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Abstract: Nitrogen is an essential element required for bacterial growth. It serves as a building block
for the biosynthesis of macromolecules and provides precursors for secondary metabolites. Bacteria
have developed the ability to use various nitrogen sources and possess two enzyme systems for
nitrogen assimilation involving glutamine synthetase/glutamate synthase and glutamate dehydroge-
nase. Microorganisms living in habitats with changeable availability of nutrients have developed
strategies to survive under nitrogen limitation. One adaptation is the ability to acquire nitrogen from
alternative sources including the polyamines putrescine, cadaverine, spermidine and spermine, as
well as the monoamine ethanolamine. Bacterial polyamine and monoamine metabolism is not only
important under low nitrogen availability, but it is also required to survive under high concentrations
of these compounds. Such conditions can occur in diverse habitats such as soil, plant tissues and
human cells. Strategies of pathogenic and non-pathogenic bacteria to survive in the presence of poly-
and monoamines offer the possibility to combat pathogens by using their capability to metabolize
polyamines as an antibiotic drug target. This work aims to summarize the knowledge on poly- and
monoamine metabolism in bacteria and its role in nitrogen metabolism.

Keywords: nitrogen assimilation; ethanolamine metabolism; polyamine metabolism; bacteria; drug
discovery

1. Nitrogen Metabolism
1.1. Fundamentals of Nitrogen Assimilation in Prokaryotes

Nitrogen belongs to the group of vital elements. It is a key macronutrient required for
the growth of living organisms. It is an essential component of amino acids, amino sugars,
coenzymes, purines and pirimidines in nucleic acids [1,2], polyamines, and monoamines [3].
Microorganisms can use nitrogen sources with different redox states, including molecular
nitrogen (redox state 0), ammonium (redox state −3), nitrate (redox state +5), and nitrite
(redox state +3). Energetically, ammonium is the most preferred nitrogen source as a
compound in the most reduced form.

Pathways for nitrogen assimilation comprise utilization pathways from the extracel-
lular environment and biosynthetic pathways for intracellular production. Depending
on the organism, these pathways are coordinated in order to control the intracellular
amounts of nitrogen-containing compounds. Depending on the intracellular pool of nitro-
gen, expression of enzymes of nitrogen metabolism must be well coordinated. Nitrogen
control has previously been precisely investigated in Gram-negative bacteria Escherichia
coli, Salmonella typhimuium, Pseudomonas aeruginosa, as well as Gram-positive actinobacterial
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species Corynebacterium glutamicum, Streptomyces coelicolor, and Mycobacterium tuberculo-
sis [4–8].

Some nitrogen-containing compounds such as ammonium can enter the cell by dif-
fusion. Other compounds, e.g., amino acids, nitrate, nitrite, and urea, can be taken up
by transporters [9]. A favored inorganic nitrogen source is ammonium which can diffuse
across cell membranes or be transported into the cells via specialized Amt transporters.
Subsequently, it can be directly used in the synthesis of glutamine and glutamate, which are
key building blocks for biomolecules and subsequent biomass generation. Other inorganic
nitrogen sources including nitrate, nitrite, urea, and diatomic nitrogen need to be reduced to
ammonium before they can be assimilated. This process requires extra energy—in the form
of ATP and electrons [5]. Organic nitrogen sources such as amino acids and amino sugars
can be incorporated into the metabolism directly or in the deaminated and deamidated
forms [8,10–13]. Alternative complex organic and non-organic nitrogen sources including
monoamines and polyamines first have to be neutralized and detoxified with subsequent
reduction [14,15].

Bacteria possess two enzyme systems for ammonium assimilation based on the glu-
tamine synthetase/glutamate synthase (GS/GOGAT) and glutamate dehydrogenase (GDH)
activity, which are ubiquitous in bacteria. Under different nitrogen concentrations, these
two distinctive pathways form glutamine and glutamate, respectively. The intracellu-
lar ammonium is integrated into cellular metabolism by the glutamine synthetase. It is
active under low concentrations of ammonium as a component of the glutamine syn-
thetase/glutamate synthase (GS/GOGAT) pathway. Glutamine synthetase (GS) catalyzes
the ATP-dependent synthesis of glutamate and ammonia to glutamine. Glutamate is gen-
erated from glutamine and 2-oxyglutarate by glutamine-2-oxoglutarate-aminotransferase
(GOGAT) [5,6,15]. Glutamate synthase (GOGAT) transfers the amide group from glu-
tamine to 2-oxoglutarate (2-OG), producing two molecules of glutamate. Under high
concentrations of ammonium, the glutamate dehydrogenase (GDH) is active. It catalyzes
the synthesis of glutamate using substrates ammonium and 2-oxyglutarate as well as
NADPH. However, the GDH remains inactive under limiting conditions due to the low
substrate affinity and high Km value [6] (Figure 1). Glutamine and glutamate can be subse-
quently incorporated into diverse biosynthetic reactions in the cell. Glutamine provides
nitrogen for the synthesis of aromatic compounds (purines, pyrimidines), amino acids
(arginine, histidine, tryptophane, asparagine), amino sugars (glucosamine), and others (e.g.,
aminobenzoate). Glutamate is the donor of nitrogen in transamination reactions [16,17]
(Figure 1).

1.2. Nitrogen Assimilation in Gram-Negative Bacteria

For survival in a competitive and stressful environment under nutrient limitation,
bacteria have developed a complex metabolism and regulatory machinery that controls the
amount of nitrogen in the cell at transcriptional and post-transcriptional levels. Nitrogen
control has been extensively investigated predominantly in enteric bacteria from the En-
terobacteriaceae family: Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and
Klebsiella aerogenes. A key role has the central response regulator NtrC, which is coupled
with a specific sensor kinase NtrB sensing the limitation of nitrogen. In addition, the status
of nitrogen and the regulation of enzyme activity at a global level are controlled via the
following proteins: encoded by glnD uridylyltransferase/uridylyl-removing enzyme UTase;
an adenylylate transferase/deadenylylase GlnE; small signal transducing proteins PII GlnK
and GlnB [6].
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Figure 1. Schematic illustration of bacterial nitrogen metabolism. The main nitrogen sources, their 
uptake, and assimilation routes are depicted, as well as representative example of proteins involved 
in these processes. Enzyme systems for ammonia assimilation are shown in detail. GS: glutamine 
synthetase; GOGAT: glutamine-2-oxoglutarate-aminotransferase; GDH: glutamate dehydrogenase. 
Red arrows: GS/GOGAT pathway; light gray arrow: GDH pathway; black arrows: other metabolic 
routes; dark gray cylinders: transporters [5,6,16]. 
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Figure 1. Schematic illustration of bacterial nitrogen metabolism. The main nitrogen sources, their
uptake, and assimilation routes are depicted, as well as representative example of proteins involved
in these processes. Enzyme systems for ammonia assimilation are shown in detail. GS: glutamine
synthetase; GOGAT: glutamine-2-oxoglutarate-aminotransferase; GDH: glutamate dehydrogenase.
Red arrows: GS/GOGAT pathway; light gray arrow: GDH pathway; black arrows: other metabolic
routes; dark gray cylinders: transporters [5,6,16].

1.2.1. Nitrogen Assimilation and Control in Escherichia coli

In E. coli, nitrogen starvation conditions induce the differential expression of genes
that are regulated by the two-component system NtrB/NtrC. The PII signal protein GlnB
is essential in this regulatory cascade sensing the cellular level of ATP, 2-oxoglutarate or
glutamate [6]. The role of GlnK has also been demonstrated in E. coli. During nitrogen
starvation, it regulates the expression of Ntr genes [18]. The PII protein can occur in two
different forms in E. coli: PII and urydylylated PII-UMP. The bifunctional uridylyltrans-
ferase GlnD is responsible for two different states of the PII protein, whereas both activities
are influenced by the amounts in the cell of the 2-oxoglutarate/glutamine and ATP/ADP.
High carbon and ATP amounts signal the nitrogen limitation stimulating the activity of
the uridylyltransferase. High concentrations of glutamine stimulate the uridylyl-removing
activity of UTase. Under nitrogen-limiting conditions, urydylylated PII protein senses
the phosphorylation of the sensor kinase NtrB [6]. Phosphorylated NtrB can activate the
response regulator NtrC via the transfer of the phospho-group [19]. Phosphorylation of
NtrC changes its conformation forming a dimer of two NtrC molecules. The dimeric form
of NtrC enhances the transcription of nitrogen metabolism genes, including the gene glnA
encoding glutamine synthetase through binding to the σ54 sigma factor-dependent promot-
ers. Furthermore, in free-living anaerobic nitrogen-fixing bacteria such as Rhizobia sp. and
Klebsiella sp., strict regulation of the nif genes for nitrogen fixation is present and depends
on nitrogen availability. For example, in Klebsiella pneumoniae, the NtrB/NtrC system has
been demonstrated to be required for control of the nifL gene for nitrogen fixation [20].

