This
variation in the time window is not otherwise accounted
for in the published MIS analyses [9–11]. The maps pro-
vide a benchmark of transmission intensity, free from
the nuances of the datasets of routinely reported case
data. These can support strategic resource allocation
and allow progress towards the current strategic plan
goals to be monitored.

Methods
Study data
Parasite prevalence data for this study came from MIS
activities conducted across Madagascar in 2011, 2013
and 2016. Alongside many other indicators, an MIS
includes measurements of the prevalence of P. falcip-
arum infection among children 6 to 59 months old
(PfPR6–59mo), based on a standardised protocol with a
stratified sampling strategy across the island that is
designed to capture a nationally representative assess-
ment of prevalence. Data are freely available from the
Demographic and Health Surveys (DHS) online reposi-
tory. Across the three MIS years, a total of 898 spatially
unique geo-positioned datapoints were available, which
reported prevalence of infection among 19,986 children.
The initial survey in 2011 included 266 sites (29.6%
overall; 6827 individuals), screened from March to May.
In 2013, 274 sites (30.5%; 6232 individuals) were screened
between April and June. Finally, in 2016, 358 sites (39.9%;
6927 individuals) were screened from April to July. The
diagnostic outcomes used here were from microscopy,
read by the Institut Pasteur de Madagascar and NMCP

parasitology teams. Survey locations are plotted by year in
Fig. 1 and by month in Additional file 1: Figure S1. The
maps reveal a west to east longitudinal gradient in the
cluster sampling in both 2013 and 2016, with the high en-
demicity east coast sampled later than western and central
populations. This sampling bias, with the east coast sam-
pled later in the transmission season, reinforced the need
to account for this in the model structure. Full details of
the MIS protocols are available in the original published
reports [9–11].
Environmental and socio-demographic variables known

to interact with and influence P. falciparum prevalence
[15] were assembled as 30 arcsecond spatial grids (Table 1).
Among the suite of covariates, eight were temporally static
covariates. The socio-demographic variables included
stable night-time lights in 2010 [16], which indicated the
presence of cities or towns [17], and accessibility to cities,
which quantified travel time to cities larger than 50,000
people [18]. Static environmental variables included eleva-
tion as measured from the Shuttle Radar Topography
Mission (SRTM) [19], slope, which was calculated from
that elevation in ArcGIS 10.5.1 [20], and a measure of
distance to water, which indicates the Euclidean distance
to permanent and semi-permanent water based on the
presence of lakes, wetlands, rivers and streams, and ac-
counts for slope and precipitation [21, 22]. Also included
were indices of aridity [23], potential evapotranspiration
[23] and topographic wetness (which was calculated from
the SRTM elevation surface).
Temporally dynamic covariates are those for which data

were available at monthly intervals, or, for population
density, annual intervals [24]. Precipitation data were
obtained from the Climate Hazards Group Infrared
Precipitation with Station data (CHIRPS) [25]. A P. falcip-
arum-specific covariate developed by the Malaria Atlas
Project that measures the suitability of air temperature for
malaria transmission [26, 27] was included after it was
extended to the full study period. The remaining dynamic
variables were obtained from Moderate Resolution Im-
aging Spectroradiometer (MODIS) satellite data [28]. Note
that these data were first gap-filled [29] to remove missing
values, such as due to cloud cover, before being aggregated
to monthly measurements. Three products of temperature
data were derived from land surface temperature (LST),
including (i) daytime LST, (ii) night-time LST and (iii) the
diurnal difference of daytime to night-time LST [30].
MODIS reflectance data were used for measurements of
vegetation and moisture: enhanced vegetation index (EVI)
[31], tasselled cap brightness (TCB) and tasselled cap
wetness (TCW) [32].
The values of the covariate data at the MIS screening lo-

cations were extracted for all points. Temporally dynamic
covariates were matched to the same month as the survey,
as well as 1, 2 and 3 months prior to the survey (lags).
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Bayesian spatio-temporal model
Parasite prevalence data (PfPR6–59mo) were modelled via a
Bayesian binomial logistic regression model with spatio-
temporal random effects accounting for a spatial latent
process varying with time. An integrated nested Laplace
approximation [33] was adopted for model inference and
prediction. The spatio-temporal random effects were
modelled using stochastic partial differential equations
[34], which represent a Matérn spatio-temporal Gaussian
field as a Gaussian Markov random field via triangulation.
Let Ylt, nlt and plt be the number of infected individ-

uals, the number of individuals screened and the preva-
lence of infection by P. falciparum at geocoded location
l (l = 1, …, N) for time t (t = 1, …, T). Ylt is assumed to
follow a binomial distribution:

Y lt∼Bin plt ; nltð Þ:

The prevalence of infection, plt, is modelled via a
linear regression on the logit scale:

logit pltð Þ ¼ XT
ltβþ f Yearð Þ þ ϕlt :

