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Abstract
F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance
(AMR) such as extended-spectrum β-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is
challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network
community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream
waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to
examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling
compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network
communities. We show that such communities define unique combinations of core genes, with limited overlap. Building
plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely
linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in
environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation.
The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.

Introduction

Environmental (non-clinical and non-human) populations of
Enterobacterales may act as a genetic reservoir for anti-
microbial resistance (AMR). This includes livestock [1–5]
and water-borne [6] resistance. Frequent horizontal gene
transfer (HGT) in Enterobacterales populations results in a
large and open pangenome, enabling the wide-spread
transmission of the genes conferring AMR [7–9]. This
includes AMR transmission between humans and the
environment and vice versa [10]. However, evidence for
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this transmission is often context and sequence type
(ST)-specific, with broader transmission patterns less con-
clusive [10, 11]. Replicon typing is a plasmid classification
system based on well-conserved replication machinery [12].
F-type plasmids are a diverse group of Enterobacterales-
associated plasmids characterised by their corresponding
replicons’ need for DNA gyrase, DnaB, DnaC, DnaG and
single-strand binding and DNA polymerase III proteins to
replicate [13]. In particular, their involvement in the dis-
semination of genes encoding extended-spectrum β-lacta-
mases (ESBLs), such as blaCTX-M-15, is of major clinical
concern [14, 15], and almost 40% of plasmid-borne
carbapenemases are carried on F-type plasmids [16].
Additionally, F-type plasmids can also carry clinically
important virulence genes [17] and colicin genes, some-
times together [18]. F-type plasmids are low copy-number
and can be conjugative [19]. Further, recent database ana-
lysis suggests F-type replicons are carried in over 50% of
multireplicon plasmids [20].

Previous studies of F-type plasmids have often focussed
on clinically relevant isolates, often only those encoding
ESBLs [16]. Further, they have been limited to studies with
smaller sample sizes. Here, we analyse hundreds of F-type
plasmids drawn from a survey of environmental diversity in
Enterobacterales, sampled in 2017 from a region of South-
Central England, UK [21]. Sampling was from livestock
(cattle, pig and sheep), and from influent, effluent and
upstream/downstream waterways surrounding wastewater
treatment works (collectively termed WwTWs). Potential
seasonal variation was accounted for by sampling over three
time-points (TPs) at each site. This provided a high-quality
dataset of n= 726 plasmids for characterising natural
plasmid populations.

Frequent co-integration, recombination and the actions of
insertion elements mean the evolution of complete plasmids
cannot simply be described with a phylogenetic tree.
Instead, networks based on sequence similarity can be used
[22]. In such networks, nodes represent plasmids, and edges
are weighted by a metric on the plasmid sequences. This
captures both vertical and horizontal evolution at the cost of
not providing a most recent common ancestor. Commu-
nities are a topological property of networks. They are
defined as subsets of nodes with dense intra-connections,
but sparse inter-connections [23]. In our analyses, they
represented groups of similar plasmid sequences. Detecting
these structures gives a coarse-grained view of the plasmid
population. Previous efforts have often focussed on the
relationship between network features used in plasmid
classification schemes, such as replicon presence, MOB-
type or predicted mobility [24–27]. Further, studies have
often focussed on curated selections from online databases
[24, 27–29]. It is yet to be seen if similar community
structure is present in large-scale, natural populations. In

addition, it is important to develop fast and scalable meth-
ods for analysis of large and diverse whole genome shotgun
datasets. Here we aimed to provide a framework applicable
to such studies.

Results

A natural population of complete plasmids with F-
type replicons

We recovered n= 726 circularised plasmids containing an
F-type replicon (see Table S1) from a large dataset of high-
quality Enterobacterales genomes, obtained by hybrid
assembly using both short-read (Illumina, 150 bp paired-
end) and long-read (PacBio or Nanopore) sequencing of
cultured isolates [21]. These isolates were collected over
three TPs in 2017 from a region of south-central England,
UK. Sampling was from 14 livestock farms (4 pig, 5 cattle
and 5 sheep) and from waterways (influent, effluent and
rivers) surrounding five WwTWs. Of the livestock plas-
mids, 120 were from pigs, 137 were from cattle and 150
were from sheep. The remaining 319 plasmids were
from WwTWs.

F-type plasmids were found across all four of the genera
collected in the dataset: Citrobacter (53 C. freundii),
Enterobacter (67: 65 E. cloacae, 2 untyped Enterobacter
sp.), Escherichia (471 E. coli), and Klebsiella (135: 61
K. oxytoca, 67 K. pneumoniae and 7 untyped Klebsiella sp.).
Livestock plasmids mostly came from Escherichia (392/
407), whereas WwTW plasmids had a more uniform dis-
tribution over all four genera in line with the greater diver-
sity of genera in WwTW isolates (Fig. 1a). Our plasmids
originated from n= 558 hosts Enterobacterales isolates.

Plasmids ranged in length from approximately 20 to 480
kb (Fig. 1b). Most plasmids were predicted to be con-
jugative (516/726), with a smaller number predicted to be
mobilisable (39/726) or non-mobilisable (171/726) (see
“Materials and methods”). All plasmids predicted to be
conjugative were larger than 42 kbp, consistent with the
complete tra region of F-type plasmids being approximately
33 kbp [30]. We found 24 different replicons across all
plasmids, including 11 in unspecified gene clusters, present
in 52 different combinations or ‘replicon haplotypes’
(Table S2). Twenty-two replicon haplotypes appeared only
once in the sample. Plasmids carried between 1 and 5
replicons, with a majority carrying 2 (328/726) or 3 (258/
726). Plasmid length was positively associated with a
number of replicons carried (one-way ANOVA test [F(4,
721)= 7.34, p value= 8.6e−6] followed by Tukey’s HSD).
All plasmids contained at least one F-type replicon (see
“Materials and methods”; Fig. S1): FII (574), FIB (460) and
FIA (445). Of the remaining replicons, I1 was most
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common (28), and was always found with an FII replicon.
We observed different replicon co-occurrence patterns
(Fig. 1c), with individual F-type replicons associated with
different non-F-type replicons. For instance, U and N
replicons were only found with FIB and FII, respectively.
Overall, these co-occurrence patterns corroborate pre-
viously observed patterns of frequent F-type association
with replicons such as I1, X and R [20].