Nitrogen assimilation was also described to be controlled on the post-translational
level. It occurs via covalent adenylylation and deadenylylation of each subunit of the
glutamine synthetase enzyme [21,22]. This requires the bifunctional protein GlnE, which is
regulated by the PII signal protein. In E. coli, modification of GSI by the covalent addition
of AMP leads to a reduction of enzyme activity [23]. GlnE has two distinct domains, the N-
terminal deadenylylation domain and the C-terminal adenylylation domain, that catalyze
two different reactions. These domains are connected by an interregion linker. Besides
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the GS binding region, GlnE also has independent glutamine, PII, and PII-UMP binding
sites. Under glutamine-rich conditions, glutamine and PII bind to GlnE. This causes the
linker region to bring the adenylylation and deadenylylation domains together allowing
adenylylation [23]. Under glutamine-limiting conditions, PII-UMP binds to GlnE. This
causes a conformation change and allows deadenylylation [24].

1.2.2. Nitrogen Assimilation and Control in Cyanobacteria

In cyanobacteria, nitrogen is catabolized via the coupled reaction in the GS/GOGAT
pathway [25]. In contrast to other bacteria, in cyanobacteria, the GS activity is mainly
regulated by small inhibitory proteins. Such proteins have been characterized in the
Synechocystis PCC 6803 strain: inactivating factor 7 (IF7) encoded by gifA and inactivating
factor 17 (IF17) encoded by gifB [26]. The global nitrogen control factor NtcA controls the
expression of these genes responding to the 2-OG levels of the cell. There is no sensor
protein interacting with NtcA. For the regulation of NtcA activity, PII is dispensable. Most
cyanobacterial genomes harbor only one glnB gene, which encodes a PII protein. The others
possess both glnB and glnK [27]. NtcA has been demonstrated to respond to 2-OG [28].
A global repressor of carbon-regulated genes, NdhR has been observed to use 2-OG as
corepressor [29]. 2-OG appears as a main indicator of the status of central metabolism,
carbon, and nitrogen catabolism. Furthermore, the regulation can be mediated by a non-
coding RNA, a glutamine riboswitch in the 5′UTR of gifB, and by nsiR4. This glutamine
riboswitch links the glutamine status of the cells to regulation of the central nitrogen
assimilation reaction [27].

Several signaling pathways exist at different levels in cyanobacteria. Nitrogen-regulated
genes nirB and ntcB have been characterized for example in Synechococcus, where they
constitute an operon (nirB-ntcB) transcribed different from nirA. Under nitrogen limitation,
transcription of nirB-ntcB is increased and is NtcA-dependent, whereas ntcB codes a mem-
ber of the LysR family of transcriptional activators [6]. Cyanobacteria are able to maintain
nitrogen fixation that can occur in cells heterocysts, which differentiate from the vegetative
cell filaments. Nitrogen fixation as well as heterocyst development are controlled by ammo-
nium repression. Ammonium represses expression of the nitrate reductase, nitrate/nitrite
transport system, nitrite reductase, GSI, and the GSIII structural gene glnN [6,25,30].

1.3. Nitrogen Assimilation in Gram-Positive Bacteria

Gram positive bacteria are classified in two phyla: Firmicutes with low GC DNA con-
tent (subdivided into the classes Bacilli and Clostridia) and Actinobacteria with high GC
DNA content (subdivided into multiple orders). The order Actinomycetales is the largest one,
containing a variety of species and unclassified isolates. The nitrogen assimilatory enzymes
of the GOGAT/GS pathway as well as GlnK and GlnE are conserved in Gram-positive
bacteria such as Clostridium acetobutylicum, Bacillus subtilis, and Streptomyces coelicolor. How-
ever, while the enteric bacteria possess the Ntr control system, there is no reported presence
of this system in Gram-positive bacteria. Instead, they possess alternative transcriptional
regulatory mechanisms.

1.3.1. Nitrogen Assimilation and Its Control in Bacillus subtilis

The model organism for Gram-positive bacteria with low GC content is Bacillus subtilis.
Nitrogen metabolism has been extensively investigated in this organism. A preferred nitro-
gen source for this bacterium is ammonium [31]. No GdhA activity has been reported in B.
subtilis—ammonium can be assimilated only via the GS/GOGAT pathway [32]. Further-
more, no post-translational modification of the GS enzyme has been observed, but feedback
inhibition of GS by glutamine has been described. Under nitrogen depletion, three global
regulators, GlnR, TnrA, and CodY, are present in cells for best possible growth [2]. Another
regulator, GltC, controls the transcription of the glutamate synthetase (GOGAT) gene in
dependence to the intracellular concentration of 2-oxoglutarate [33]. The transcriptional
regulator TnrA that belongs to the MreR family of DNA-binding proteins has been shown
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to be functional only under nitrogen-limiting conditions in B. subtilis. The TnrA regulator
positively controls the transcription of genes involved in ammonium uptake (amtB, ureABC,
nasBC, and nasDEF) and nitrogen signaling (glnK), as well as its own transcription. In
addition, it exerts a negative effect on the glnRA operon encoding GlnR and the GS, on
the gltAB operon encoding GOGAT, and on gltC encoding GltC [34]. A homologue of
the TnrA regulator, GlnR, can target almost the same binding sequences as TnrA. GlnR is
active under nitrogen excess and acts mainly as a repressor. It represses the transcription
of the glnA gene encoded in the glnRA operon as well as the transcription of tnrA, gltAB,
ureABC, and glnR [35,36]. In B. subtilis, CodY-dependent regulation occurs under carbon
and nitrogen depletion conditions when bacteria have to rely on amino acids for growth.
The repressor protein CodY controls the transcription of urease encoding operon ureABC,
dipeptide degradative operon dpp, histidine degradative operon hut, and isoleucine/valine
degradative operon bkd [34].

1.3.2. Nitrogen Assimilation and Its Control in Corynebacterium glutamicum

The model organism for Gram-positive bacteria with high GC content is Corynebac-
terium glutamicum, which has been extensively studied because of its application in industry
for the production of amino acids such as L-glutamine. C. glutamicum also serves for stud-
ies of important human pathogens including Corynebacterium diphteriae, Corynebacterium
jeikeium, Mycobacterium leprae, and Mycobacterium tuberculosis. C. glutamicum possesses the
genes amtA and amtB for ammonium uptake [37], which are transcribed under nitrogen
starvation conditions [38]. AmtA specifically transports methylammonium; AmtB trans-
ports ammonium with high affinity and methylammonium with low affinity [39,40]. In C.
glutamicum, amtB forms a cluster with glnK coding for the signaling protein PII. Besides
the nitrogen-sensing function, GlnK has reportedly been involved in the transcriptional
regulation of nitrogen metabolism genes in combination with the global transcriptional
regulator AmtR [41]. In C. glutamicum, ammonium is assimilated via the GS/GOGAT
pathway under nitrogen limitation or via the Gdh pathway under nitrogen excess. Two GS
enzymes have been described in C. glutamicum: GlnA (also annotated as GlnA1, GSI) and
GlnA2 (GSI). GlnA is the essential functional glutamine synthetase which is subjected to
post-translational modification by the adenylyl transferase enzyme GlnE [42,43]. GlnA2 has
been described as a non-essential enzyme which is not subjected to post-translational mod-
ifications. In contrast to E. coli, GlnE activity in C. glutamicum is not regulated by GlnK [44].
A central transcriptional regulator of nitrogen metabolism genes in C. glutamicum is AmtR,
which belongs to the TetR family of regulatory proteins typically acting as transcriptional
repressors. The GlnK protein can interact with AmtR under nitrogen-limiting conditions.
As a result of the protein–protein interaction, AmtR is removed from the upstream regions
of its target genes and leaves them for transcription. AmtR has been reported to control
its own transcription as well as the transcription of 34 other target genes including the
amtB–glnK–glnD operon, the gltBD, urtABCDE, gluABCD operons, genes dapD, gdh, codA,
the ureABCEFGD operon, genes amtA, glnA1, and crnT [40,45].

1.3.3. Nitrogen Assimilation and Its Control in Streptomyces coelicolor

Intensive investigations of primary and secondary metabolism in S. coelicolor A3 (2)
lead to establishment of this Gram-positive bacterium with high GC content as a model
organism for Streptomyces and Actinobacteria [46]. In its natural soil habitat, S. coelicolor
is an obligatory aerobe bacterium with filamentous growth and GC content of 63–78%.
It belongs to the phylum Actinobacteria and genus Streptomyces, and is closely related
to human pathogens from genus Mycobacterium and Rhodococcus [47–49]. Streptomycetes
including S. coelicolor feature an impressive adaptability to environmental stress, a complex
metabolism and life cycle, and high metabolic potential, as well as the ability to synthesize
a large variety of useful natural products. Streptomyces spp. fulfill a key ecological role
in the soil—they are able to naturally recycle the remains of other organisms by their
utilization [50].
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In the natural soil environment, S. coelicolor lives under varying nutrient conditions.
Therefore, it is capable of assimilation of different sources of carbon and nitrogen such as
ammonium (NH4+), nitrite (NO2−), nitrate (NO3−), amino acids histidine and arginine,
amino sugars, peptides, urea as well as chitin, cellulose and xylose, releasing chitinases,
cellulases, and xylanases for extracellular utilization of such organic material [51–53]. The
genome of the S. coelicolor M145 strain was the first to be fully sequenced and is remarkably
large: a linear chromosome contains 8,667,507 base pairs and 7825 predicted genes [49].
Diverse multiple gene clusters are present in the genome of S. coelicolor for the synthesis of
natural products, such as actinorhodin, undecylprodigiosin, methylenomycin, perimycin,
and calcium-dependent antibiotic [53]. Regulatory networks that control the metabolism
and morphological differentiation of S. coelicolor in respond to nitrogen availability signals
allow S. coelicolor to survive under variable nutrient conditions [54].

