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Abstract: A major problem with dietary assessments is their subjective nature. Untargeted
metabolomics and new technologies can shed light on this issue and provide a more complete
picture of dietary intake by measuring the profile of metabolites in biological samples. Oranges
are one of the most consumed fruits in the world, and therefore one of the most studied for their
properties. The aim of this work was the application of untargeted metabolomics approach with
the novel combination of ion mobility separation coupled to high resolution mass spectrometry
(IMS-HRMS) and study the advantages that this technique can bring to the area of dietary biomarker
discovery, with the specific case of biomarkers associated with orange consumption (Citrus reticulata)
in plasma samples taken during an acute intervention study (consisting of a randomized, controlled
crossover trial in healthy individuals). A total of six markers of acute orange consumption, including
betonicines and conjugated flavonoids, were identified with the experimental data and previous
literature, demonstrating the advantages of ion mobility in the identification of dietary biomarkers
and the benefits that an additional structural descriptor, as the collision cross section value (CCS), can
provide in this area.

Keywords: orange intake; metabolomics; ion mobility; biomarkers

1. Introduction

Currently, one of the main limitations of nutritional epidemiology is the difficulty involved in
measuring dietary intake [1]. In observational studies carried out on a large number of participants,
the most commonly applied tools for estimating dietary intake are mainly based on self-reporting,
including food frequency questionnaires (FFQs) for the assessment of regular consumption (usually
one-year), or 24-h recalls for one-day assessment. However, such methodologies for data collection
may contain substantial recall bias and other systematic or random errors that may have a large effect
on the estimated food intake and, furthermore, on subsequent associations between food intake and
the diseases studied [2,3]. Although in recent years, there has been an improvement in increasing the
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validity and precision of food questionnaires thanks to the use of new information technologies [4,5],
these instruments are still biased and additional information based on objective intake biomarkers is
needed [6,7]. Biomarkers of food intake are promising tools to provide more objective food consumption
measurements [6–9]. Therefore, a major challenge nowadays for nutritional epidemiology and precision
nutrition is to identify novel and valid biomarkers [10]. Metabolomics has opened up new opportunities
for food intake biomarker discovery through metabolic profiling of biological samples (plasma, urine,
etc.), following the intake of specific foods, meals, or diets [10,11]. Nevertheless, to date, there are
very few validated biomarkers of food intake, and more research is urgently needed. In a consensus
paper, Dragsted et al. [10] outlined an optimal and reproducible validation process to systematically
and critically assess the validity of candidate food intake biomarkers. A consensus-based procedure
was used to provide and evaluate a set of the most important criteria for systematic validation of
these biomarkers [10,12]. Similar conclusions were reached in a National Institute of Health (NIH)
organized workshop on “Omics Approaches to Nutritional Biomarkers” in Bethesda, attended by
researchers from the United States, Canada, and several European countries [13]. According to these
recommendations, acute interventions trials where participants consume specific amounts of a test food
in a single meal are the best approach as the first step in dietary biomarker discovery [10–13]. In this
approach, baseline and postprandial biological samples are collected for analysis and for identifying
potential biomarkers. For these dietary interventions, the use of crossover studies is an efficient
design having less bias and requiring less sample size than randomized parallel group intervention
trials [14]. In crossover studies, participants receive all interventions in consecutive periods, which
means that the influence of individual variation is minimized. The metabolites are measured after
every period. In these studies, the use of a single food, facilitates a more specific investigation of
biomarkers, since the number of potential metabolites is simplified in comparison with a full dietary
pattern. Despite this simplification, identifying metabolites for dietary intake is not always easy,
even if only one food is administered [15]. Small, short-term feeding studies that yield candidate
biomarkers may be followed by validation and testing of biomarker performance in large cohorts,
repeating the process with required corrections, until an ideal biomarker performance is achieved.
Currently, oranges are one of the foods for which it has been shown that there are good metabolomic
biomarkers of intake [16–18]. Specifically, an excellent example of such a biomarker for citrus fruit
intake is proline betaine (N,N-dimethyl-L-proline), also known as stachydrine [16–20]. This biomarker
was first discovered in a small crossover trial [19], and later validated in several intervention and
cohort studies [16,18,20–24]. Despite the high statistically significant associations found between citrus
intake and proline betaine levels (both in plasma and/or in urine), correlation coefficients ranged
between 0.4 and 0.8 depending on the study, suggesting that other additional biomarkers for citrus
intake can add more information in precision nutrition. Some studies reported additional biomarkers
for citrus fruit intake including trans-4-hydroxy-L-proline betaine (betonicine), N-methyl-L-proline
and synephrine, among others [17,25–30]. However, with improvement in techniques and instruments,
more biomarkers can be discovered. Moreover, it has been suggested that, whereas proline betaine is a
good biomarker for the intake of any citrus product, synephrine can be used as a reliable additional
biomarker with high specificity for orange intake [30].