F-type plasmids tended to be AT-rich relative to their
host chromosomes. This trend has been widely reported
before [31, 32]. However, we found that relative AT-
richness significantly varied between host genus (one-way
ANOVA test [F(3, 561)= 111, p value < 2e−16] followed
by Tukey’s HSD), independently of average host GC-con-
tent, with Klebsiella plasmids having a greater relative AT-
richness than other Enterobacterales plasmids (Fig. 1d).

Detecting communities in plasmid k-mer networks

Plasmid sequence distances were calculated using Mash, a
k-mer based distance estimation [33] (ranges from 0 to 1, 0

being approximately identical; see “Materials and meth-
ods”). We used the similarities (1—Mash distance) as
weighted edges in a plasmid network. The output Mash
edge list is presented in Table S3. Communities were
detected using the Louvain algorithm, which optimises the
modularity of the networks, and is a weighted community
detection algorithm, meaning it also accounts for the Mash
similarities [23]. The all versus all comparison of sequences
produced a network too dense for consistent performance
from each Louvain run (Fig. 2). Hence, we reduced the
density of our network by thresholding the edges (i.e. by
‘sparsification’). This involves removing all edges below a
fixed Mash threshold. The necessity of sparsification in
plasmid networks has been noted before [25, 27]. We
considered several statistics to optimise our network
threshold: (i) the number of communities detected (Fig. 2a),
(ii) the proportion of plasmids recruited into communities
(Fig. 2b) and (iii) kernel density estimates (KDEs) of net-
work edge weights stratified by sampling compartment
(Fig. 2c). To ensure the communities represented potential
sub-populations, we only considered those with at least ten

Fig. 1 Overview of plasmid population. a Plasmid host genera
distribution by compartment. b Distribution of plasmid sequence
lengths with predicted mobilities. c Graph representing the asso-
ciation between replicon alleles. F-type nodes are coloured pink.
Line weight is proportional to frequency of association in the

sample. d Plasmid GC-content subtracted from host chromosome
GC-content. A value greater than zero indicates the plasmid is AT-
richer than the host. Only plasmids with circularised host chromo-
somes were used (565/726).
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plasmids. Figure S2 shows statistics (i) and (ii) for com-
munities with at least three plasmids. The large drop in
community recruitment seen at threshold= 0.825 (Fig. 2b)
was due to the break-up of a large connected component
(Fig. 2d). Note the statistics in Fig. 2a, b are averaged over
100 runs of Louvain to account for the algorithm conver-
ging to different local optima along the boundaries of
overlapping communities. The Louvain algorithm first
assigns a different starting community to each node [23] i.e.
different random seeds produce different starting config-
urations. Because the first step is a greedy algorithm which
first locally optimises modularity, different starting com-
munities can lead to different final communities, particu-
larly at community boundaries, so averaging overruns is a
common technique when using the Louvain algorithm. This
variation is reflected in the IQR bars in Fig. 2a, b.

We selected a threshold= 0.95, which yielded the
highest number of communities (13) containing at least 10
plasmids (Fig. 2a), and coverage of over 50% (Fig. 2b).
Figure 2c highlighted that livestock plasmid (median=

0.85) were generally more similar to each other than
WwTW plasmids (median= 0.74) and suggested that
plasmid diversity was higher in WwTW isolates. At our
threshold= 0.95, we revealed the structure of livestock
plasmids at the expense of minimal WwTW structure break-
up. At this level, the network’s largest connected compo-
nent (LCC) had 201 nodes with 182 connected components
in total (Fig. 2d). There were 99 singleton plasmids, con-
sistent with high levels of diversity in the population. A
visualisation of the network at this threshold with the 13
communities coloured is presented in Fig. 3. The quality of
communities was validated using the normalised mutual
information score (NMI; see “Materials and methods”)
against MOB-cluster IDs (NMI= 0.73) and replicon hap-
lotypes (NMI= 0.55). Closer inspection revealed that most
communities were dominated by a single or multiple
closely related replicon haplotypes and MOB-cluster IDs
(Figs. S3–4; community members and validation metadata
is given in Table S4). This suggests that our methodology
accurately assigns plasmid communities.

Fig. 2 Thresholding the plasmid network. a Number of communities
(at least 10 nodes) detected over a varying Mash similarity threshold.
Median and IQR bar shown. b Cumulative proportion of nodes
recruited in a detected community of at least ten nodes over a varying
Mash similarity threshold. Median and IQR bars shown. c Gaussian

kernel density estimates of Mash similarities stratified by compart-
ment. Bandwidth= 0.00864 calculated by Silverman’s ‘rule of
thumb’. Density medians are indicated with vertical lines. d Evolution
of the largest connected component and number of components over a
varying Mash similarity threshold.
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Community metadata analysis

To evaluate the relationship between the node metadata
labels and the network, two entropic measures were con-
sidered: homogeneity (h) and completeness (c) (both range
from 0 to 1; see “Materials and methods”). Homogeneity
measures the distribution of labels given a community, with
an ideal community containing a single label: a high
homogeneity means that plasmids with similar sequences
tend to have similar metadata labels. Conversely, com-
pleteness measures the distribution of communities given a
label: high completeness means that instances of a label
tend to fall within a single community. Importantly, both
homogeneity and completeness are independent of com-
munity size, the number of communities, and the number of
metadata labels. This makes the approach robust to uneven
sampling strategies, such as the disproportionate number of
E. coli isolates in our sample.

Each plasmid was assigned a set of metadata labels,
consisting of a sampling compartment (livestock type [pig,
cattle, sheep] or WwTW-association [influent, effluent,
upstream and downstream]), a host genus (Citrobacter,
Enterobacter, Escherichia or Klebsiella), and a TP (1, 2 or
3). Homogeneity (Table 1) and completeness (Table 2) were
averaged over 100 runs of the Louvain algorithm. Despite
the number of communities remaining consistent, some
variation in the measures arose from minor changes in
community boundaries.

Homogeneity scores showed that the sampling com-
partment shaped plasmid similarity. At the coarsest reso-
lution, there was high homogeneity considering livestock
versus WwTW (h= 0.713; Table 1), meaning that plasmid
communities were largely distinct between livestock and
WwTW settings. This metadata partition is projected on the
network in Fig. 4a. However, homogeneity was lower when
comparing different livestock types (pig, cattle and sheep)
(h= 0.592) and even more so when comparing different
farms (h= 0.406), meaning that there was a loss of structure
at these levels and plasmid communities were not well
segregated by the individual farm. Homogeneity was also
low if plasmids were stratified by individual WwTWs (h=
0.468). However, homogeneity increased for influent/
upstream versus effluent/downstream compartments (h=
0.553) indicating some differences in plasmids before and
after WwTW treatment. Overall, plasmids from WwTWs
were weakly structured by wastewater catchment.