S. coelicolor is constantly exposed to environmental stress. This occurs in the form
of limited availability of nutrient sources and local excess of toxic compounds as a result
of the decomposition of organic material. The cellular response to nitrogen limitation
in S. coelicolor can be controlled on a transcriptional level—it involves the global nitro-
gen response regulator GlnR [55,56]. It belongs to the OmpR family of regulators and
influences by activation the expression of the operon amtB-glnK-glnD (the ammonium
transporter AmtB, the PII signal protein GlnK, and the adenylyl transferase GlnD) that are
conserved genes in Actinomycetales [57–62]. Other GlnR target genes include glutamine
synthetase encoding genes glnA and glnII, a glutamate dehydrogenase encoding gene
gdhA, nitrate/nitrite reduction genes nirB and nasA, urea cleavage gene ureA, and a HemD-
like transcriptional regulator encoding gene nnaR, as well as seven further genes with an
unknown function [57,58,61,63,64].

Two transcriptional regulators, GlnR and NnaR, control nitrate assimilatory genes
(nirBD, narK, nasA) in S. coelicolor. Under nitrogen-limited conditions, GlnR can activate the
expression of these genes that is enhanced by the synergistic binding of GlnR and NnaR in
the presence of nitrate [65]. Another regulator, GlnRII, can bind to the upstream regions of
amtB-glnK-glnD, glnA, and glnII as well as sco1863 showing the same binding capacity as
GlnR [60]. It was hypothesized that GlnRII has a particular role in the glnII regulation and
is not a functional homologue of GlnR. It was found in Streptomyces spp., but has not been
found in Corynebacterium and Mycobacterium [57,66].

Complex nitrogen metabolism of S. coelicolor requires additional control by further
transcriptional regulators: Crp [67], PhoP [68,69], ArgR [70], AfsR [71], DasR [72,73], and
AfsQ1 [74]. Crp regulates the interplay of primary and secondary metabolism, and the
genes amtB-glnK-glnD, glnA, and glnII [67]. PhoP negatively regulates the transcription
of the amtB-glnK-glnD operon as well as genes glnA, glnII, and glnR under conditions
of phosphate limitation [26]. AfsR controls expression of glnR in response to unknown
nutrient stress stimulus [71]. AfsQ1 is required for the carbon, nitrogen, and phosphate
metabolism regulation under glutamate presence [74,75].

In dependence from the level of ammonium, the uptake in S. coelicolor can be con-
trolled at post-translational level—the ammonium transporter AmtB interacts with the
nitrogen sensor protein PII (GlnK) [57,76,77]. When concentrations of ammonium are high,
GlnK can be inactivated by adenylylation mediated by the adenylyltransferase GlnD or
by proteolysis [57]. In order to avoid the depletion of the intracellular glutamate pool, the
activity levels of glutamine synthetases can be controlled at post-translational level [45].
When nitrogen conditions are variable, GlnA activity can be regulated through the re-
versible adenylylation/deadenylylation by an adenylyltransferase GlnE [60]. However,
no post-translational modifications of the GOGAT enzyme in Actinobacteria have so far
been reported. The regulation of GSI by GlnE has also been demonstrated in E. coli, where
GlnE can be controlled by GlnK, GlnB (nitrogen regulatory protein P-II), and GlnD. How-
ever, in S. coelicolor, the PII proteins GlnK and GlnD seem to be not essential for these
processes [45,77,78].
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1.3.4. Nitrogen Assimilation and Its Control in Mycobacterium tuberculosis

Nitrogen metabolism has been extensively studied in pathogenic Actinobacteria from
the genus Mycobacterium, which includes soil bacteria such as Mycobacterium smegmatis as
well as mammal and human pathogens including Mycobacterium tuberculosis (causative
agent of tuberculosis) and Mycobacterium leprae (causative agent of leprosy). In M. tuber-
culosis, the glutamine synthetase and nitrogen assimilatory protein GlnA (also referred as
GlnA1) have been associated with pathogenicity and virulence [79,80]. Understanding of
nitrogen assimilation in this bacterium is important for the comprehension of infection
mechanisms. Furthermore, this knowledge allows the development of novel therapeutic
strategies to control M. tuberculosis and multidrug resistance (MDR) strains. M. tubercu-
losis possesses an ammonium transporter protein, AmtB, and it does not have an active
glutamate dehydrogenase (GDH) enzyme. Thus, GS/GOGAT is the only way to assimi-
late nitrogen. M. tuberculosis genome contains one glutamine synthetase encoding gene
glnA (also referred as glnA1) and three GS-like enzymes encoded by glnA2, glnA3, and
glnA4 [81,82]. All of these enzymes belong to the GSI (prokaryotic) type of glutamine
synthetases. Although all GS-like enzymes have been reported to be active in cells, only
GSI encoded by glnA1 has been found to be essential for M. tuberculosis growth. The activity
of the GlnA1 enzyme can be down-regulated under nitrogen excess by the bifunctional
adenylyl transferase GlnE. Under nitrogen starvation, GlnE deadenylylates GlnA1 and
restores its activity. In contrast to E. coli and similar to S. coelicolor, in M. tuberculosis, GlnE
activity is not regulated by GlnK and GlnD [23]. At transcriptional level, GlnR, which
is a functional homologue of the global transcriptional regulator GlnR from S. coelicolor,
controls the nitrogen assimilation. As occurs in S. coelicolor, during nitrogen limitation
in M. tuberculosis, GlnR regulates the transcription of glnA as well as the transcription of
operons amtB-glnK-glnD, gltBD, and nirBD, and at least 33 other genes in M. tuberculosis and
more than 100 genes in M. smegmatis [83,84]. A putative TetR-like transcriptional regulator,
AmtR, has also been found in M. tuberculosis (Rv3160c) demonstrating only 27.9% amino
acid sequence identity to the AmtR protein from C. glutamicum [45].

1.4. The Central Role of Glutamine Synthetases in the Bacterial Nitrogen Metabolism

Glutamine synthetases (GS; EC 6.1.1.3) are enzymes found in all forms of life, with
the central role in nitrogen assimilation [85]. GS enzymes catalyze the formation of L-
glutamine through the condensation of ammonia with L-glutamate in an ATP-dependent
manner. Glutamine, together with glutamate, serves as an essential component for pro-
tein biosynthesis. It is a major nitrogen source for biosynthetic reactions in the cell and
one of the major nontoxic ammonia carriers [86,87]. It has been assumed that glutamine
synthetases might be among the most ancient existing enzymes in nature [88]. Functional
GSs have been described to occur in three forms. GS type-1 (GSI) has been found in most
prokaryotes [6,21,22] as well as in mammals and plants [89,90]. GSI enzymes are subdi-
vided into two GS isoenzymes: GSI-α and GSI-β. GSI-α enzymes are generally found
in thermophilic bacteria, low G + C Gram-positive bacteria, and euryarchaeota, whereas
GS I-β enzymes are found in other bacteria [34]. GS type-2 (GSII) are generally found in
eukaryotes, in some Gram-positive high GC-content bacteria [6,45,91], and in symbiotic
Gram-negative soil bacteria such as Rhizobium sp. [88,92]. GS type-3 (GSIII) are generally
found in cyanobacteria [93], in the Gram-negative anaerobe bacterium Bacteriodes frag-
ilis [85], and some protozoans [94]. Another octamer form of GS, GSIV, has so far only been
found in the plant-associated bacteria Rhizobium leguminosarum [95], Rhizobium meliloti [96],
and Agrobacterium tumefaciens [97]. The biosynthetic activity of GSIV is significantly lower
than that of GSI and GSII, which is the reason for discussions about whether the enzyme
primarily fulfills a function other than the synthesis of glutamine [96]. However, this could
not yet be demonstrated.

Structurally, all GSs are composed of two closed-ring structures. Active sites are
formed between protomers [98]. GSI is a dodecameric protein with about 360 amino acids
length and a subunit between 44–60 kDa that has been found in bacteria and archea [99–102].
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GSII is a dodecamer with about 450 amino acids length, composed of subunits between
35–50 kDa [88,100–102]. GSIII is a hexameric enzyme with about 730 amino acids length,
composed of subunits of approximately 75 kDa each [93,103].

