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“Digital biomarker” is a term broadly and indiscriminately applied and often limited in

its conceptualization to mimic well-established biomarkers as defined and approved by

regulatory agencies such as the United States Food and Drug Administration (FDA).

There is a practical urgency to revisit the definition of a digital biomarker and expand

it beyond current methods of identification and validation. Restricting the promise of

digital technologies within the realm of currently defined biomarkers creates a missed

opportunity. A whole new field of prognostic and early diagnostic digital biomarkers driven

by data science and artificial intelligence can break the current cycle of high healthcare

costs and low health quality that is being driven by today’s chronic disease detection and

treatment approaches. This new class of digital biomarkers will be dynamic and require

developing new FDA approval pathways and next-generation gold standards.
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The term “digital” is associated with a task that typically uses sensors and computational tools,
generally across multiple layers of hardware and software. The plethora of physiological and
behavioral data acquired via various digital streams allows for the pursuit of “digital biomarkers.”
Most common forms of collecting digital data continuously include web-based applications,
smartphones, wearables, and even via implantable or digestible devices. Increasing interest in digital
data collection is a reflection of the latest technological advances, and this has raised the hope of
creating frameworks for better and healthy living, as well as improved outcomes. More often than
not, any characterization of health-related behaviors or disease-related symptoms that is digitally
collected is indiscriminately being labeled as a “digital biomarker.” As such, there is a common
misconception about the definition of a digital biomarker as an online extension of a traditional
biomarker. This problem is further exacerbated by the conflating of the “digital biomarkers” to
the same identification and validation pathways of well-established and United States Food and
Drug Administration (FDA) approved preclinical and diagnostic biomarkers [e.g., pre-cancerous
cells, amyloid-ß in the blood, cerebrospinal fluid (CSF) or through Positron Emission Tomography
(PET), cardiac enzymes of heart failure, etc.] (1). We need to recognize the differences between
amyloid-ß measured from a PET scan at a single timepoint compared to physical activity or
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sleep data that is collected continuously and passively using a
mobile device for a period of weeks, months, or even years. While
the former (i.e., PET-based amyloid-ß) is an illustration of a
traditional FDA-approved biomarker (2), the dynamic measure
of physical activity and sleep health obtained from a time series
analysis of yearlong data may not necessarily fit within the
framework of a traditional biomarker. Further, even standard
characterization of physical activity and sleep differentiate the
two rather than combining them into a metric that more
accurately detects both movement and sleep behaviors across a
24-h cycle. Sleep disordered behaviors can lead to greater physical
activity at night and less during the day, or sleep can also occur
both regularly or sporadically during conventional wakefulness
day time hours.

The FDA follows the Biomarkers, EndpointS, and other Tools
(BEST) glossary to define a biomarker (3). It is measured as
an indicator of normal biological or pathogenic process, or a
response to an exposure or intervention. The FDA notes that any
molecular, histologic, radiographic, or physiologic characteristics
are types of biomarkers, whereas an assessment of how an
individual feels, functions, or survives is not considered as a
biomarker. If we stay true to this definition, then it is not trivial
to identify and validate a 24-h continuous measure of physical
activity and sleep that can serve as a biomarker. The primary
reason is because passively and digitally collected data streams
are not necessarily static stamps of health but a conglomeration
of sensor-derived numerics that span across the daily living of
individuals in various environments in a 24-h wake-sleep cycle. If
we simplify all the variability from this complex physical activity-
sleep calculus into a single measure to fit the classic definition
of a biomarker, then we are doubtlessly diminishing the overall
value that can be derived from the stream of information that
is collected from various sensors. One might argue that such
simplication of complex activities to a scalar metric can produce
actionable insights but the richness of information is effectively
lost in that process. Thus, there is an urgent need to work with the
FDA to revisit the term “digital biomarker” insomuch to create
a unique pathway toward a safe and sustained development
of novel biomarkers for health and disease using digital data
streams. Fortunately, the FDA does not have to work on the
development of these definitions in isolation. Some steps toward
making a distinction between approval processes for traditional
vs. digital biomarkers have been taken by the European Union
(EU) medicines agency (4).

RECOMMENDATIONS

There are several recommended steps in how to do so:

1. Review current definitions of biomarkers and clearly define
where the term “digital biomarker” applies and does not.

• For example, a static blood-based measurement of
C-reactive protein is a traditional biomarker to detect
inflammation in the body. On the other hand, a voice
recording of an individual collected continuously or
intermittently over various conversations and even during

a medical visit can be processed to derive a dynamic,
quantitative signal of their speech pattern, which in turn
can serve as a marker of the individual’s cognitive status
(5). Similaly, the digital image of a drawing may be used for
cognitive assessment (6). This measure can fall within the
category of a digital biomarker.
• In essence, while static measures of patient-level
characteristics fall into the realm of traditional biomarkers,
information that is multidimensional, temporally varying,
and multimodal can be synthesized in the form of digital
biomarkers. Note that this definition is not encompassing
all forms of dynamic measures but only providing a baseline
definition to what can be perceived as novel digital biomarkers.