Completeness scores highlighted higher WwTW diver-
sity compared to lower livestock diversity. For the binary
livestock or WwTW label plasmid communities scored low
completeness (Table 2; c= 0.200), which changed little
when stratified over the individual WwTWs (c= 0.238),
indicating a uniform distribution of WwTW labels over the
plasmid communities and high diversity. Based on our
Mash similarity KDEs (Fig. 2c), we would expect livestock
plasmids to have higher completeness scores than WwTW
plasmids due to the lower levels of diversity; as anticipated,

Fig. 3 Plasmid network
communities. The plasmid
network at threshold= 0.95.
Each community with at least
ten members has a unique
colour. Communities are
labelled from 1 to 13, which
correspond to Figs. 5, S3–4 and
S5–15. Unassigned plasmids
and those in smaller
communities are left white.
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when stratifying the livestock metadata, completeness
scores increased (c= 0.332 and c= 0.400). This indicated
plasmids from the same farm were more likely to be found
in the same community.

Host genus also played an important factor in partition-
ing plasmid diversity. The homogeneity scores were very
high, implying a significant genetic partition by the host
(Table 1; h= 0.888). This metadata partition is displayed in
Fig. 4b. The lower completeness suggested a moderate level
of diversity across all Enterobacterales plasmids (Table 2;
c= 0.309). There was a very weak TP effect found in the
network (Tables 1 and 2; h= 0.050 and c= 0.023). Under a
one-tailed permutation test, all metadata label configura-
tions except TP had a zero p value for homogeneity and
completeness (Table S5; see “Materials and methods”),
indicating that overall, there was a significant association
between niche (sampling compartment and host genus) and
plasmid population structure.

Community pangenomes

To explore the genetic structure of the communities we
considered the set of all represented genes within a com-
munity, known as the pangenome. Plasmids had a median
of 35 annotated genes (range: 4–112). Genes conferring
AMR were found in 17% (122/726) of plasmids; this
included 33 plasmids carrying ESBLs (9 pig, 8 cattle and 16
WwTw), with 4 carrying blaCTX-M-15 (all WwTW). F-type
plasmids in isolates cultured from pigs were dis-
proportionately associated with AMR genes (45/109 [41%]
AMR plasmids).

Core genes with well-conserved synteny comprise the
plasmid ‘backbone’ [22], which often controls essential
replication and mobility functions. Genes with accessory
function, such as AMR genes, are inserted into the back-
bone. For 13 F-type plasmid communities identified in this
study using the 0.95 thresholds above (see Fig. 3), we found
a median of 13 core genes (range: 0–88; Table 3). Each
community possessed a unique combination of core genes,
and pairs of communities shared a median of 0 core genes
between them (range: 0–21) (Table S6). The communities
had a median of 463 accessory genes (range: 151–790),
sharing a median of 284 accessory genes (range: 99–570)
(Table S7). Pairs of communities sharing a higher number
of genes tended to have a higher sum of individual genes
(r= 0.81, t= 12.95, p value < 2.2e−16), indicating an
overlap between larger pangenomes. Within a plasmid
community, we found a greater mean Mash similarity
was associated with more core genes (r= 0.63, t= 2.70,
p value= 0.02) and a lower total number of genes in the
pangenome (r=−0.67, t=−3.00, p value= 0.01).

For an example community of 30 F-type plasmids from
isolates from sheep farms, we produced a neighbour-joiningTa
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phylogeny based on 64/384 core genes (Fig. 5). The tree
accounts for homologous recombination, with events
detected in 11/30 leaf nodes and 21 internal nodes, con-
sistent with a high number of exchange events affecting this
plasmid community. The median tract length was 156 bp
(range: 2–2249 bp). Annotation of the phylogeny with the
316 accessory genes for this community revealed that
accessory gene presence aligned almost identically with the
core gene phylogeny, suggesting that the evolution of the
plasmid backbone is highly linked to accessory function.
All host genera for this plasmid community were diverse E.
coli, with 13 known STs present, consistent with the

widespread horizontal transfer of the plasmids from this
community. Within this community, no plasmids carried
AMR genes. Core genome phylogenies for other plasmid
communities also showed a strong link between accessory
gene presence and backbone contents (Figs. S5–S15).

Discussion

We have analysed plasmid communities using alignment-
free genomic networks to explore diversity within a large,
natural population of F-type plasmids from four

Fig. 4 Plasmid network coloured by metadata. All nodes are coloured, not just those in our detected 13 communities of at least 10 members. a
Partition by livestock or WwTW sampling compartment. b Partition by plasmid host genera.

Table 3 Community pangenomes.

Community Nodes Edges Mash similarity mean Core genes Soft core genes Shell genes Cloud genes Total genes

1 52 1151 0.973 13 12 155 153 333

2 85 1935 0.968 4 17 140 383 544

3 46 325 0.965 35 8 86 369 498

4 12 21 0.962 2 0 290 129 421

5 14 23 0.962 2 0 225 260 487

6 21 111 0.963 13 6 354 430 803

7 34 263 0.966 2 1 278 359 640

8 23 135 0.978 27 1 142 362 532

9 12 34 0.966 18 0 364 324 706

10 13 37 0.977 0 0 309 38 347

11 15 55 0.981 62 0 116 35 213

12 30 391 0.976 68 3 126 187 384

13 12 45 0.978 88 0 195 48 331

Characteristics of each of the 13 communities, including a number of nodes, edges and Mash mean (mean weight of all edges), and gene counts at
each level of the pangenome: core genes, softcore genes, shell genes and cloud genes are those found in [100, 99], (99, 95], (95, 15], and (15, 0]
per cent of plasmids, respectively.

2328 W. Matlock et al.



Enterobacterales genera (Citrobacter, Enterobacter,
Escherichia and Klebsiella). These F-type plasmids con-
tained a diversity of replicons (plasmids contained 21 other
replicons, forming 62 unique combinations) and we
resolved plasmids into communities (13 communities of
≥10 plasmids). We found that 15% of F-type plasmids
contained at least one AMR gene, and 5% carried an ESBL.
This underlines that non-clinical plasmid populations can
also carry AMR genes and that WwTW environment and
livestock niches are part of an AMR network for Enter-
obacterales [2, 10].