The crystal structure of the glutamine synthases has been previously elucidated and
characterized in Salmonella typhimurium [104,105], Helicobacter pylori [106], Bacillus sub-
tilis [107], and Mycobacterium tuberculosis [108]. The GSI GlnA has been structurally eluci-
dated in S. typhimurium (PDB: 2GLS). It consists of 12 subunits and demonstrates a high
sequence similarity to prokaryotic GS enzymes [98,109]. The crystal structure of GSII (GlnII)
with a resolution of 2.55 Å (PDB: 4BAX) has been determined in S. coelicolor and described
by X-ray diffraction. GlnII is a dodecamer comprising 10 subunits organized in 2 rings
that demonstrates high sequence similarity to eukaryotic GS enzymes [7,66,110]. The glnII
gene has been detected in Streptomyces sp. but is not present in other Actinobacteria such
as Corynebacterium and Mycobacterium [91] and is not transcribed at a constant level at all
growth phases, though it is preferentially transcribed during mycelial differentiation [60].
The crystal structure of the GSIII (PDB: 3O6X) has been determined in B. fragilis—it is a
dodecamer with two hexameric rings [103].

Furthermore, a computational analysis of glnA-genes across actinobacterial genomes
revealed the existence of a supposed common glnA ancestor, from which the glnA, glnII,
and glnA-like genes in different Actinobacteria are derived [88,111]. For example, in S.
coelicolor and in M. tuberculosis, three genes were identified as glnA-like: glnA2, glnA3, and
glnA4 [57,112]. GlnA and GlnII were demonstrated to be functional glutamine synthetases,
and glnA2, glnA3, and glnA4 were shown to encode GS-like enzymes that do not exhibit a
glutamine synthetase activity in both S. coelicolor [57,112,113] and M. tuberculosis [80].

In S. coelicolor, analysis of GlnA2, GlnA3, and GlnA4 revealed that they share similar
structural features [7]. A phenotypic analysis of glnA2, glnA3, and glnA4 knock-out mu-
tants with different nitrogen sources demonstrated their involvement in polyamine and
ethanolamine metabolism [113–115]. Biochemical studies on GlnA2 and GlnA3 demon-
strated that they are active as γ-glutamylpolyamine synthetases [113,115]. Furthermore, it
has been shown that GlnA4 is a γ-glutamylethanolamide synthetase [114]. The presence of
different GS-like proteins highlights the occurrence of these specialized proteins required
for the survival, colonization, and propagation in specific habitats.

2. Polyamine and monoamine Metabolism
2.1. Polyamine Metabolism in Bacteria
2.1.1. Distribution and Role of Polyamines

Polyamines are aliphatic polycations that are composed of a polycarbone chain and
amino groups. Widely distributed natural polyamines are putrescine (1,4-diaminobutane),
spermidine (N-(3 aminopropyl)-1,4-butadiamine), spermine (N, N′-bis (3-aminopropyl-
1,4-butanediamine)), and cadaverine (pentane-1,5-diamine) [116–118]. Further polyamines
that are not frequently occurring in nature have been reported, including thermine, thermo-
spermine, caldopentamine, and others. These molecules have been found in the extreme
thermophile Thermus thermophiles [119]. A variety of other linear polyamines have been
found in (hyper)thermophilic archea and bacteria, including norspermidine, norspermine,
caldopentamine, homocaldopentamine, thermopentamine, and caldohexamine [120], as
well as branched-chain polyamines such as N4-bis(aminopropyl)spermidine [121].

Polyamines are present in diverse bacterial habitats. In soil, the polyamine concentra-
tion per gram of humus ranges are: putrescine: between 0.28 and 0.56 nmol/g, spermidine:
0.23–0.62 nmol/g, and spermine: 0.16–0.43 nmol/g [122]. In mammal cells, a natural envi-
ronment for pathogenic bacteria, elevated polyamine levels have been reported exceeding
physiological concentrations in human skin, in regenerating tissues (more than 1 mM), and
in body fluids and blood (more than 0.01 mM) [123–125]. In addition, polyamine levels
increase in human lungs during an inflammation process and shortly after apoptosis [126].
However, increased polyamine concentrations can lead to bacterial cell death. For example,
it has been reported that 0.15 mM of exogenous putrescine is toxic for the cyanobacterium
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Anacystis nidulans [127]. Other reports described inhibition of E. coli growth in the presence
of 4 mM spermidine [128].

Natural intracellular polyamine concentrations range in different species. E. coli can
synthesize high amounts of putrescine (up to 32 mM total concentration) and spermi-
dine (up to 6.88 mM). However, in most bacteria, the content of intracellular putrescine
ranges between 0.1–0.2 mM [3,129]. Spermidine has been shown to be essential for plank-
tonic growth of some Gram-negative bacteria, such as ε-proteobacterium Campylobacter
jejuni [130] and γ-proteobacterium Pseudomonas aeruginosa PAO1 [131]. The intracellular
spermidine content can vary between 1–3 mM. In contrast to other polyamines, the presence
of cadaverine and spermine in bacterial cells remains not well investigated. In E. coli, sper-
mine is not biosynthesized de novo, but it can be taken up from the environment [132]. In
other bacteria, spermine was found in cells when present in the medium [133]. Cadaverine
has been characterized in bacteria and plants. It is the least prevalent of polyamines that
naturally occur in cells and is of low importance for bacteria [134]. It is normally absent in
E. coli [133].

Polyamines, especially spermidine, have been described as essential in Archaea and
eukaryotes. However, their role in bacteria is less understood [13,118]. It has been reported
that polyamines are not required for normal growth in Gram-positive bacteria such as
Bacillus subtilis [135] and S. coelicolor [136]. In γ-proteobacteria, polyamines have been
shown to be required for growth—their limitation reduced the growth rate in Yersinia
pestis [137], Vibrio cholera [138], Salmonella typhimurium [139], and Escherichia coli [140].
The intracellular polyamine amount is tightly coordinated with the cellular metabolism.
Polyamines have been demonstrated to be accumulated intracellularly under stress con-
ditions [117]. In bacteria, polyamines are important for homeostasis: their functions
include an influence on transcription [140–143] and translation [144–147], the biosynthe-
sis of siderophores [136,148–150], cell growth stimulation [151,152], and biofilm forma-
tion [138,153,154]. Furthermore, polyamines play a role in stress response: they confer
the response to oxidative stress [128,140,155,156], SOS system activation [157], acid resis-
tance [155,158,159], and antibiotic resistance [160–163].

2.1.2. Importance of Polyamines for Intracellular Pathogens

In mouse macrophages, the concentration of polyamines putrescine, spermidine,
and spermine reportedly vary from 250–1750 pmol/5 × 106 macrophages, depending
on the metabolic state of the cell [164]. Polyamines synthesized by the host can favor
intracellular survival of human pathogens causing deadly diseases. Such bacteria are able
to colonize and manipulate immune cells, escaping the response. This makes the treatment
of infections extremely difficult. Macrophages represent the first line of human immune
defense. Most intracellular pathogens residing in macrophages cause a time-dependent
up-regulation of the metabolic regulator (PPARγ) in infected macrophages, resulting in
increased expression of M2 markers and down-modulation of the M1 response [165].
PPARγ induces the arginine metabolism leading to the synthesis of the polyamine spermine
from putrescine via spermidine [166]. Bacteria that are able to colonize and survive in
macrophages, providing access to intracellular polyamines, include Klebsiella pneumonia
causing pneumonia infection [167], Salmonella typhimurium causing typhoid fever [168],
Brucella abortus causing brucellosis [169], Acinetobacter baumannii causing meningitis or lung
infections [170], and Mycobacterium tuberculosis causing tuberculosis [171].

2.1.3. Occurrence of Polyamines in Bacterial Cells
Polyamine Biosynthesis

In bacteria and in all kingdoms of life, polyamines can be synthesized from the
amino acids methionine, ornithine, lysine, and arginine [117,172]. Bacterial polyamine
biosynthetic pathways are configured in multiple pathways that have been studied in E.
coli, P. aeruginosa, Salmonella enterica, Campylobacter jejuni, and S. coelicolor [118]. Generally,
bacteria produce a diamine (putrescine or cadaverine) and triamine (spermidine). Some
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bacteria can produce longer-chain polyamines (including spermine), some produce only
diamines, and others, such as pathogens, often do not produce any polyamines [173].