The matrix X includes an intercept and a list of environ-
mental and socio-demographic covariates known to affect
prevalence. β is the vector of regression coefficient, f(Year)
is a temporal random effect accounting for differences in
years in the prevalence data and ϕlt is the spatio-
temporally structured random effects. The temporal ran-
dom effect, f(Year), is assigned a first-order autoregressive
prior distribution (AR1). Monthly variations in the data
are captured via the spatio-temporal process ϕlt, which
changes in time with an AR1 process modelled at two
semi-annual scales, as follows:

ϕl;t ¼ εl1; if t ¼ 1;
ϕl;t ¼ aϕl;t−1 þ εl;t; if t ¼ 2;

where a (|a| < 1) is a temporal autoregressive coefficient
and ϕl, t is the vector of the spatio-temporally structured
effect, which follows a multivariate normal distribution
with zero mean and a spatio-temporal covariance function

Table 1 List of environmental and socio-demographic covariates

Covariate Description Dynamic Round 1
selection

Round 2
selection

Source

Accessibility Distance to cities with population >50,000 Static Yes Yes Nelson [18]

AI Aridity index Static Yes Yes World Clim [23]

DistToWater GIS-derived surface that measures distance
to permanent and semi-permanent water
based on presence of lakes, wetlands, rivers
and streams, and accounting for slope and
precipitation

Static Yes Yes MAP (from WWF surfaces
[21, 22])

Elevation Elevation as measured by the Shuttle Radar
Topography Mission (SRTM)

Static Yes Yes SRTM derivative [19]

PET Potential evapotranspiration Static Yes Yes Trabucco & Zomer [23]

Slope GIS-derived surface calculated from SRTM
elevation surface

Static Yes Yes MAP (from SRTM [19])

Stable_Lights_2010 Index that measures the presence of lights
from towns, cities and other sites with
persistent lighting

Static Yes Yes NOAA [16]

TWI Topographic wetness index Static Yes Yes MAP (from SRTM [19])

Population size Estimated population per 1 km × 1 km pixel Annual Yes Linard et al. [24]

EVI Enhanced vegetation index Monthly Lag 0, 3 Lag 3 MODIS derivative [31]

LST_day Daytime land surface temperature Monthly MODIS derivative [30]

LST_delta Diurnal difference in land surface
temperature

Monthly Lag 0, 1, 2, 3 Lag 0, 1, 2, 3 MODIS derivative [30]

LST_night Night-time land surface temperature Monthly MODIS derivative [30]

TCB Tasselled cap brightness; measure of land
reflectance

Monthly Lag 0, 2 Lag 2 MODIS derivative [32]

TCW Tasselled cap wetness Monthly Lag 3 Lag 3 MODIS derivative [32]

TSI Temperature suitability index Monthly Lag 0, 1, 2, 3 MAP [26]

CHIRPS Climate Hazards Group Infrared Precipitation
with Station Data

Monthly Lag 0, 1, 2, 3 Lag 0, 1, 3 CHIRPS [25]

CHIRPS Climate Hazards Group Infrared Precipitation with Station Data, GIS geographic information system, MAP Malaria Atlas Project, MODIS Moderate Resolution
Imaging Spectroradiometer, NOAA National Oceanic and Atmospheric Administration, SRTM Shuttle Radar Topography Mission, WWF World Wildlife Fund
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of the Matérn family. See [34] for more details of the spe-
cification of the spatio-temporal random field. Since the
prevalence data were only available for certain months
each year, the AR1 process (time effect) of ϕl, t is modelled
at two half-year intervals to ensure continuity: December
to May and June to November.
As part of the variable selection procedure, collinearity

among the environmental covariates was examined by
calculating variance inflation factors (VIFs) prior to
fitting the statistical model to the prevalence data. A
stepwise selection of covariates using VIFs was under-
taken to make sure all VIF values are below a desired
threshold (VIF < 10 in this case). Put simply, using the
full set of covariates, a VIF for each variable was calcu-
lated. The variable with the single highest value was
removed and all VIF values with the new set of variables
were recalculated. Then, the variable with the next high-
est value was removed, and so on, until all VIF values were
below the threshold of 10. This resulted in a set of 26 co-
variates being considered for model fitting (Table 1,
Round 1 selection). Subsequently, variable selection was
performed using bidirectional elimination by running
stepwise regressions on all model combinations using the
26 chosen covariates. The best-fitting (final) model had
the smallest deviance information criterion value and in-
cluded 18 covariates (Table 1, Round 2 selection).
Using the final model, the prevalence of infection by P.