Our network analysis revealed F-type plasmids were well
partitioned by sampling compartment, with distinct com-
munities isolated to WwTWs or livestock; however, there
were also clear instances of sharing events between, for
example, specific farm locations. There was also moderate
partitioning by specific livestock species: pig, cattle and
sheep. In addition, there was a difference in plasmids before
and after WwTW treatment. Sampling compartment also
influenced diversity, with a higher diversity in WwTW-
associated plasmids than livestock plasmids. This is prob-
ably because both river and wastewater catchments inte-
grate a large number of human, livestock (farmed and wild)
and environmental sources. Despite F-type plasmids ran-
ging over all Enterobacterales genera, it suggested some
genus-specific adaptations. Notably, the extent of plasmid-
host AT-richness relative to the host chromosome varied
depending on the genus. It remains to be seen how such
observed differences relate to plasmid function. However,
this may be related to the livestock–WwTW partition, since
our livestock plasmids were predominantly hosted by
E. coli. We did not detect an effect of sampling TP. This is

maybe because our TPs were too close and our sample size
too small to capture any significant evolution, or it may
indicate that time of year is not a strong factor in deter-
mining community structure. It would be interesting to
see how plasmids from clinical samples relate to those from
our samples within the network, especially if pre-WwTW
plasmids are considered as a proxy for human gut
microbiomes.

Pangenome analysis of the inferred plasmid communities
revealed that core gene content was mostly unique to
communities. Further, they were strongly related to acces-
sory function. Taken with the above results, we propose that
the sampling compartment and host greatly influence the
function of plasmids. This includes AMR presence, with
pigs, and hence Escherichia, carrying a disproportionate
burden in our sample. The pangenomes for communities
varied greatly in the number of core genes, with one com-
munity having zero. This may be because the similarity
threshold was not severe enough to resolve this particular
community into multiple similar groups, or also may have
resulted from the settings used in Panaroo (see “Materials
and methods”) which may have split homologous gene
clusters. Generally, more genetically similar communities
had a greater number of core genes and smaller pangenome.
Our results for F-type plasmid communities are in line with
a recent study of the wider prokaryotic plasmidome which
concluded that clusters of plasmids contain common
genomic backbones [29].

Our study has several limitations. One important lim-
itation, which applies more widely to network approaches
which cluster or partition diversity, is that thresholding of
the network is somewhat arbitrary and highly dataset
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dependent. Trade-offs are required to reveal the inter-
mediate structures of the network whilst maintaining good
community detection performance. We determined a
threshold by considering Mash similarity distributions and
component evolution alongside Louvain output diagnostics
but were focused on recovering communities of more than
ten plasmids. For a different purpose e.g. investigating HGT
between communities, the full network could be studied.
When diversity varies greatly between sampling compart-
ments, a single threshold is unlikely to be globally optimal.
In these cases, it is probably best to focus on subpopulations
of interest. Despite only considering several hundred nodes
here, our methodology is scalable to far larger studies.
Originally, the Louvain algorithm had runtime complexity
O(e), where e is the number of edges in the network. This
has since been improved to O(v log k), where v is the
number of nodes and k is the average node degree [34].
Further, recent efforts have parallelised the Louvain algo-
rithm to networks with billions of edges, though this
approach was not necessary here [35]. Although Acman
et al. [27] argued that Louvain was unsuitable for the large
and dense plasmid networks they investigated, we believe it
may be appropriate for future analyses. Finally, our dataset
is limited to the four Enterobacterales genera understudy
and conclusions may not reflect the wider diversity of F-
type plasmids beyond these genera.

Our study adds to the growing literature on genomic
plasmid networks to characterise and partition diversity. To
our knowledge, ours is the first study to analyse the network
structure of a large-scale (n= 726), natural plasmid popu-
lation, and to focus specifically on F-type plasmids.
Whereas previous studies have based plasmid networks
on sequence alignments [24], or the sharing of annotated
genes [25] and open reading frames [29], we adopted an
approach similar to Acman et al. [27] and Jesus at al. [28]
using alignment-free Mash distances. These prior studies
analysed all publicly available plasmid sequences deposited
in the NCBI’s RefSeq database and are therefore likely
subject to any biases associated with sequence deposition in
this catalogue. This is in contrast to the dataset studied here,
where we characterised a large number of plasmids and
their relationships within a clearly defined, local sampling
frame. While previous studies used other algorithms such as
OSLOM [27] and stochastic block modelling [29] for
community detection, we have demonstrated the Louvain
algorithm as a viable alternative for plasmid networks.

In conclusion, our approach used a high-resolution
strategy for summarising similarities and differences
within plasmid populations, using the advantages of having
complete plasmid sequences and analysing these in the
context of associated metadata. For F-type plasmids, we
were able to show the distinct, local effects of sampling
compartment on plasmid structure and population. We were

also able to identify evidence for sharing of plasmids
between bacterial lineages, farms and WwTW-associated
contexts, with relevance for the ‘One Health’-associated
study of mobile genetic elements and AMR genes. As long-
read sequencing costs fall, and increasingly large numbers
of plasmids can be characterised, future work applying this
method will contribute to better understanding plasmid
populations, estimating transfer rates of important AMR
genes and MGEs between potential reservoirs, and identi-
fying hotspots of selection/transfer that might be amenable
to intervention.

Materials and methods

Plasmids and corresponding host isolates were sampled and
sequenced on behalf of the REHAB project in 2017, which
aimed to characterise the non-clinical, non-human Enter-
obacterales microbiome in south-central England, with a
focus on better understanding AMR spread. Specifically,
livestock (pig farms, cattle farms and sheep farms) and
WwTWs (influent, effluent, upstream and downstream
waterways) were sampled. To account for seasonal varia-
tion, sampling occurred at three discrete TPs: January–April
2017 (TP1), June–July 2017 (TP2) and October–November
2017 (TP3). All the plasmids presented have at least one F-
type replicon (classified by with MOB-typer, see below). In
total, we present n= 726 plasmids originated from n= 558
isolates. This comprises a subset of the entire REHAB
dataset, which overall contains n= 2293 circularised plas-
mids recovered from n= 828 isolates. This dataset is
described in more detail [21].

Livestock

Four pig farms (RH01–04), five cattle (RH06–10) and five
sheep farms (RH11–15) were selected for sampling over all
three TPs. All participating farmers provided written con-
sent for participation. Specific details on farm recruitment
and sampling procedure can be found in [21] and Anjum
et al. (paper in preparation).