Putrescine is synthesized by ornithine decarboxylation involving an ornithine de-
carboxylase (ODC). Furthermore, putrescine can be generated from arginine by an argi-
nine decarboxylase (ADC) and agmatinase. Both ODC and ADC pathways have been
extensively investigated in E. coli [117,174]. In P. aeruginosa, agmatine conversion to pu-
trescine in a two-step reaction has been demonstrated. It involves hydrolytic deimination
of agmatine to N-carbamoylputrescine catalyzed by agmatine deiminase AguA. Subse-
quently, N-carbamoylputrescine amidohydrolase AguB catalyzes hydrolysis of the car-
bamoyl group yielding ammonia, carbon dioxide, and putrescine [131,175]. The second
reaction has also been shown in Enterococcus faecalis, where putrescine transcarbamylase
releases carbamoylphosphate from N-carbamoylputrescine and inorganic phosphate yield-
ing putrescine [176]. Spermidine and spermine are derived from putrescine via addition of
aminopropyl groups, which are supplied by the methionine derivative—decarboxylated
S-adenosylmethionine (dcAdoMet, dSAM) produced by a S-adenosylmethionine decar-
boxylase (AdoMetDC, SpeD). The addition of aminopropyl groups occurs through sper-
midine and spermine synthetases (SpdS/SpeE and SpmS) [117,174,177]. Cadaverine has
been studied in E. coli, Lactobacillus spp. and Vibrio sp., where it is synthesized by lysine
decarboxylases (LDCs)-dependent lysine decarboxylation [178] (Figure 2). In S. coelicolor,
low amounts of putrescine, spermidine, spermine, and cadaverine (ca. 0.05–0.1 µmol/g)
have been detected when grown in a complex medium [120]. It has been reported that
putrescine, spermidine, and diaminopropan can occur in S. coelicolor in the late-stationary
phase in the minimal liquid medium (NMMP), while cadaverine can be produced under
iron limitation [136], hinting towards a possibility to synthesize these polyamines de novo
in S. coelicolor. Knowledge of polyamine biosynthetic pathways have allowed advances in
engineering of the industrial bacterium C. glutamicum for efficient production of the most
promising polyamines putrescine and cadaverine [179].
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Polyamine Uptake

On the one hand, some bacteria do not possess a polyamine biosynthetic pathway
and must import polyamines from the extracellular environment. On the other hand, the
uptake of polyamines is generally economical for bacteria and allows energy to be saved,
because the synthesis of S-adenosylmethionine (AdoMet, SAM), for which biosynthesis
requires ATP, is consumed in the AdoMet decarboxylase–spermidine synthetase pathway.
The uptake of external polyamines is of central importance in order to optimize growth,
metabolism, cell-to-cell communication, and adaptation to the environment [14].

At physiological pH, polyamines are positively charged hydrophilic molecules. They
cannot pass through cellular membranes by diffusion. Thus, an active transport system
is needed for polyamine uptake from the extracellular environment. Polyamine transport
has been extensively investigated in predominantly pathogenic bacteria, including Vibrio
cholerae, Proteus mirabilis, Aggregatibacter actinomycetemcomitans, Streptococcus pneumonia,
and Escherichia coli.

Several polyamine transporters have been described in E. coli: PuuP for putrescine [180,181],
the putrescine–ornithine antiporter PotE [182], PotFGHI for putrescine [183], the proton-
dependent importer PlaP for putrescine [184], the cadaverine–lysine antiporter CadB [185],
the importer PotABCD for spermidine [186,187], and the spermidine transporter MdtJI [188]
(Figure 3; Table 1). In V. cholerae, three homologues of PotD from E. coli have been described:
NspS, PotD1, and PotD2 [189].

Table 1. List of proteins involved in polyamine utilization in E. coli, P. aeruginosa, and S.
coelicolor [113,115].

Annotated Function Homologue in E. coli Homologue in
P. aeruginosa

Homologue in
S. coelicolor

Polyamine ABC transporter ATP-binding
protein PotA-like PotA (b1126)/YdcT (b1441) PAO603/PAO326 SCO3453

Polyamine ABC transporter ATP-binding
protein PotC-like PotC (b1124)/YdcV (b1443) PAO324/PotC (PA3609) SCO3454

Polyamine ABC transporter protein PotB (b1125)/YdcU (b1442) PotB (PA0205)/PA3252 SCO3455

Polyamine ABC transporter
protein—substrate binding protein YnjB (b1754) PA0203 SCO3456

Amino acid/polyamine permease PuuP (b1296)/PlaP (b2014) PA5510 SCO5057

Lysine/ornithine decarboxylase-like
enzyme - - SCO5651

Pyruvate-polyamine aminotransferase PatA (b3073) SpuC (PA0299) SCO5655

Lrp/AsnC family transcriptional regulator - - SCO5656

γ-aminobutyraldehyde or
γ-glutamyl-γ-amino-butyraldehyde
dehydrogenase

PatD (b1444)/PuuC (b1300) BetB (PA5373)/PAO219 SCO5657

Polyamine-binding lipoprotein PotF (b0854) SpuD (PA0300) SCO5658

γ-aminobutyraldehyde dehydrogenase or
4-guanidino-butyraldehyde
dehydrogenase

PatD (b1444)
PuuC (b1300) PauC/KauB (PA5312) SCO5666

Polyamine ABC transporter
substrate-binding protein PotF (b0854) SpuE (PA0301) SCO5667

Polyamine ABC transporter
substrate-binding protein PotG (b0855) SpuF (PA0302) SCO5668

Polyamine ABC-transporter integral
membrane protein PotH (b0856) SpuG (PA0303) SCO5669
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Table 1. Cont.

Annotated Function Homologue in E. coli Homologue in
P. aeruginosa

Homologue in
S. coelicolor

Polyamine ABC-transporter integral
membrane protein PotI (b0857) SpuH (PA0304) SCO5670

γ-glutamyl-polyamine oxidoreductase PuuB (b1301) PauB3 (PA2776) SCO5671

γ-aminobutyrate aminotransferase
gabT-like or puuE-like GabT (b2662)/PuuE (b1302) GabT (PA266) SCO5676

Succinate-semialdehyde dehydrogenase
gabD-like GabD (b2661) GabD (PA0265) SCO5679

Amino acids/polyamine permease PuuP (b1296) PA5510/PAO322 SCO5977

Hydrolase - - SCO6960

Amidohydrolase - - SCO6961

γ-glutamyl-polyamine synthetase PuuA (b1297) PauA7 (PA5508)/SpuI
(PA0296) SCO6962

Polyamine uptake has been shown to influence the pathogenicity. The periplasmic
substrate-binding protein PotD1 has been shown to be responsible for spermidine up-
take that hinders biofilm formation. Instead, a polyamine norspermidine enhances biofilm
formation via the NspS/MbaA signaling system in V. cholerae [190]. In A. actinomycetemcomi-
tans, a homolog of PotD from E. coli was also reported to correlate with biofilm formation
causing periodontitis [191]. In S. pneumonia, the uptake of spermidine by the spermidine
importer PotABCD was reported to be important for pathogenicity in mice [133,192]. In P.
mirabilis, putrescine uptake was demonstrated to be carried out by the proton-dependent
putrescine importer PlaP [193].

2.1.4. Polyamine Assimilation in Bacteria

Rather low amounts of polyamines can be synthesized intracellularly for maintenance
of cellular functions. However, in the extracellular environment, polyamines can be present
in excess, resulting in locally elevated and toxic amounts of these compounds. Under
these conditions, detoxification of increasing concentrations of intracellular polyamines
is required to avoid cell death. On the other hand, some bacteria do not have a complete
pathway for polyamine biosynthesis (Enterococcus faecalis) or lack it completely (Staphylococ-
cus aureus), thus relying on polyamine uptake and utilization [194]. It has been reported
that bacteria can utilize polyamines as a source of nitrogen and carbon to control the intra-
cellular polyamine pool. This process has been investigated in the Gram-negative bacteria
E. coli and P. aeruginosa as well as in the Gram-positive bacteria Staphylococcus aureus, Bacil-
lus subtilis, C. glutamicum, and S. coelicolor [7,14,15,180,195–198]. The following pathways
have been characterized in E. coli, P. aeruginosa, B. subtilis, and S. coelicolor: the gamma-
glutamylation pathways (Figure 3, GGP), the aminotransferase pathway (Figure 3, AMTP),
the direct oxidation pathway (Figure 3, DOP), the spermine/spermidine dehydrogenase
pathway (Figure 3, SPDP), and the acetylation pathway (Figure 3, ACP).

Polyamine Utilization in E. coli

The gamma-glutamylation pathway (also referred as the putrescine utilization path-
way) has been characterized in E. coli and P. aeruginosa [180,199–201] (Figure 3, GGP).
In E. coli, extracellular putrescine can be transported into the cell by the PuuP trans-
porter and afterwards glutamylated by the γ-glutamylputrescine synthetase (PuuA) in
an ATP-dependent manner [180,200] (Table 1). In further steps, the pathway involves the
γ-glutamylpolyamine oxidoreductase PuuB, the γ-aminobutyraldehyde dehydrogenase
PuuC, the γ-glutamyl-GABA hydrolase PuuD, the GABA aminotransferase PuuE, and the
succinate semialdehyde dehydrogenase leading to the production of succinate [199,202]
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(Figure 3, GGP; Table 1). A cadaverine-specific utilization pathway has not been reported in
E. coli, but the activity of PuuA with cadaverine was comparable of that towards putrescine
in vitro [14,203]. Presumably both the aminotransferase and the glutamylation pathway of
putrescine are involved in cadaverine metabolism in E. coli.

The aminotransferase pathway has been investigated in E. coli [201,204,205] (Figure 3,
AMTP). In this pathway, putrescine is metabolized to γ-aminobutyric acid (GABA) via the
intermediate γ-aminobutyraldehyde. This metabolic route involves the enzymes putrescine
aminotransferase PatA, the γ-aminobutyraldehyde dehydrogenase PatD, the GABA amino-
transferase GabT, and the succinic semialdehyde dehydrogenase GabD ending with the
formation of succinate that can be further used in the TCA cycle [14,159] (Figure 3, AMTP;
Table 1). The activity of the PatA enzyme on cadaverine is reportedly comparable to that
towards putrescine.