falciparum (PfPR6–59mo) was predicted over a 30 arcse-
cond spatial grid of 1,602,342 pixels (approximately
1 km × 1 km spatial resolution) for each month of 2011,
2013 and 2016. The final covariates were available at
monthly intervals and this allowed us to make monthly
predictions of prevalence. The resulting predictions
included the monthly mean prevalence and the monthly
interquartile range (IQR) of prevalence as a measure of
the associated prediction uncertainty. The annual mean
prevalence (PfPR6–59mo) and mean IQR were obtained
by averaging across the 12 monthly predictions.
This Bayesian model-based geostatistical approach al-

lows the smoothing of extreme rates due to small sample
sizes by borrowing strength across neighbouring pixels
to improve local estimates. Essentially, the approach as-
sumes a positive spatial correlation between observations,
borrows more information from neighbouring pixels than
from pixels far away (in both space and time), and
smooths local rates toward local, neighbouring values.
The resulting smoothed prevalence estimates are robust
and reliable while circumventing the issue of sparse data
[35]. The inherently hierarchical structure of the current
modelling framework permits the model-based estimation
of covariate effects, the prediction of missing data and the
estimation of spatio-temporal covariance structures [36].
Model predictions are presented at the pixel level and also
summarised by ecozone [4].

A range of model validation analyses were used to as-
sess the model’s goodness of fit and predictive accuracy,
including the Pearson correlation of observed and pre-
dicted data, and validation runs with incremental hold-
out validation data subsets.

Results
The model framework
The Bayesian spatio-temporal model was developed in
an integrated nested Laplace approximation framework
to map the prevalence of P. falciparum malaria infection
among children aged 6 to 59 months in age (PfPR6–59mo)
across Madagascar for 2011, 2013 and 2016. Validation
of the final model gave Pearson correlation coefficients
of 0.96, 0.94 and 0.83 for each prediction year, respect-
ively, between month-specific predicted and observed
prevalence (Additional file 2: Figure S2), justifying a
good fit of the Bayesian spatio-temporal model to the
observed prevalence data. To assess the predictive power
of the specified model, prevalence data were split into
two sets: a training set (Dt) and a validation set (Dv)
[37]. After being trained on Dt, the model accuracy was
determined by its ability to predict Dv as well as the
entire prevalence dataset. A percentage of Dv was chosen
to be a random sample of 10%, 20%, 30% and 40% of the
overall dataset. Each validation was repeated 100 times
and the model accuracy was averaged across the 100
fitted models. The box plots of cross-validated correla-
tions appeared satisfactory (Additional file 3: Figure
S3a). The cross-validated R2 had a mean of 0.78 and a
range of (0.70, 0.83) for 10% Dv; a mean of 0.72 and a
range of (0.62, 0.79) for 20% Dv; a mean of 0.65 and a
range of (0.55, 0.74) for 30% Dv; and a mean of 0.58 and
a range of (0.45, 0.68) for 40% Dv (Additional file 3:
Figure S3b). The model was deemed accurate in its
ability to predict a wide range of validation sets
(Additional file 4: Figure S4).

Covariates
The combination of covariates that together best explained
the spatio-temporal variation in the PfPR datapoints were
selected for inclusion in the spatio-temporal model and are
listed in Tables 1 (Round 2 selection) and 2. Out of the 18
predictors which informed the statistical model, eight pre-
dictors were significant based on their 95% Bayesian cred-
ible intervals, namely LST_delta_2, TWI, PET, CHIRPS_1,
Accessibility, Elevation, CHIRPS_0 and TCW_3. Of these
eight predictors, LST_delta_2 (diurnal variation in land
surface temperature 2 months prior to the prediction
month) had a positive effect on the odds of risk with odds
ratio OR = 1.1987. The odds of P. falciparum infection
were negatively associated with TCW_3 (an index of sur-
face wetness 3 months prior to the prediction month) with
OR = 0.0025. The remaining six covariates had OR slightly
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above or below 1, indicating that they did not have a large
influence on the odds of risk. Note that the final model also
included several predictors with OR being roughly one,
namely aridity index, distance to water and slope, which
suggests that they did not affect the odds of P. falciparum
infection. However, the model selection procedure that
optimised the deviance information criterion value justified
the need to retain these predictors in the model.
Monthly variation in the key predictors is summarised

at the national level in Fig. 2 and by the previously
defined ecozones [4] in Additional file 5: Figure S5.
These box plots include the temporally dynamic envir-
onmental predictors that informed the statistical model
over different time lags. For example, EVI with a 3-
month lag indicates that the malaria prevalence predic-
tion for January 2011 was informed by the EVI level in
October 2010. LST_delta, or the diurnal variation in
land surface temperature, was influential across the
whole time window up to 3 months prior to the predic-
tion months. Predictions for January 2011, for example,
were influenced by the difference in daytime and night-
time temperatures (LST_delta) in October, November
and December 2010, as well as January 2011. Seasonal
variation in the different dynamic predictors differed in
amplitude, with the most extreme being the CHIRPS
dataset (a precipitation indicator), which dropped to very

low between May and September. In contrast, the tas-
selled cap wetness (a remotely sensed transformed index
of land surface water availability) remained relatively con-
stant over time, with no significant monthly variation
when summarised to the national level. At the higher-
resolution ecozone level, ecological predictors show more
extreme temporal variation, emphasising the country’s
environmental diversity. Put together, these constellations
of monthly dynamic explanatory variables combined with
the static predictors explained the spatio-temporal vari-
ation in the input data and informed extrapolation to loca-
tions and time points that were not represented in the
MIS input datasets.