WwTWs environment

Five WwTWs (WTP01–05) were selected based on a
number of criteria, including geographic location within
the region, wastewater treatment configuration, wastewater
population equivalent served, consented flow, and the
accessibility of the effluent receiving river for sampling
both upstream and downstream. The chosen WwTWs
and their details are shown in Table S8. Sampling took-
place over all three TPs. Specific details are provided
in [21].
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DNA sequencing

The isolates were selected for sequencing to represent
diversity within the four major genera (Citrobacter, Enter-
obacter, Escherichia and Klebsiella) in each niche,
including the use of third-generation cephalosporin resis-
tance to identify a subset of multi-drug resistant isolates
within each genus. Sequencing involved either PacBio
SMRT (n= 125 chromosomes; n= 163 plasmids) or
Oxford Nanopore Technologies (ONT) (n= 433 chromo-
somes; n= 563 plasmids) methodologies. Specific details
are provided in ref. [21].

Genome assembly, assignment and typing

We used the hybrid assembly and sequencing methods
described in our pilot study [36] to produce high-quality
Enterobacterales genomes from short and long reads. We
assigned species and ST from assembled genomes using
mlst (version 2.16.43) [37]. Further details on validation are
provided in [21].

Plasmid assembly

We used the hybrid assembly and sequencing methods
described in a pilot study [36] to produce high-quality
Enterobacterales genomes with associated plasmids from
short and long reads. The Illumina short reads helped
resolve the smaller plasmids, which were not very repeti-
tive. In short, we used Unicycler (version 0.4.7) [38] with
‘normal’ mode, --min_component_size 500, --min_d-
ead_end_size 500, and otherwise default parameters. From
these, we selected n= 726 plasmids which contained an F-
type replicon after classification with MOB-typer (see
below). We searched all plasmids against PLSDB (version
2020-03-04) [39] which contains 20,668 complete pub-
lished plasmids, using Mash screen [40] and keeping the top
hit. All plasmids had a match.

Replicon and predicted mobility typing

We used MOB-typer from MOB-suite (version 2.0.0) [26].
We clustered plasmids using MOB-cluster IDs and assigned
replicon types with MOB-typer, both part of the MOB-
suite. MOB-cluster uses single linkage clustering with a
cutoff of a Mash distance of 0.05 (corresponding to 95%
ANI). MOB-typer predicts mobility based on of annotations
of relaxase (mob), mating pair formation (MPF) complex,
and oriT genes [26] In short, a plasmid is putatively labelled
conjugative if it has both relaxase and MPF, mobilisable if it
has either relaxase or oriT but no MPF, and non-mobilisable
if it has no relaxase and oriT. A recent large-scale study [20]
showed MOB-typer to have a higher correct classification

rate than the widely used PlasmidFinder [41]. Figure S1
provides a neighbour-joining phylogeny of all F-type
replicon sequences used by MOB-typer. We used replicon
sequence Mash distances [33] with a k-mer length of 13 and
a sketch size of 5000, followed by ggtree (version 3.11) [42]
to visualise the phylogeny. Replicon sequences AY04580 |
IncFIC, CP003035|IncFIC, 000136__AP014877_00014|
IncFIA and 000097_NC_025116|IncFIB had branch lengths
rescaled to zero due to a negative branch length artefact
from the neighbour-joining tree algorithm. This may be due
to the high diversity between the replicon sequences.
Alternative replicon typings are provided by PlasmidFinder
[41] (Table S9; using Abricate version 1.01 [43] with
PlasmidFinder database version 2020-07-13) and Plas-
midMLST [44] on PubMLST (Table S10; version 1).

Plasmid similarity estimation

Distances between the complete plasmid sequences were
calculated using Mash (version 2.2) [33]. We then used 1—
Mash distances to obtain the similarities. Mash reduces
sequences to a fixed-length MinHash sketch, which is used
to estimate the Jaccard index. This measures extent of k-mer
sharing between plasmids. The representative sketch is far
shorter than the original sequence, making distance calcu-
lations efficient over large datasets. It also gives the Mash
distance (range= 0,1 with 0 being ~identical sequences and
1 being ~completely dissimilar sequences). Mash assigns
each pair-wise sequence distance a p value of that distance
(or less) under the null hypothesis both sequences are ran-
dom. A k-mer length of 13 and a sketch size of 5000 was
used. All other settings were default. Using Mash con-
siderably reduces similarity computation time from exact k-
mer profile methods, whilst maintaining good performance.
The Mash output is provided in Table S3.

Louvain community detection

The Louvain algorithm detects communities by optimising
the modularity by iterative expectation–maximisation [23].
This aims to maximise the density of edges within com-
munities against edges between communities. The algo-
rithm was implemented using the python-Louvain (version
0.14) Python module.

Community validation

NMI (range= 0,1 with 1 being a perfect match) measures
the information that the community labels and either MOB-
cluster IDs or replicon haplotypes share [45]. NMI was
calculated using the R package ‘aricode’ [46]. Community
labels used are same as those used to produce the com-
munity phylogenies (see Table S4).
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Community metadata analysis

Homogeneity (h) and completeness (c) are dual conditional
entropy-based measures [47]. They are independent of the
clustering algorithm, dataset size, number of label-types,
number of communities and community sizes. This means
they are appropriate for uneven metadata distributions. A
community partition satisfies homogeneity (h= 1) if all
members have the same metadata label-type. Suppose we
have a network with N nodes, partitioned by a set of
metadata labels, M ¼ fmiji ¼ 1; ¼ ; ng, and a set of com-
munities, C ¼ fcjjj ¼ 1; ¼ ;mg. Let A ¼ faijg represent
the ij-th entry in the contingency table of partitions. Hence,
aij counts the number of nodes with label mi in community
cj. We then say

h ¼
1

1� H M Cjð Þ
H Mð Þ

(
if HðM;CÞ ¼ 0

else

where

H M Cjð Þ ¼ �
XCj j

c¼1

XMj j

m¼1

amc
N

log
amcP
M
c¼1amc

and

H Mð Þ ¼ �
XMj j

m¼1

P Cj j
c¼1amc
n

log

P Cj j
c¼1amc
n

are the conditional entropy of the metadata given the
communities and the entropy of the communities, respec-
tively HðMjCÞ ¼ 0 when the community partition coincides
with the metadata partition, and no new information is
added. A community partition satisfies completeness (c= 1)
if all instances of a metadata label-type are assigned the
same community. Completeness is defined dually by

c ¼
1

1� H C Mjð Þ
H Cð Þ

(
if HðC;MÞ ¼ 0

else

The measures were calculated using the scikit-learn
(version 0.22.2) Python module [48].