The acetylation pathway has been described for the utilization of spermidine in E. coli
and also in B. subtilis [206–208] (Figure 3, ACP). It occurs via the spermidine acetyltrans-
ferase that acetylates spermidine to acetylspermidine using acetyl-CoA [209]. However,
the further fate of acetylspermidine in E. coli is not yet known (Figure 3, ACP).

Interestingly, the intracellular spermidine concentrations may be also reduced by the
glutathionylspermidine synthetase/amidase (GSP synthetase) in E. coli and Haemophilus
influenzae. In the reaction catalyzed by this enzyme, spermidine is ligated with glutathione
forming glutathionylspermidine in an ATP-dependent manner [210,211].

Polyamine Utilization in P. aeruginosa

In P. aeruginosa PAO1, the gamma-glutamylation pathway (Figure 3, GGP) includes
almost identical metabolic steps as that in E. coli [196,212], but is represented by seven
pauA genes, four pauB genes, one pauC gene, and two pauD genes that are thought to
be responsible for polyamine catabolism [195,196] (Table 1). Interestingly, each PauA1-
PauA7 enzyme seems to have different substrate specificity towards different mono- and
polyamines being involved in the first step of the pathway [195,196].

The aminotransferase pathway (Figure 3, AMTP) of P. aeruginosa PAO1 includes
a putrescine-pyruvate aminotransferase that generates γ-aminobutyraldehyde and L-
alanine [213,214]. The KauB protein that corresponds to PatD from E. coli oxidizes in
the following step, with γ-aminobutyraldehyde forming GABA, which is further catabo-
lized to succinate by GabT and GabD [14,212] (Figure 3, AMTP; Table 1).

The direct oxidation pathway (Figure 3, DOP) has been investigated in P. aeruginosa
and Staphylococcus aureus. It requires an amine oxidase [195,215–219] (Figure 3, DOP). The
spermine/spermidine dehydrogenase pathway has been described in P. aeruginosa [195,212],
for which the structure of the essential enzyme spermidine dehydrogenase has been re-
ported [216] (Figure 3, SPDP). In P. aeruginosa PAO1, the spermidine dehydrogenase (SpdH)
can cleave spermidine into 1,3-diaminopropane and γ-aminobutyraldehyde and spermine
into spermidine and 3-aminopropanaldehyde. KauB oxidizes 3-aminopropanaldehyde to
β-alanine, which is further catabolized to acetyl-CoA [195,212] (Table 1).

Polyamine Utilization in S. coelicolor

In contrast to Gram-negative bacteria E. coli and P. aeruginosa, the utilization of
polyamines has barely been investigated in Gram-positive bacteria. While some studies
report the acetylation of polyamines by S. aureus [197], B. subtilis [206], and C. glutam-
icum [198], extensive investigations of polyamine catabolism have been reported in S.
coelicolor. A gamma-glutamylation pathway for polyamine utilization in S. coelicolor has
been described in a combined in silico and transcriptional analysis [7] (Figure 3, GGP).
The first step is catalyzed by GlnA2 and GlnA3 enzymes that are able to glutamylate
the polyamines putrescine, spermidine, spermine, and cadaverine [113,115]. Based on in
silico and transcriptional studies, the following steps of the pathway were postulated. In
the second step, γ-glutamylpolyamines are further reduced by the γ-glutamylpolyamine
oxidoreductase (SCO5671). This enzyme is an ortholog of the γ-glutamylpolyamine ox-
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idoreductases PauB1-B4 in P. aeruginosa and PuuB in E. coli (Table 1). The subsequent
step is catalyzed by the dehydrogenases (SCO5657 and SCO5666) that are orthologs of
(γ-glutamyl-) γ-aminobutyraldehyde dehydrogenases PuuC and PatD from E. coli. The
fourth pathway step needs hydrolases (SCO5657, SCO5666, and SCO6961), resulting in
production of γ-aminobutyric acid (GABA) or aminovalerate. Subsequently, an ortholog
of GabT from E. coli the GABA aminotransferase (SCO5676) catalyzes the production of
succinate semialdehyde or glutarate semialdehyde (Table 1). Remarkably, it has been
shown that the expression of sco5676 is induced by arginine [70], which is a precursor of
putrescine biosynthesis, as well as in the presence of polyamines [113]. Finally, a homolog
of the succinic semialdehyde dehydrogenase GabD from E. coli, the SCO5679 protein,
catalyzes the last step producing glutarate or succinate that feed the tricarboxylic acid
(TCA) cycle. RNAseq analysis showed that the expression of sco5679 was induced by
polyamines, supporting the hypothesis that SCO5679 is involved in the last step of the
polyamine gamma-glutamylation pathway in S. coelicolor [7,115] (Figure 3, GGP; Table 1).

The aminotransferase pathway of S. coelicolor includes an aminotransferase. The
enzyme SCO5655 is a homolog of the putrescine aminotransferase (PatA) from E. coli
(Table 1). The RT-PCR analysis demonstrated that the expression of sco6960, sco6961, and
sco5655 was enhanced in the presence of polyamines [113], indicating their involvement in
polyamine assimilation (Figure 3, AMTP).
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polyamine uptake systems described in bacteria, are shown. ACP, acetylation pathway; GGP,
gamma-glutamylation pathways (black box); AMTP, aminotransferase pathway; DOP, direct ox-
idation pathway; SPDP, spermine/spermidine dehydrogenase pathway. Dashed arrows repre-
sent predicted and straight arrows confirmed metabolic pathways. Pathways described for the
following bacteria—in black: E. coli, P. aeruginosa, and S. coelicolor; dashed orange box: P. aerug-
inosa; dashed brown box: S. aureus and P. aeruginosa; dashed blue box: E. coli, B. subtilis, and
C. glutamicum [7,14,195,197,198,201,206–208,212,215,217–219].
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2.1.5. Regulation of Polyamine Assimilation Genes in Bacteria

Polyamines are involved in the regulation of transcription and translation processes
required for bacterial proliferation. Therefore, a strict control of the intercellular polyamine
content is of importance. Regulation of the genes from the gamma-glutamylation and
aminotransferase pathways has been extensively investigated in E. coli. It allows the
detection of elevated polyamine concentrations aiming at their subsequent intracellular
utilization. It has been demonstrated in E. coli that the gene control involves the nitrogen
regulatory protein C (NtrC), the nitrogen assimilation control protein (Nac), an alternative
sigma factor σS, and the alternative sigma factor for nitrogen-controlled genes σ54 [6,14,20].
For instance, the putrescine aminotransferase encoding gene patA is regulated by NtrC, σS,
and σ54 [159,203,220]. Its expression can also be subjected to catabolite repression [214].

The gamma-glutamylation pathway is encoded in the puuPADRCBE gene cluster in E.
coli [180]. Similar to patA, this gene cluster contains the σS dependent promoters [86,221]
and the NtrC-σ54 dependent promoter [86,222]. The genes of the gamma-glutamylation
pathway are regulated by the puuR encoded repressor PuuR, which represses the expression
of puu genes in the puuAP and puuDRCBE operons [202,223]. It has been demonstrated in E.
coli that the expression of the puu genes can be induced by putrescine as well as through the
shift from anaerobic to aerobic conditions. FNR and ArcA recognition sites were described
in the puuA-puuD intergenic region [224].

In S. coelicolor, the regulation of polyamine utilization genes involves two regulators.
It has been demonstrated that the regulation of the γ-glutamylpolyamine synthetase encod-
ing gene glnA3 of the gamma-glutamylation pathway is controlled by a specific regulator
SCO5656 (EpuRII) [115]. In RT-PCR and EMSA analysis, EpuRII revealed control of several
polyamine-associated genes, including glnA3, sco5676, and sco5977 (Table 1). Another regu-
lator of polyamine utilization genes is the global regulator of the nitrogen metabolism GlnR.
This has been demonstrated to control the transcription of the second γ-glutamylpolyamine
synthetase encoding gene glnA2. According to EMSA analysis, especially strong binding of
glnA2 to the promoter area was observed for the acetylated version of GlnR [115].

2.2. Monoamine Metabolism in Bacteria
2.2.1. Distribution and Role of the Monoamine Ethanolamine

Ethanolamine is a naturally occurring common monoamine. It is a primary alcohol
and primary amine that belongs to the class of aliphatic amino alcohols. Ethanolamine
is a building block of biomembranes and usually occurs in the form of the second-most-
abundant head group for phospholipids—phosphatidylethanolamine [225–227]. Phos-
phatidylethanolamine is a substrate and precursor in several biological pathways and
comprises 25–45% of all phospholipids in a cell [228]. Ethanolamine forms choline after
methylation and is a nitrogenous base in phospholipids and an essential vitamin [227].
Ethanolamine is a main precursor of phosphoglycerides that are important elements in the
structure of choline in cellular membranes [229]. Ethanolamine is an abundant compound
in processed food and the intestinal tract content [230,231]. It is prevalent in the gastroin-
testinal tract environment. Ethanolamine and glycerol occur as a breakdown product after
the cleavage of phosphatidylethanolamine by phosphodiesterases [232,233].