Spatio-temporal trends in malaria endemicity
This paper’s primary objective was to assess changes in
the prevalence of P. falciparum malaria infection among
those under 5 years old (PfPR6–59mo) in Madagascar be-
tween the three surveyed years of 2011, 2013 and 2016.
The published MIS reports gave national prevalence esti-
mates for the 6–59 month age group of 6.2% [9], 9.1%
[10] and 7.0% [11], respectively. The geostatistical model
developed here generated 36 monthly prediction maps of
endemicity (Additional file 5: Figure S5 and Additional file
6: Figure S6), which are summarised into three annual
mean predictions (Fig. 3a–c), with ecozone-level box plot

Table 2 Regression coefficients and odds ratios of the predictors selected by the final model and their associated 95% Bayesian
credible intervals (CI)

Covariate Regression coefficient 95% CI of regression coefficient Odds ratio 95% CI of odds ratio

EVI_3 1.5872 (− 0.3861, 3.5926) 4.8913 (0.6799, 36.3362)

LST_delta_2 0.1812 (0.1098, 0.2527)* 1.1987 (1.1161, 1.2876)*

TWI 0.0535 (0.0048, 0.1017)* 1.0550 (1.0048, 1.1071)*

PET 0.0028 (0.0009, 0.0048)* 1.0028 (1.0009, 1.0048)*

CHIRPS_1 0.0023 (0.0010, 0.0037)* 1.0023 (1.0010, 1.0037)*

Accessibility 0.0020 (0.0009, 0.0031)* 1.0020 (1.0009, 1.0031)*

CHIRPS_3 0.0004 (−0.0010, 0.0018) 1.0004 (0.9990, 1.0018)

AI 0.0001 (0.0000, 0.0002) 1.0001 (1.0000, 1.0002)

DistToWater 0.0000 (0.0000, 0.0001) 1.0000 (1.0000, 1.0001)

Slope 0.0000 (0.0000, 0.0000) 1.0000 (1.0000, 1.0000)

Elevation −0.0015 (−0.0022, − 0.0009)* 0.9985 (0.9978, 0.9991)*

CHIRPS_0 −0.0020 (−0.0036, − 0.0004)* 0.9980 (0.9964, 0.9996)*

LST_delta_1 −0.0111 (−0.0944, 0.0721) 0.9889 (0.9099, 1.0748)

Stable_Lights_2010 −0.0274 (−0.0801, 0.0218) 0.9730 (0.9231, 1.0221)

LST_delta_3 −0.0532 (−0.1173, 0.0106) 0.9482 (0.8894, 1.0106)

LST_delta_0 −0.0540 (−0.1360, 0.0281) 0.9475 (0.8729, 1.0285)

TCB_2 −1.7339 (−5.2983, 1.8037) 0.1765 (0.0050, 6.0672)

TCW_3 −5.9884 (−10.7712, − 1.2680)* 0.0025 (0.0000, 0.2813)*

Intercept −11.5150 (−15.6992, −7.5190) 0.0000 (0.0000, 0.0005)

CI credible interval
*Significant based on 95% Bayesian credible interval
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summaries of trends across the country’s eight ecozones
given in Fig. 4. Together, these model outputs allow
spatio-temporal trends to be examined at different spatial
and temporal scales: national, ecozone or pixel level, and
monthly or annually. Model uncertainty is mapped
alongside the mean PfPR6–59mo prediction surfaces as
the IQR of the model posterior distribution (Fig. 3d–f
and Additional file 6: Figure S6b, d, f ), quantifying
confidence in the model predictions. Coefficients of
variation (standard deviation/mean) for each annual
prediction are plotted in Additional file 7: Figure S7 to
reflect the relative variability of the predictions.
Together, these uncertainty maps show that while the
absolute uncertainty (represented by the IQR) is lower
in the central highlands where prevalence is lowest,
when adjusted to the mean prediction values, confi-
dence in the prediction is strongest in coastal areas
where prevalence is higher.
Malaria endemicity remains spatially heterogeneous

across Madagascar (Figs. 3 and 4), with the central high-
lands consistently having the lowest endemicity across

the 3 years evaluated (<1% mean annual PfPR6–59mo). To
the east, a sharp transition towards the coast culminates
in high prevalence regions, with pockets along the
south-east coast with >30% mean annual prevalence,
expanding in extent from 2011 into subsequent years.
High prevalence in this ecozone is not homogeneous
however, being interspersed with pockets of lower en-
demicity (<7.5% PfPR6–59mo). The island’s west coast is
similarly high in prevalence, almost universally with
PfPR6–59mo > 10% and with areas >30% mean annual
PfPR6–59mo prevalence. The northern and southern tips
have lower prevalence, typically under 5% endemicity.
Confidence in the model predictions was variable across
the country and between years. The low-prevalence
data-rich highlands were modelled with greater confi-
dence than the more heterogeneous coastal regions,
where survey data indicated spatially variable rates of in-
fection (Figs. 1 and 3d–f ). The highest model uncer-
tainty in all 3 years was in the north-eastern region of
Sava, an area previously characterised as a malaria para-
site transmission hotspot [38]. As seen across the whole