Permutation test

We first calculated a Louvain partition for the network and
selected all nodes in communities with at least 10 members.
Homogeneity and completeness score medians were used
from Table 1 and Table 2. The partition labels were then
randomly permuted 1000 times. For each permutation, the
homogeneity and completeness scores were calculated.

These were then used to calculate a right-tailed p value. The
results are shown in Table S5.

Plasmid annotation and pangenome analysis

Plasmids were annotated using Prokka (version
1.14.6) [49]. Pangenome analysis used Panaroo (version
1.2.2) [50]. Core genes, softcore genes, shell genes and
cloud genes are those found in [100, 99], (99, 95], (95, 15],
and (15, 0] per cent of sequences respectively. Within the
pangenome, core genes are typically defined as those shared
by ≥99% of constituent plasmids. However, since no plas-
mid community in this study had >100 members, core genes
were strictly shared by 100%. Under 50 Louvain trials, only
one partition was different, where RH11|T2-C24_4 was
assigned community 1 instead of 2. This is to be expected
since communities 1 and 2 overlaps (Fig. 3). The commu-
nity labels for the pangenome analysis are from when this
does not happen (see Table S4). AMR annotations used
Abricate (version 0.9.8) [43] with the NCBI AMRFinder
Plus database [51] with a threshold of 90% sequence
identity and 90% coverage. AMR annotations are provided
in Table S11.

Community phylogeny

Alignment of core genes used Clustal Omega (version
1.2.4) [52], and ClonalFrameML (version 1.2) [53] was
used to adjust for homologous recombination. We used
ggtree (version 3.11) [42] to visualise the phylogeny.

Data visualisation

All figures were made in using the R package ggplot2
(version 3.3.0) [54], except for the network Figs. (1c, 3
and 4a, b), which were made using Cytoscape (version
3.8.0) [55]. Cytoscape was also used to calculate some
network descriptive statistics.

Data availability

Plasmid sequence data, metadata (Table S1), Mash edge list
(Table S3), community validation metadata (Table S4),
PlasmidFinder output (Table S9), Plasmid MLST output
(Table S10) and Abricate NCBI output (Table S11) are
available in a figshare collection (https://doi.org/10.6084/m9.
figshare.c.5066684.v3). Other data can be found in ref. [21].

Code availability

Details on computing methods can be found in the GitHub
repository for the paper (https://github.com/wtmatlock/pla
smid-network-analysis). This includes scripts for
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calculating the LCC and NCCs, Louvain performance
diagnostics and running the permutation test.

Acknowledgements Thanks to Fowler P for his comments on
the draft.

Funding This work was funded by the Antimicrobial Resistance
Cross-council Initiative supported by the seven research councils
[grant NE/N019989/1]. The UKCEH component of the REHAB
consortirum was supported by the The Natural Environment Research
Council (NERC) [grant NE/N019660/1]. Crook, George, Peto, Shep-
pard, Stoesser and Walker are supported by the National Institute for
Health Research Health Protection Research Unit (NIHR HPRU) in
Healthcare-Associated Infections and Antimicrobial Resistance at the
University of Oxford in partnership with Public Health England (PHE)
[grant HPRU-2012–10041 and NIHR200915]. Walker, Crook and
Peto are also supported by the NIHR Oxford Biomedical Research
Centre. Walker is an NIHR Senior Investigator. The computational
aspects of this research were funded from the NIHR Oxford BRC with
additional support from a Wellcome Trust Core Award Grant [grant
203141/Z/16/Z]. The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR, the Department of Health or
Public Health England. Matlock is supported by a scholarship from the
Medical Research Foundation National PhD Training Programme in
Antimicrobial Resistance Research (MRF-145-0004-TPG-AVISO).

8Animal and Plant Health Agency, Weybridge, Addlestone, UK; 9UK
Centre for Ecology & Hydrology, Wallingford, UK; 10Thames Water
Utilities, Clearwater Court, Vastern Road, Reading, UK; 11Nuffield
Department of Medicine, University of Oxford, Oxford, UK; 12NIHR
HPRU in Healthcare-Associated Infection and Antimicrobial Resis-
tance, University of Oxford, Oxford, UK; 13NIHR Oxford Biomedical
Research Centre, University of Oxford, Oxford, UK; 14Wellcome
Trust Centre for Human Genetics, University of Oxford, Roosevelt
Drive, Oxford, UK; 15University of Reading, Reading, UK;
16Department of Tropical Disease Biology, Liverpool School of Tro-
pical Medicine, Liverpool, UK; 17Icahn Institute of Data Science and
Genomic Technology, Mt Sinai, NY, USA; 18Antimicrobial Resis-
tance and Healthcare Associated Infections (AMRHAI) Reference
Unit, National Infection Service, Public Health England, London, UK

REHAB consortium Manal AbuOun9, Muna F. Anjum9, Mark J. Bai-
ley10, Brett H15, Mike J. Bowes10, Kevin K. Chau8, Derrick W.
Crook8,13,14, Nicola de Maio8, Nicholas Duggett9, Daniel J. Wilson8,16,
Daniel Gilson9, H. Soon Gweon10,11, Alasdair Hubbard17, Sarah J.
Hoosdally8, William Matlock8, James Kavanagh8, Hannah Jones9,
Timothy E. A. Peto8,13,14, Daniel S. Read10, Robert Sebra12, Liam P.
Shaw8, Anna E. Sheppard8,13, Richard P. Smith9, Emma Stubberfield9,
Nicole Stoesser8,13,14, Jeremy Swann8, A. Sarah Walker8,13,14, Neil
Woodford18

Author contributions Author contributions under the CRediT system
were as follows: Conceptualisation: WM, NS, MA, DS, MJB, DWC,
LPS and ASW. Methodology: WM and LPS. Software: WM. Vali-
dation: WM, KKC, LB, HP and LPS. Formal analysis: WM. Investi-
gation: KKC, MA, ES, JK, HP, LB, RS, DSR, HSG, NS and RS.
Resources: MA, MFA, HSG, DSR, RS, JS, NS, TEAP, MJB, ASW
and RS. Data curation: WM, LPS, DSR, MA, NS, ES and DG. Writing
—original draft: WM. Writing—review and editing: All authors.
Visualisation: WM, Supervision: LPS, NS, ASW and DWC. Project
administration: NS, DSR, SH and MFA. Funding acquisition: NS,
DWC, MJB, DSR, MFA, ASW and TEAP.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Thanner S, Drissner D, Walsh F. Antimicrobial resistance in
agriculture. MBio 2016;7(2):e02227–15.

2. Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of
drug resistance genes from environmental to clinically important
bacteria. Curr Opin Microbiol. 2018;45:131–9.

3. Collis RM, Burgess SA, Biggs PJ, Midwinter AC, French NP,
Toombs-Ruane L, et al. Extended-spectrum beta-lactamase-
producing Enterobacteriaceae in dairy farm environments: a
New Zealand perspective. Foodborne Pathog Dis.
2019;16(1):5–22.

4. Velasova M, Smith RP, Lemma F, Horton RA, Duggett NA,
Evans J, et al. Detection of extended‐spectrum β‐lactam, AmpC
and carbapenem resistance in Enterobacteriaceae in beef cattle in
Great Britain in 2015. J Appl Microbiol. 2019;126(4):1081–95.

5. AbuOun M, O’Connor HM, Stubberfield EJ, Nunez-Garcia J,
Sayers E, Crook DW, et al. Characterizing antimicrobial resistant
Escherichia coli and associated risk factors in a cross-sectional
study of pig farms in Great Britain. Front Microbiol. 2020;11:861.

6. Bartley PS, Domitrovic TN, Moretto VT, Santos CS, Ponce-
Terashima R, Reis MG, et al. Antibiotic resistance in Enter-
obacteriaceae from surface waters in urban Brazil highlights the
risks of poor sanitation. Am J Trop Med Hyg. 2019;100
(6):1369–77.

7. Decano AG, Downing T. An Escherichia coli ST131 pangenome
atlas reveals population structure and evolution across 4,071 iso-
lates. Sci Rep. 2019;9(1):1–13.

8. Passarelli‐Araujo H, Palmeiro JK, Moharana KC, Pedrosa‐Silva F,
Dalla‐Costa LM, Venancio TM. Genomic analysis unveils
important aspects of population structure, virulence, and anti-
microbial resistance in Klebsiella aerogenes. FEBS J.
2019;286(19):3797–810.

9. Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T, Mainil JG,
et al. Differential dynamics and impacts of prophages and plas-
mids on the pangenome and virulence factor repertoires of Shiga
toxin-producing Escherichia coli O145: H28. Microb Genom.
2020;6(1):e000323.

10. Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial
resistance in humans, livestock and the wider environment. Philos
Trans R Soc Lond B Biol Sci. 2015;370(1670):20140083.

Genomic network analysis of environmental and livestock F-type plasmid populations 2333

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


11. Allcock S, Young EH, Holmes M, Gurdasani D, Dougan G,
Sandhu MS, et al. Antimicrobial resistance in human populations:
challenges and opportunities. Glob Health Epidemiol Genom.
2017;2:e4.

12. Johnson TJ, Nolan LK. Plasmid replicon typing. In: Caugant, DA,
editors. Molecular epidemiology of microorganisms. Methods in
molecular biology. Vol 551. Totowa, NJ: Humana Press; 2009.
p. 27–35.

13. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon
sequence typing of IncF plasmids carrying virulence and
resistance determinants. J Antimicrob Chemother.
2010;65(12):2518–29.

14. Agyekum A, Fajardo-Lubián A, Ansong D, Partridge SR, Agbe-
nyega T, Iredell JR. blaCTX-M-15 carried by IncF-type plasmids
is the dominant ESBL gene in Escherichia coli and Klebsiella
pneumoniae at a hospital in Ghana. Diagn Microbiol Infect Dis.
2016;84(4):328–33.

15. Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E, Guerra B,
et al. CTX-M-15-producing E. coli isolates from food products in
Germany are mainly associated with an IncF-type plasmid and
belong to two predominant clonal E. coli lineages. Front Micro-
biol. 2017;8:2318.

16. Mbelle NM, Osei Sekyere J, Amoako DG, Maningi NE, Mod-
ipane L, Essack SY, et al. Genomic analysis of a multidrug‐
resistant clinical Providencia rettgeri (PR002) strain with the
novel integron ln1483 and an A/C plasmid replicon. Ann NY
Acad Sci. 2020;1462(1):92–103.

17. Gupta SK, Sharma P, McMillan EA, Jackson CR, Hiott LM,
Woodley T, et al. Genomic comparison of diverse Salmonella
serovars isolated from swine. PloS ONE. 2019;14(11):e0224518.

18. Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J, Myers
GS, et al. Genomic profiling of Escherichia coli isolates from
bacteraemia patients: a 3-year cohort study of isolates collected at
a Sydney teaching hospital. Microb Genom. 2020;6(5):e000371.

19. Rozwandowicz M, Brouwer MS, Fischer J, Wagenaar JA,
Gonzalez-Zorn B, Guerra B, et al. Plasmids carrying antimicrobial
resistance genes in Enterobacteriaceae. J Antimicrob Chemother.
2018;73(5):1121–37.

20. Douarre PE, Mallet L, Radomski N, Felten A, Mistou MY.
Analysis of COMPASS, a new comprehensive plasmid database
revealed prevalence of multireplicon and extensive diversity of
IncF plasmids. Front Microbiol. 2020;11:483.

21. Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E,
Gweon HS et al. Niche and Local Geography Shape the
Pangenome of Wastewater and Livestock-Associated Enter-
obacteriaceae. https://www.biorxiv.org/content/10.1101/2020.07.
23.215756v1 (2020).

22. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto
TEA, et al. Plasmid classification in an era of whole-genome
sequencing: application in studies of antibiotic resistance epide-
miology. Front Microbiol. 2017;8:182.

23. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast
unfolding of communities in large networks. J Stat Mech Theory
Exp. 2008;10:P10008.

24. Yamashita A, Sekizuka T, Kuroda M. Characterization of anti-
microbial resistance dissemination across plasmid communities
classified by network analysis. Pathogens 2014;3(2):356–76.

25. Branger C, Ledda A, Billard-Pomares T, Doublet B, Fouteau S,
Barbe V, et al. Extended-spectrum β-lactamase-encoding genes
are spreading on a wide range of Escherichia coli plasmids
existing prior to the use of third-generation cephalosporins.
Microb Genom. 2018;4(9):e000203.