The incorporation into cell membranes, the importance for cellular homeostasis, and
the biological role of ethanolamine have been reported in a number of bacterial gen-
era, such as Mycobacterium spp. [234], Corynebacterium spp., Enterococcus spp., Listeria
spp. and Clostridium spp. [235,236], Chromohalobacter salexigens [237], and Streptomyces
spp. [114]. Ethanolamine has been observed to be a donor of nitrogen and carbon for gut-
associated Gram-negative bacteria such as Escherichia spp., and Salmonella spp. [235,236].
Since ethanolamine as an alternative nitrogen source favors a competitive advantage for in-
testinal pathogens, its utilization has been described as a positive virulence factor [236,238].
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2.2.2. Ethanolamine Biosynthesis and Uptake in Bacteria

The direct biosynthetic pathway for ethanolamine is the decarboxylation from serine
(Figure 4). This metabolic route has been investigated in plants and mammals, but it is
barely studied in bacteria. Yeast and bacteria possess a phosphatidylserine decarboxylase
and can synthesize phosphatidylserine in a reaction catalyzed by a phosphatidylserine
synthase. This enzyme condenses the phosphatidyl moiety of cytidine diphosphate (CDP)-
diacylglycerol with serine, resulting in phosphatidylserine [229,239] (Figure 4).
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Bacteria can also take up extracellular ethanolamine in order to optimize the metabolism
and environment adaptation. The uptake of ethanolamine is possible through the passage
into the cell by carrier-mediated transport or diffusion [241]. In E. coli and S. typhimurium, it
can be transported into the cell by the specialized transport protein EutH, which is related
to permeases [242]. Most Actinobacteria and Proteobacteria can obtain ethanolamine from
the extracellular environment using a transporter encoded by the eat gene, which is a
functional, non-homologous equivalent to eutH from S. typhimurium [243].
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2.2.3. Ethanolamine Assimilation in Bacteria

Ethanolamine utilization as a source of carbon and nitrogen has been reported and in-
vestigated in Salmonella, Enterococcus, Arthrobacter, Erwinia, Flavobacterium, Klebsiella,
Mycobacterium, Pseudomonas, Achromobacter, Corynebacterium, Clostridium, Vibrio and
Escherichia [235,243–248], Chromohalobacter [237], and Streptomyces [114]. Members of
the Enterobacteriaceae family such as E. coli and S. typhimurium, as well as the members
of the phylus Firmicutes, possess long eut operons encoding genes for ethanolamine uti-
lization in a eut-pathway (Figure 5, EUTP). These operons have considerable differences in
gene content, organization, and regulation [235,243]. Actinobacteria and most Proteobac-
teria feature short eut operons, which contain the transporter encoding gene eut together
with eutBC and sometimes eutR [235,243]. There are species that contain both long and
short eut operons: Klebsiella pneumonia and Pseudomonas fluorescens [243].

It has been observed that organisms ranging from the Proteobacteria to Actinobacteria
possess the capability for ethanolamine metabolism that does not require eut genes. In addi-
tion to canonical ethanolamine utilization pathways that involve eut genes and the metabolo-
some, an alternative conversion of ethanolamine has been reported [114,234,237,249–251].
The following pathways have been characterized in E. coli, S. typhimurium, Mycobacterium
sp. 607, M. tuberculosis, C. salexigens, and S. coelicolor: the eut pathway (Figure 5, EUTP),
the amination pathway (Figure 5, AMNP), polar head recycling (Figure 5, PHRP), biosyn-
thetic utilization of ethanolamine (Figure 5, BUE), and the gamma-glutamylation pathway
(Figure 5, GGP).

Ethanolamine Assimilation in E. coli and S. typhimurium

E. coli and S. typhimurium possess similar ethanolamine utilization mechanisms in-
volving proteins encoded by eut genes [231,246] (Figure 5, EUTP). Ethanolamine utilization
involves 17 Eut proteins encoded by genes from the ethanolamine utilization operon
eut [242,252,253]. Ethanolamine utilization in E. coli and S. typhimurium takes place in
a bacterial microcompartment (BMC) [254], also known as the metabolosome [231,255],
which is required to retain acetaldehyde. Microcompartments protect the cell from toxic
effects by acetaldehyde and prevent the loss of this volatile C-source [256,257].

Ethanolamine can enter the cell by diffusion or via the ethanolamine transporter EutH.
After it reaches the microcompartment, the ethanolamine ammonia lyase EutBC breaks
down ethanolamine into ammonia and acetaldehyde [252,258,259]. This process requires a
cofactor AdoCbl (adenosylcobalamin), which is generated from cobalamin by a corrinoid
cobalamin adenosyltransferase EutT [253]. The ammonia serves as a supply of reduced
nitrogen. The acetaldehyde is transformed into acetyl-CoA by an acetaldehyde dehydroge-
nase EutE [252,260]. Acetyl-CoA is used in the TCA cycle, the glyoxylate cycle, and lipid
biosynthesis [243]. Acetyl-CoA is converted into acetylphosphate by a phosphotransacety-
lase EutD or into ethanol by an alcohol dehydrogenase EutG [242]. Acetylphosphate is
converted into acetate by an acetate kinase Ack generating ATP [261,262] (Figure 5, EUTP).

The ethanolamine-specific microcompartment of S. typhimurium also contains other
structural proteins for microcompartment formation encoded by eutK, eutM, eutS, eutL,
and eutN [231,254]. Other proteins encoded by the eut cluster can indirectly influence
ethanolamine utilization. Such proteins include a reactivating factor for the ethanolamine
ammonia lyase EutA and EutJ (chaperone of EutG and EutE), as well as EutP and EutQ [243].

Ethanolamine Assimilation in S. coelicolor and M. tuberculosis

In S. coelicolor, ethanolamine utilization has been shown to occur via gamma-
glutamylation [114] (Figure 5, GGP). In the first step of the pathway, ethanolamine is
glutamylated by the γ-glutamylethanolamide synthetase GlnA4 (SCO1613). Based on
bioinformatical and transcriptional analysis, it was possible to describe the subsequent
steps of the pathway: it involves a γ-glutamylethanolamine dehydrogenase SCO1611, a
γ-glutamylaldehyde dehydrogenase SCO1612, and a γ-glutamylglycine amidohydrolase
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SCO1615. The end products of the pathway are glycine and glutamate [114]. These pathway
steps have also been proposed for C. salexigens [237,251] (Figure 5, GGP; Table 2).

Studies in vivo revealed that Mycobacterium sp. are not only able to use host fatty acids
from the lipid droplets, but also acquire carbon and nitrogen from phospholipids of the
host [217]. The human pathogenic Actinobacteria had to evolve a direct metabolic pathway
to strictly control the intracellular ethanolamine due to its potential toxic effect when in
excess. Accumulation of ethanolamine might lead to its uncontrolled binding to negatively
charged molecules such as DNA or RNA, alkalization of the cellular milieu, and cellular
death. It has been demonstrated that Mycobacterium sp. including M. tuberculosis are able to
degrade and recycle their own as well as host phospholipids and use them as nutrients [263].
During the recycling process, phosphatidylethanolamine is cleaved by phospholipases.
Subsequently, the lipid polar head (glycerolphosphoethanolamine) is converted to glycerol-
3-phosphate and ethanolamine by glycerophosphoryl diester phosphodiesterases (Figure 5,
PHRP). The phosphodiesterase is essential in vivo during survival of M. tuberculosis in
macrophages [264]. Glycerol-3-phosphate can then be channeled for glycolysis, gluconeo-
genesis, and acylation or broken down to glycerol and phosphate. In Mycobacterium sp.,
ethanolamine can also be transformed into phosphatidylethanolamine (Figure 5, BUE),
which occurs in a pathway involving phosphatidylserine synthase with the intermediate
phosphatidylserine (as described in the Section 2.2.2). Furthermore, in Mycobacterium
sp., ethanolamine can be transformed to glycoaldehyde and further to glyoxate, which is
converted to glycine by glycine dehydrogenase [234,249,250,265] (Figure 5, AMNP).
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Figure 5. Combined model of bacterial ethanolamine utilization pathways (adapted from [7,114]).
Central routes of ethanolamine catabolism with reaction products and involved enzymes, as well as
up-to-date polyamine uptake systems known in bacteria, are shown. EUTP: eut-pathway; AMNP: ami-
nation pathway; GGP, gamma-glutamylation pathway; BUE: biosynthetic utilization of ethanolamine;
PHRP: polar head recycling pathway. Dashed arrows represent diffusion. Gray, rounded rect-
angle represents the bacterial microcompartment. Pathways in black: E. coli and S. typhimurium;
dashed blue box: Mycobacterium sp. and M. tuberculosis; dashed orange box: C. salexigens and S.
coelicolor [7,234,236,237,243,249–251,254,264].
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Table 2. Combined list of enzymes involved in ethanolamine utilization in C. salexigens and S.
coelicolor [114,237].