Fig. 2 National-level mean monthly PfPR6–59mo predictions, plotted alongside temporally variable predictor values. The box plot rectangles indicate
the first to third quartiles (interquartile range), with the median shown as the dark line inside the box. Vertical lines correspond to the minimum and
maximum values. Specified lags indicate the time points that were selected by the model as explanatory variables of PfPR6–59mo. A time lag of 0
indicates that the covariate values in the concurrent month were predictive of PfPR6–59mo, while a time lag of 3 indicates that the covariate value 3
months prior to the PfPR6–59mo prediction was predictive of PfPR6–59mo
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country after 2011, the higher observed prevalence was
associated with a larger IQR, reflecting the wider range
of potential prevalence values.
At the national level, the three mean annual maps were

all significantly different from one another (Wilcoxon rank
sum test, p < 2.2 × 10-16). PfPR6–59mo more than doubled
between 2011 and 2016 (127% increase across the mean
annual maps; Fig. 5a and c), despite a 23% decrease within
that window between 2013 and 2016 (Fig. 5b and d).
Changes in endemicity were spatially variable across the
period examined. The magnitude of change across the
country between 2011 and 2016 was highly heterogeneous,

with a standard deviation of 34.0% around the 127% mean
increase. All ecozones experienced at least a doubling in
prevalence of PfPR6–59mo between 2011 and 2016, with
the smallest proportional change being in the south-
east (100.4%; Fig. 4 and Additional file 5: Figure S5d)
and the highest up to 157.4% in the central highlands,
where prevalence nevertheless remained the lowest
(Fig. 4 and Additional file 5: Figure S5h). The south
ecozone also saw an important increase of 142.5% over
the 6-year period (Fig. 4 and Additional file 5: Figure
S5g). The 23% mean fall in prevalence from 2013 to
2016 was fairly consistent across the whole country

Fig. 3 Predicted annual mean PfPR among children 6 to 59 months in age for 2011 (a), 2013 (b) and 2016 (c). d–f The corresponding map uncertainty
(quantified as the prediction interquartile range). Values are mapped at 1 × 1 km pixel resolution. g–i National population breakdown by endemicity class,
using population values based on WorldPop’s Whole Continent UN-adjusted Population Count datasets for Africa for 2010, 2015 and 2020. Estimates for
2011, 2013 and 2016 were created by linear interpolation of the bookending quinquennial rasters
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(standard deviation 7.4%), and at the ecozone level,
ranged from a 20.7% decrease in the central highlands
to a 27.4% decrease in the eastern highland fringe zone.
At the pixel level, 96% of pixels experienced a decrease
of 10% to 50% between 2013 and 2016. In contrast, 27%
of pixels increased between 0% and 100%, and 71%
more than doubled in prevalence over the full study
period from 2011 to 2016.

Trends in population exposure
Converting the geographic maps into population expos-
ure rates offers insight into the relative intensity of in-
fection prevalence across the population. The density of
which is highly variable across the island [4]. Fig. 3g–i
summarises the population numbers resident in each of
the different endemicity categories. These show that
the majority of the Malagasy population lives in the

lowest endemicity areas, with almost half (42%) of the
population in very low endemicity areas (<1% mean an-
nual PfPR6–59mo) and less than 10% in areas where
PfPR6–59mo was >10% in 2011. The highest endemicity
year, 2013, was predicted to have 32.5% of the popula-
tion in areas where endemicity was >10%, a threefold
increase from 2011. By 2016, this had dropped to 25.3%
of the population being in areas of >10% prevalence,
with a corresponding increase in the proportion living
in very low (<1%) prevalence areas to 26.7%. Finally,
the proportion of the population with infection preva-
lence greater than 20% rose from 2.2% in 2011 (an esti-
mated 0.5 million individuals) to 14.0% in 2013 (3.3
million individuals) and 9.2% (2.4 million individuals)
in 2016. Trends in endemicity across the population,
therefore, reflect the overall tendencies in the geographic
maps, with sharp increases in infection prevalence in the

Fig. 4 Box plots of predicted monthly PfPR6–59mo by ecozone for 2011, 2013 and 2016. Ecozone extents are shown in Fig. 1 [4]

Kang et al. BMC Medicine  (2018) 16:71 Page 9 of 15



low endemicity areas where most of the population lives,
and notable increases in the population exposed to the
highest end of the endemicity spectrum. A decrease of ex-
posure levels from 2013 to 2016 was evident, but much
less pronounced than the increase between 2011 and
2013, meaning that the exposure levels in 2016 were con-
siderably worse than in 2011.