2. Refine existing categories of digital biomarkers that includes
distinguishing classes of digital biomarkers. A surrogate digital
biomarker would correlate highly with a traditional biological
biomarker, while a more novel type of digital biomarker would
increasingly be less correlated directly to the biological one
(e.g., proximal digital biomarker).

• For example, a new method for measuring a biological
biomarker through a wearable device (e.g., a wearabale
glucose monitor) can be considered as being in the first
class because it reliably correlates with the biological one,
whereas recording of behavioral or activity-based data that can
reliably detect disease independent of the biological indicator
belongs to the second class of “novel” digital biomarkers.
This distinction does not necessarily imply that a new
method for measuring a biological biomarker has no added
value; for instance, it may enable continuous measurements.
Still, the measurements are of an “established” biological
biomarker. It is necessary to provide expanded clarity on what
types of digital characterization of symptom/disease would
fall under the definition of a digital biomarker and which
would not.

3. Map out the FDA approval process one would have to
follow based on the current regulatory pathways for each
digital biomarker category and identify critical gaps that are
barriers to approval for different conceptualization of digital
biomarkers, particularly those that will not rely on validation
through biological biomarkers, such as is described in point
#2 above.

4. Characterize the current digital biomarker pathway to pre-
market submissions that are made to the FDA and delineate
recommended additions that would create new pre-market
submission pathways for the new conceptualizations of digital
biomarkers beyond those that exist today.

5. Identify FDA-approved and FDA-cleared digital devices
that are currently covered by Medicare and Medicaid and
those that overlap or are independently covered by private
insurance to help accelerate the push of available digital
tools into the clinical care setting. The path to widespread
acceptance of digital biomarkers is necessarily dependent on
much greater adoption rates of digital technology and more
generally as a matter of clinical practice. Thus, identifying
and promoting use of existing technologies, whose costs are
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reimbursed through public or private health insurance, will
help bring about market readiness for more novel technology-
driven applications.

In considering how to unleash the full potential of technology
generally, and digital biomarkers in particular, it is important to
embrace the complexity of chronic diseases (7). Chronic diseases
comprise 86% of healthcare services and costs in the U.S. and
they are one of the primary reasons why high healthcare costs
persist (8). Medical practice is still largely centered on waiting
till disease symptom severity triggers a treatment intervention
and because most conditions are chronic, that means continuous
treatment till end of life. Increased lifespans are further driving
up costs of chronic disease care (9). Technology provides an
opportunity to break this cycle of high healthcare costs and
low health quality. Since most chronic diseases are insidious in
onset, there is an opportunity to develop a whole new field of
prognostic digital biomarkers that are identified so early that
currentmeasurement standards would deem themwithin normal
levels. This will enable early interventions and will usher a
new class of therapeutics that have the potential to go beyond
managing a chronic disease, including preventing it or delaying
its onset.

This conceptualization of a new class of digital biomarkers
will necessarily involve developing a new FDA approval pathway
and the establishment of next generation gold standards that
are untethered to current biomarker validation precedent.
Methods to identify, validate, and eventually approve these
digital biomarkers will be centrally driven by data science
and artificial intelligence approaches, a field that is rapidly
evolving and has demonstrated important successes, particularly
in image classification, natural language processing, and speech
recognition (10). Key to facilitating application of advanced
analytics will be robust data accessibility to data scientists
worldwide and equitable credit to those who make their data
available. In this forward-thinking vision, digital data streams
will generate dynamic signal patterns. Each pattern will be
distinct at any one point of time, but aggregated together across
time will consist of a sequence of unique multi-dimensional
digital profiles. Together they will comprise a “digital biomarker
trajectory” one that is never replicated in its exact composition,
but nonetheless is highly predictive of the target assessment (11).

As an example, take the challenge of early detection of
memory impairment that may signal the beginning of the long
neurodegenerative process of Alzheimer’s disease (AD). Now
understood as a life course disease, AD risk is imparted through

a mix of factors; some of which are modifiable and represent
AD prevention opportunity (12). A digital memory biomarker
in 1 month could consist of a different digital signal mix such
as increased repetitive steps to a single location, a decrease
in the diversity of locations visited, and digital voice patterns
that indicate significant word finding problems in a social
setting. The second month may include many steps throughout
the house (e.g., indicator of searching for a misplaced item),
digital voice patterns of narrower range of word choice in
the home environment, and an instance of fast paced steps
to the kitchen near the area of the stove. Each month’s mix
of signals will be varied and in combination unique, but
together present a dynamically evolving pattern of behaviors
that are reliably representative of a memory impairment (13).
This is an oversimplified example of what a new world of
digital biomarkers might look like. The call to action is to
urge the science and technology community in lock step with
the FDA, to begin the work of carving this digital biomarker
pathway today.
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