Annotated Function Orthologues in C. salexigens
(Protein Family)

Orthologues in
S. coelicolor

γ-glutamyl ethanolamine
synthetase/ethanolamine γ-glutamylase PF00120 SCO1613

γ-glutamyl ethanolamine
dehydrogenase/iron-dependent
dehydrogenase

PF00465 SCO1611

γ-glutamyl aldehyde dehydrogenase PF00171 SCO1612

γ-glutamyl glycine amidohydrolase
/formylglutamate amidohydrolase PF05013 SCO1615

2.2.4. Regulation of Ethanolamine Assimilation Genes in Bacteria

Intracellular ethanolamine content can drastically increase as a result of uptake or cell
lysis. In order to reduce elevated ethanolamine concentrations and escape the cytotoxic
effects, strict control of the ethanolamine utilization genes is essential. The regulation
mechanism of ethanolamine-associated genes in bacteria has been investigated in E. coli,
S. typhimurium (the EutR system), and Enterococcus faecalis (the EutV-EutW system). In S.
typhimurium, a EutR regulator positively regulates the transcription of the eut operon in
the presence of ethanolamine [252,266]. EutR belongs to the AraC family of transcriptional
regulators. It binds the promoter of eut in the presence of ethanolamine and AdoCbl as well
as the promoter of the eutR gene, providing a low level of constitutive expression [267,268].
Autoregulation of eutR allows the maintenance of induced expression despite competition
between EutR and EutBC for AdoCbl, which is required for synthesis of EutBC and for the
regulation of the eut operon by EutR [243,267].

E. faecalis does not have the eutR gene. In this organism, ethanolamine utilization is
regulated by a two-component system composed of the response regulator EutV and the
sensor histidine kinase EutW [245]. It has been demonstrated that eut operon regulation can
involve other regulators. For example, the expression of the eut operon in S. typhimurium
can also be modulated by the global regulator of invasion genes CsrA, which can lead
to increased pathogenicity [266,269]. Furthermore, the expression of the eut operon in E.
faecalis can be influenced by the global transcriptional regulator of gelatinase and serine
protease encoding genes Fsr [243,269].

In contrast to S. typhimurium and E. faecalis, regulation of ethanolamine utilization in
Actinobacteria remains less investigated. It has been shown that in S. coelicolor, the gene
sco1614 (epuRI) encodes a regulator of the γ-glutamylethanolamide synthetase encoding
gene glnA4. The role of EpuRI as a negative transcriptional regulator of the genes associated
with ethanolamine utilization has been proven by transcriptional analysis [114].

3. Recent Advances in Drug Development Targeting Bacterial Nitrogen, Mono- and
Polyamine Metabolism

The investigation of the crucial role of nitrogen metabolism and specifically polyamine
and monoamine metabolism for survival of pathogenic bacteria and human parasites led to
the discovery of a number of potential drugs that might inhibit key enzymes. A large group
of such compounds include GS inhibitors that have been extensively investigated in connec-
tion to the M. tuberculosis infection and can be described in two categories. The first group
are small, highly polar amino acid analogues that target the conserved amino acid binding
site, e.g., two of the most widely used GS inhibitors are methionine sulfoximine (MSO) and
phosphinothricin (PPT). The second group are the larger, more hydrophobic heterocycles
that compete with ATP targeting the nucleotide-binding site, e.g., purine analogs [98,270].
Furthermore, azaserine, an inhibitor of GOGAT in M. tuberculosis, has been identified [271].
GDH has also been described as an imported drug target in Mycobacterium spp.
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Another group of inhibitors include compounds that target the polyamine biosyn-
thesis (see pathway, Figure 2). Such inhibitors include the D,L-α-difluoromethylornithine
(DFMO). It is a fluorinated ornithine analog that targets polyamine biosynthesis by inhibit-
ing the ODC. DFMO is an approved drug, not only for cancer treatment [272] but also
to treat trypanosomiasis [273] and Streptococcus pneumoniae infections [274]. Other vali-
dated ODC inhibitors include the putrescine analogs 3-aminooxy-1-aminopropane (APA)
and 1,4-diamino-2-butanone (DAB), the agmatine analog 1-guanidinooxy-3-aminopropane
(GAPA), and the spermine analog MDL 27695 (N,N′-bis(3-((phenylmethyl)amino)propyl)-
1,7-diaminoheptane) that have been shown to be effective against Leishmania spp. [273].
Further inhibitors of polyamine metabolism studied in Leishmania spp. are AdoMetDC
inhibitors, e.g., 5-(((Z)-4-amino-2-butenyl)methylamino)-5-deoxyadenosine (MDL 73811)
and CGP 40215A (a diamidine and bicyclic analog of MGBG), as well as SpdSyn inhibitors,
e.g., hypericin [172,273]. Other polyamine analogs include transport inhibitors such as
Ant4 analogs identified in a study with T. cruzi [275] and AMXT 1501, which has been
described as a potent inhibitor of polyamine and capsule biosynthesis in S. pneumoniae
infections [274]. Polyamine biosynthesis and transport have been identified as drug targets
in some bacteria as S. pneumoniae and Salmonella enterica serovar Typhimurium [276,277].

Remarkably, the development of drugs targeting ethanolamine metabolism is far
less investigated. It has been reported that ethanolamine analogs with substitutions in
the amino group of one of the methylene hydrogens of ethanolamine effectively inhibit
ethanolamine transport in T. cruzi [278]. Although polyamine and ethanolamine utilization
have been reported to be excellent drug targets in pathogenic bacteria, the development of
inhibitor candidates still requires further study.

4. Conclusions

Mono- and polyamine metabolism has been investigated in a number of human
pathogenic parasites and bacteria as a drug target. The knowledge of these metabolic
networks is of medical importance, allowing the development of new drugs based on the
validation of key enzymes involved in biosynthesis and utilization of these compounds.
Multiple studies in pathogenic parasites including Leishmania sp., Trypanosoma sp., Toxo-
plasma sp., Trichomonas sp., Cryptosporidium sp., Crithidia sp., and Leptomonas sp. [279,280],
and bacteria S. typhimurium, B. abortus, M. tuberculosis, Chlamydia pneumoniae, Legionella
pneumophila, Listeria monocytogenes, and others [281] prove the crucial role of polyamines
for their proliferation [282,283] leading to the validation of specific enzymes as drug targets.
The interconnection between the mono-/polyamine biosynthesis, uptake, and assimilation
remains crucial to find new drug targets. Since most human pathogens rely not only on
polyamine biosynthesis, but also on polyamine detoxification with possible subsequent uti-
lization or efflux in order to proliferate and maintain infection, targeting mono-/polyamine
metabolism can extend the options for combating bacterial infections. Interestingly, tar-
geting polyamine metabolism is currently also receiving much attention as a potential
anti-cancer treatment [284,285], leading to the occurrence of validated inhibitors.

Investigations of mono- and polyamine metabolism in model bacteria including E.
coli, S. typhimurium, P. aeruginosa, and S. coelicolor suggest new applications. For example,
gamma-glutamylation pathways for polyamine utilization are rather of advantage for
bacteria and involve specialized glutamylating enzymes for polyamine detoxification. Such
enzymes have been discovered in pathogens P. aeruginosa [195] and S. coelicolor [113]. These
gamma-glutamyl-polyamine/monoamine synthetases modify substrates by adding a glu-
tamyl group in order to ensure the incorporation of these molecules into carbon and/or ni-
trogen metabolism [7]. Such glutamylation reaction is widespread in nature and might dra-
matically change chemical features of compounds through the change of stability in solution
and by reduction of toxicity, for instance, of gamma-glutamypolyamines/monoamines [286].
Homologs of the glutamylation enzymes GlnA2, GlnA3, and GlnA4 from S. coelicolor have
been found in other actinobacteria, including human pathogens belonging to Mycobac-
terium spp. and Rhodococcus spp. [7]. These enzymes are promising drug targets due to
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their key relevance in pathogenicity. Almost all actinobacteria, including M. tuberculosis
causing tuberculosis infection, possess GlnA3 homologues as well as other homologues of
polyamine uptake systems and enzymes from the predicted polyamine utilization pathway.
Interestingly, the presence of GlnA3 (Rv1878) and some homologues involved in polyamine
uptake (Rv1877) and utilization steps GabT (GABA transaminase, Rv2555) were reported
in a guinea pig model of tuberculosis, where the bacterial proteome during early and
chronic stages of this disease in vivo was investigated [287]. This report provided evidence
that homologues involved in the polyamine utilization in S. coelicolor are necessary for M.
tuberculosis surviving during tuberculosis infection.

Since there is an urgent need to find new anti-bacterial drugs with new modes of
action that would be efficient on bacterial infections and shorten the treatment duration
while avoiding relapses and the emergence of resistances as well as improving compliance,
new strategies for the treatment of multidrug-resistant (MDR) infections are of particular
concern. Whereas several antibiotics are effective in treating bacterial infections, these
drugs target a small number of essential functions in the cell. Therefore, investigation of
the pathways for mono-/polyamine metabolism that are required for bacterial growth,
survival, and pathogenicity would provide new targets for the rational design of more
effective agents that could be active against multidrug resistant strains.
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