Discussion
Three MIS studies have taken place in Madagascar since
2011, providing a valuable source of information about the
status of malaria from a standardised data collection proto-
col applied across a nationally representative set of loca-
tions. A broad range of indicator metrics are included in
the MIS reports. This present study looks at the parasit-
ology data in particular to assess how the prevalence of
malaria infection in children 6 to 59 months old has chan-
ged in recent years. Given the limitations of the routine
health data reporting chain discussed previously [4], this
study provides a complementary perspective into the recent
status of malaria endemicity in Madagascar, identifying

important increasing trends since 2011 despite a relatively
small fall in prevalence between 2013 and 2016.

Comparison with reported MIS results
The results presented in MIS reports are summaries of
the raw survey data, with individuals weighted in such a
way as to ensure appropriate national representation in
the overall summary statistics. However, the results are
not adjusted for the temporal lag in survey dates across
years (Additional file 1: Figure S1). By 2016, the survey
time window was pushed to 2 months later than in
2011, corresponding to a delay away from the peak
transmission period in most regions (Additional file 3:
Figure S3 and Additional file 4: Figure S4). The model
presented here specifically accounts for this temporal
lag, allowing for meaningful comparisons between years.
Seasonal trends in transmission [4] mean that a de-
layed survey period will underestimate endemicity
relative to the original survey time period. This is
reflected in the raw MIS results, which suggest a 6.2%
national PfPR6–59mo in 2011 and 7% in 2016, a 13%

Fig. 5 Percentage changes in predicted PfPR among children 6 to 59 months old across the three MIS time points: a from 2011 to 2016 and b from
2013 to 2016. Histograms of pixel-level change c from 2011 to 2016 and d from 2013 to 2016. Positive % change indicates an increase in prevalence,
while negative % change is a decrease
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increase over that period. In contrast, the spatio-
temporal model presented here identifies a 127% in-
crease, resulting in an estimated national mean 9.3%
annual PfPR6–59mo in 2016.
The MIS specifically excludes three highland districts

considered to be malaria-free (the cities of Antananarivo-
Renivohitra, Antsirabe I and Fianarantsoa I) as well as
communes above 1500 m in altitude. Despite not being
represented in the mapping input dataset, model predic-
tions are derived for these areas, which then inform the
ecozone- and national-level summaries. Without prior
exclusion of these zones, the model-based approach risked
over-inflating the estimates of endemicity. Environmental
covariates, however, appear to have discerned the unsuit-
ability of the highland urban habitat, and the malaria-free
districts are predicted to have <0.5% infection preva-
lence in all 3 years. The overall ecozone-level mean an-
nual PfPR6–59mo for the central highlands was 0.6% in
2011, 2.0% in 2013 and 1.6% in 2016, which were of the
same order of magnitude as those in the MIS summar-
ies of 0.8%, 1.1% and 0.9%, respectively. The excluded
MIS sampling zones do not, therefore, seem to have
impacted the spatio-temporal model predictions.

Comparison with previous prevalence maps
While geostatistical methods have been previously applied
to infection prevalence datasets to predict spatially con-
tinuous prevalence maps of Madagascar, this has been
within the context of continental or global-level mapping
[37, 39]. The country-specific modelling approach applied
here allows more freedom to the environmental covariates
to adapt to Madagascar’s specific ecological context, with
the model selecting those covariates most pertinent to
the island’s environmental diversity. The continent-
level spatio-temporal prediction cube developed by
Bhatt et al. ([39], reproduced for Madagascar [4]),
indicates a much coarser granularity than the present
predictions, with little variation between years. Never-
theless, the continental maps do allow malaria endem-
icity in Madagascar to be viewed in its broader
context, showing the relatively low prevalence of
infection in Madagascar relative to many countries in
sub-Saharan Africa (incidence rate ranked 13th lowest
out of 43 countries in 2015 [39]). Prevalence mapping
analyses are also valuable in evaluating trends in mal-
aria prevalence over time.

Comparison with health metrics information system data
In this study, we map the parasite reservoir, as detectable
by microscopy. In parallel, clinical case numbers are
collated by the routine health metrics information system
[4, 40, 41]. While the two metrics report different charac-
teristics of malaria, spatio-temporal trends from both are
similar, with a comparable geographic distribution of the

burden of disease and an important increase in burden par-
ticularly along the west coast. A major increase in clinical
cases was reported between 2014 and 2015, which subse-
quently reduced in 2016 (the third MIS year) following a
mass distribution of bed nets treated with insecticide at the
end of 2015 [41]. The longitudinal nature of the data from
the health metrics information system allows extreme
events to be identified, such as epidemics, which may dras-
tically affect the annual case totals, as in 2015, but which
may not be distinguishable as exceptional, or even captured
by cross-sectional surveys that assess prevalence at isolated
time points.
A 2017 World Health Organization (WHO) report