26. Robertson J, Nash JH. MOB-suite: software tools for clustering,
reconstruction and typing of plasmids from draft assemblies.
Microb Genom. 2018;4(8):e000206.

27. Acman M, van Dorp L, Santini JM, Balloux F. Large-scale net-
work analysis captures biological features of bacterial plasmids.
Nat Commun. 2020;11(1):1–11.

28. Jesus TF, Ribeiro-Gonçalves B, Silva DN, Bortolaia V, Ramirez
M, Carriço JA. Plasmid ATLAS: plasmid visual analytics and
identification in high-throughput sequencing data. Nucleic Acids
Res. 2019;47(D1):D188–94.

29. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro
M, Rocha EP, et al. Pathways for horizontal gene transfer in
bacteria revealed by a global map of their plasmids. Nat Commun.
2020;11(1):1–13.

30. Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence
and gene products of the transfer region of the F sex factor.
Microbiol Rev. 1994;58(2):162–210.

31. Almpanis A, Swain M, Gatherer D, McEwan N. Correlation
between bacterial G+ C content, genome size and the G+ C
content of associated plasmids and bacteriophages. Microb
Genom. 2018;4(4):e000168.

32. Dietel AK, Merker H, Kaltenpoth M, Kost C. Selective advan-
tages favour high genomic AT-contents in intracellular elements.
PLoS Genet. 2019;15(4):e1007778.

33. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH,
Koren S, et al. Mash: fast genome and metagenome distance
estimation using MinHash. Genome Biol. 2016;17(1):132.

34. Traag VA. Faster unfolding of communities: speeding up the
Louvain algorithm. Phys Rev E. 2015;92(3):032801.

35. Que X, Checconi F, Petrini F, Gunnels JA. Scalable community
detection with the Louvain algorithm. In: Proc. 2015 IEEE
international parallel and distributed processing symposium. (pp.
28-37). (IEEE, 2015).

36. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND,
Swann J, et al. Comparison of long-read sequencing technologies
in the hybrid assembly of complex bacterial genomes. Microb
Genom. 2019;5(9):e000294.

37. Seeman T. MLST—scan contig files against PubMLST typing
schemes; 2017.

38. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving
bacterial genome assemblies from short and long sequencing
reads. PLoS Comput Biol. 2017;13(6):e1005595.

39. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of
complete bacterial plasmids. Nucleic Acids Res. 2019;47(D1):
D195–202.

40. Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S,
Buck CB, et al. Mash Screen: high-throughput sequence con-
tainment estimation for genome discovery. Genome Biol.
2019;20(1):232.

41. Carattoli A, Zankari E, García-Fernández A, Larsen MV, Lund O,
Villa L, et al. In silico detection and typing of plasmids using
PlasmidFinder and plasmid multilocus sequence typing. Anti-
microb Agents Chemother. 2014;58(7):3895–903.

42. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. ggtree: an R package
for visualization and annotation of phylogenetic trees with their
covariates and other associated data. Methods Ecol Evol. 2017;8
(1):28–36.

43. Seemann T. Abricate: mass screening of contigs for antimicrobial
and virulence genes. Department of Microbiology and Immunol-
ogy, The University of Melbourne, Melbourne, Australia; 2018.
https://github.com/tseemann/abricate. Accessed 28 February
2019.

44. Jolley KA, Bray JE, Maiden MC. Open-access bacterial popula-
tion genomics: BIGSdb software, the PubMLST.org website and
their applications. Wellcome Open Res. 2018;3:124.

45. Vinh NX, Epps J, Bailey J. Information theoretic measures for
clusterings comparison: variants, properties, normalization and
correction for chance. J Mach Learn Res. 2010;11:2837–54.

2334 W. Matlock et al.

https://www.biorxiv.org/content/10.1101/2020.07.23.215756v1
https://www.biorxiv.org/content/10.1101/2020.07.23.215756v1
https://github.com/tseemann/abricate


46. Chiquet J, Rigaill G, Sundqvist M. Aricode: efficient computa-
tions of standard clustering comparison measures. 2020. https://
rdrr.io/cran/aricode/. Accessed 20 November 2020.

47. Rosenberg A, Hirschberg J. V-measure: a conditional entropy-
based external cluster evaluation measure. In: Proc. 2007 joint
conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL);
2007. p. 410–20.

48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, et al. Scikit-learn: machine learning in Python. J Mach
Learn Res. 2011;12:2825–30.

49. Seemann T. Prokka: rapid prokaryotic genome annotation.
Bioinformatics 2014;30(14):2068–9.

50. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G,
Lees JA, et al. Producing polished prokaryotic pangenomes with
the Panaroo pipeline. https://www.biorxiv.org/content/10.1101/
2020.01.28.922989v1; 2020.

51. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy
I, et al. Validating the AMRFinder tool and resistance gene
database by using antimicrobial resistance genotype-phenotype
correlations in a collection of isolates. Antimicrob Agents Che-
mother. 2019;63(11):e00483–19.

52. Sievers F, Higgins DG. Clustal Omega for making accurate
alignments of many protein sequences. Protein Sci.
2018;27(1):135–45.

53. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of
recombination in whole bacterial genomes. PLoS Comput Biol.
2015;1 1(2):e1004041.

54. Wickham H ggplot2: elegant graphics for data analysis. Springer;
2016.

55. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res.
2003;13(11):2498–504.

Genomic network analysis of environmental and livestock F-type plasmid populations 2335

https://rdrr.io/cran/aricode/
https://rdrr.io/cran/aricode/
https://www.biorxiv.org/content/10.1101/2020.01.28.922989v1
https://www.biorxiv.org/content/10.1101/2020.01.28.922989v1

	Genomic network analysis of environmental and livestock F-type plasmid populations
	Abstract
	Introduction
	Results
	A natural population of complete plasmids with F-type replicons
	Detecting communities in plasmid k-mer networks
	Community metadata analysis
	Community pangenomes

	Discussion
	Materials and methods
	Livestock
	WwTWs environment
	DNA sequencing
	Genome assembly, assignment and typing
	Plasmid assembly
	Replicon and predicted mobility typing
	Plasmid similarity estimation
	Louvain community detection
	Community validation
	Community metadata analysis
	Permutation test
	Plasmid annotation and pangenome analysis
	Community phylogeny
	Data visualisation
	Supplementary information
	Supplementary information
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