estimates that only around 31% of all clinical cases are
reported through the surveillance system to the central
level in Madagascar. This is likely primarily driven by
the population’s low rates of seeking treatment. Of
mothers seeking treatment in 2016 for their febrile chil-
dren aged 6 to 59 months, 35.8% did so at public health
facilities and 46.2% did so at any source (including pub-
lic health facilities) [11]. Such low capture of the overall
case burden, therefore, throws into question the system’s
capacity to adequately quantify changes in the malaria
burden over time.
The two indicators, therefore, have their strengths and

limitations, but together corroborate general trends of an
increased burden between 2011 and 2016, punctuated
with reductions, such as those identified between the 2013
and 2016 MIS surveys, or between 2015 and 2016 by the
routinely reported case data [40, 41]. This temporal
heterogeneity may be partly attributable to reductions in
NMCP activities caused by Global Fund disbursement
delays in 2014 [40]. In addition, recent evidence of the
variable quality and durability of the insecticide-treated
bed-net brands distributed across the country means that
over their 3-year lifespans (mass distribution campaigns in
Madagascar are triennial), protection from nets will be
inconsistent [42]. MIS campaigns in Madagascar have all
been timed to take place in the transmission season fol-
lowing mass bed-net distribution campaigns, which may,
therefore, capture snapshots of prevalence at its lowest.

Limitations to the approach
In this study, we have used data on the prevalence of in-
fection to assess the current spatio-temporal trends of
malaria infection in Madagascar. This metric is inde-
pendent of clinical symptoms, and instead quantifies the
extent of the parasite reservoir across the population.
The value of such a metric lies in its simplicity and stan-
dardised collection methods, and, in the context of the
MIS, repeated national representation. A recent review
by Cohen and colleagues [43], however, has argued for a
multi-component mapping process that will adequately
identify the underlying drivers of transmission, to enable
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NMCP to target control measures optimally. Elimination
requires both the reduction of the parasite reservoir and
the prevention of transmission. Prevalence data alone
cannot fully characterise the local epidemiology without
a parallel understanding of a site’s historical context, the
significance of imported cases, the impact of recent
control efforts, entomological and host behavioural/gen-
etic factors, and so on [43]. A practical interpretation of
the prevalence map, therefore, requires insight into the
underlying factors driving the observed infection rates.
The map suite presented here is one component in
understanding malaria in Madagascar, but ought to be
interpreted in association with a broader set of malario-
metric data when used to determine control intervention
policy. Malaria transmission is also highly dynamic both
spatially and temporally, meaning that predicted maps
based on single time-point snapshots of prevalence may
simplify the true underlying situation. Maps such as those
presented here provide insight into general trends, and
the validation statistics presented in Additional file 2:
Figure S2, Additional file 3: Figure S3 and Additional file 4:
Figure S4 indicate the level of variability that might be ex-
pected around these predictions.
Malaria prevalence is strongly influenced by interven-

tion coverage levels, including rates of insecticide-
treated net (ITN) ownership [39] and treatment seeking
[13, 14]. Including these covariates in the modelling
framework could help inform the model about the pat-
terns of endemicity but this was not considered feasible
in this present analysis. The coverage of indoor residual
spraying and ITN use rates, for instance, have complex
non-linear relationships with malaria prevalence. For
example, indoor residual spraying in Madagascar is care-
fully targeted to the highest (as an emergency response
to reduce mortality during outbreaks) and lowest (pre-
vention of reintroduction and subsequent autochthon-
ous transmission) endemicity districts only [8]. ITN
coverage is strongly skewed to areas where malaria is en-
demic. The highland areas into which malaria is mainly
imported are not covered by routine ITN distribution.
The limited temporal window considered in this present
study does not allow for the protective effect of high
ITN coverage to be learnt by the model, and instead the
coarse learnt association is that ITN coverage increases
as prevalence increases. Treatment seeking was excluded
for reasons of sample sizes. MIS data on treatment seek-
ing from individual cluster locations are limited to
mothers with infants who suffered from fever in the 2
weeks preceding the MIS interviews. Sample sizes at the
cluster level are, therefore, very small, producing spuri-
ous results when analysed at the high resolution of the
present analysis. Despite these barriers to including
intervention covariates in the model, the suite of envir-
onmental and socio-demographic variables that were

used allowed robust predictions of malaria prevalence,
so this was not considered a major limitation to the
mapping model presented here.
Madagascar is noted for its mosaic landscape of eco-

logical habitats, with land cover varying across short dis-
tances [44]. The critical importance of the environmental
covariates in the modelling process is evident from the
methods described here, with a strong predictive role asso-
ciated with vegetation cover that explains differences in
malaria prevalence between different areas (Table 2). The
covariates associated with each MIS site describe the local
conditions associated with the observed malaria prevalence
at the time and location of sampling. However, MIS data-
sets are geopositioned with a deliberate degree of spatial
uncertainty (displacement) to promote anonymity of up to
2 km in urban areas, 5 km in rural areas and 10 km for 1%
of rural points [45]. This spatial displacement, therefore,
introduces uncertainty into the associations between re-
ported PfPR and their attributed covariate values, which
could impact the model’s predictions. For this study, we as-
sumed that while the island is ecologically heterogeneous,
the impact of this spatial uncertainty will be acceptably low
(with ecological conditions similar for most points even at
a distance of 5 km or 10 km), and similar enough to allow
a prevalence signal to be identified. The model validation
statistics corroborate this assumption.
A further limitation of the MIS datasets that informed

the current mapping analysis stems from their sampling
design and sample sizes. The broad range of indicators
included in the MIS activities present conflicting de-
mands on sample sizes, which are further constrained by
financial and logistical considerations. Sample sizes can-
not, therefore, be optimised for all indicators, but in-
stead are focussed on a limited number of these. A
recent retrospective model-based analysis of the 2011
and 2013 Madagascar MIS datasets estimated that sam-
ple sizes were under-powered by 17% and 36%, respect-
ively, to reach effective sizes for infection prevalence
rates [46]. This was based on rapid diagnostic test results
and not microscopy (as considered in this present study),
meaning that it may be a slight overestimate. The ap-
proach followed here, namely to consider samples from
the three MIS datasets within a common Bayesian hier-
archical modelling framework and to draw on a broad
range of associated covariate surfaces, provides a solution
to sample size limitations.
Furthermore, at very low transmission levels, such as

in the central highlands and parts of the central fringe
regions of Madagascar, microscopy-based cross-sectional
surveys of parasite prevalence risk are underpowered to
detect rare and low parasitaemia infections adequately
[47]. In these areas, higher sensitivity diagnostics (such
as nucleic-acid amplification-based approaches) and
alternative indicators (such as serological markers) are
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required to monitor malaria epidemiological trends
more effectively [47–50]. Particular interest is in the use
of serological panels targeting both short- and long-
lasting antigenic responses [51]. When applied to appro-
priate sentinel populations [52, 53], these tools can be
powerful probes of changing transmission intensity or
reintroduction events in the pre-elimination setting
where the majority of infections at the time of survey
may be microscopically sub-patent [54].

Conclusions
Malaria remains an important health problem in
Madagascar, with the prevalence of infection more than
doubling between 2011 and 2016 (a mean increase of
127%). Across the three survey time points, 2011 to 2013
saw the greatest PfPR6–59mo increase, followed by a reduc-
tion to 2016 (mean reduction of 23%). However, while the
whole population is at risk of infection, prevalence was
lower in higher density areas, with 26.7% of the population
in 2016 living in pre-elimination areas, where prevalence
was <1% (a notable reduction from 42.3% of the popula-
tion in 2011, however).
Presidential elections in December 2013 marked an

optimistic turning point for Madagascar, with the return
to democracy ending the country’s 5-year isolation from
the international community. The 2009–2013 political
crisis placed a heavy burden on the country’s socio-
economic situation, with a deterioration in infrastructure
and public services [55]. The sharp increase in malaria
prevalence observed from 2011 to 2013 is likely a conse-
quence of the country’s wider economic situation and
associated health infrastructure breakdown.
Madagascar is not alone in suffering losses with malaria

control, with most countries in the African WHO region
also experiencing stalling progress [40]. Madagascar’s new
strategic plan for 2018–2022, however, offers an opportun-
ity to strengthen control with a policy shift away from
blanket coverage of intervention commodities, towards a
more locally targeted programme responsive to specific
epidemiological contexts [56]. The current government’s
strong support for malaria elimination is reflected by a
move towards closer integration of the NMCP into the
Ministry of Health’s core structures and activities rather
than being a quasi-independent programme, coupled with
the objective of partially devolving responsibilities for
control planning to regional officers. New policies include
the reintroduction of entomological control interventions,
targeted seasonal chemoprophylaxis in epidemic-prone
south-western communities, expanding household insecti-
cide residual spraying to the highest and lowest risk areas,
and specific consideration of high-risk populations [8].
Ambitious targets are being set for the end of the next

National Strategic Plan in 2022, with a view towards

geographically progressive elimination. Prevalence maps,
as presented here, represent one component of monitor-
ing progress towards those goals.
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Additional file 1: Figure S1. Sample screening during the three MIS
events in Madagascar, showing the progressive delay in the sampling
time window. a Overall bar plots of sampling months. b–d Maps by
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Additional file 2: Figure S2. Month-specific correlations between observed
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Additional file 5: Figure S5. Summary box plots of predicted monthly
PfPR6–59mo by ecozone, plotted alongside temporally variable predictor
values. The box plot rectangles indicate the first to third quartiles
(interquartile range), with the median shown as the dark line inside the
box. Vertical lines correspond to the minimum and maximum values.
Specified lags indicate the time points that were selected by the model
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