Aside from specific compounds, in metabolomics the analytical platform used as well as the
targeted or untargeted approaches, may have a role to play in identifying metabolites [31], each of
these having a number of advantages and disadvantages [31]. Food is usually a complex and diverse
mixture of components that could present a metabolic potential or not. To analyze these compounds,
there is a need for robust, efficient and sensitive methodologies along with powerful analytical
technologies [32,33]. Metabolomic fingerprinting is the global screening approach (untargeted method)
used for low molecular mass compounds (<1500 Da), for classifying the samples based on the metabolic
profile or “fingerprints” that change in response to external (environmental, diet . . . ) or internal
(genetic, disease . . . ) perturbations with the final goal of identifying or discriminating between
metabolites [15,33,34].
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Due to the large amount of compounds that are joined in the metabolome, with a large variety of
physicochemical properties, in recent years the combination of separation techniques such as gas or
liquid chromatography (GC and LC respectively) with high resolution accurate mass spectrometry
(HRMS) are appearing to be less expensive and more sensitive alternative approaches than nuclear
magnetic resonance (NMR) [35], which has been the previous technique of choice [36]. Because of the
physical properties of most biofluids, GC is not usually chosen in this field because the analytes (usually
polar and not very volatile) often requires derivatization to improve thermal stability for GC, requiring
more laborious sample treatment [37,38]. Due to the aqueous composition of biofluids (such as blood,
urine, sweat), LC has been widely used for metabolomics in bioanalytical studies. Furthermore, a wider
range of separation mechanisms due to the variety of stationary phases is available, so that complex
sample preparation is not usually required, and shorter separation run times are involved [39].

Therefore, hyphenation LC-HRMS is widely employed in untargeted metabolomic approaches.
Moreover, the recent introduction of ion mobility separation (IMS) coupled to HRMS Q-TOF provides
additional structural information, so achieving a better characterization of biomakers [40–42]. IMS is a
gas-phase separation technique based on the time that an ion takes to cross a drift tube filled with an
inert gas under low-field conditions. The drift time (DT) of each ion is dependent on its individual size,
shape and charge [43,44]. DT can be directly converted into a collision cross section value (CCS, Å2),
which represents an additional separation dimension based on the compound chemical structure and
3-dimensional conformation [44,45]. The LC-IMS-HRMS combination provides an extra separation
dimension through CCS to the retention time (RT), accurate mass (m/z) and intensity (I), thus obtaining
four-dimensional matrix data.

Therefore, the main aim of this study was to perform an exploratory untargeted metabolomic study
using UHPLC-IMS-HRMS to find out short-term plasma biomarkers of orange consumption, as well
as to explore the promising improvements that IMS in combination with LC-HRMS could achieve in
the untargeted metabolomic field in an acute crossover intervention trial using multivariate analysis
(PCA, PLS-DA and OPLS-DA) to highlight the most relevant short-term markers of orange intake.

2. Materials and Methods

2.1. Subjects and Study Design

We carried out a randomized, controlled crossover study on 30 healthy subjects (aged
25.0 ± 2.8 years, 8 females and 22 males), recruited in Valencia, Spain. After a minimum of 8 h fasting,
participants were randomly allocated to eat 500 g of peeled oranges (Citrus reticulata, Clementine variety))
or an isocaloric (same energy as the oranges) solution of sucrose in water. No other food was allowed
for 4 h (a standard time-point for acute human studies using plasma samples). At the start and after
4 h, blood samples were taken. Subjects were randomized to start either in the intervention or the
control groups in order to prevent the influence of period-effects. In addition, a wash-out period was
considered. After a one-week break the two groups swapped over and the corresponding intervention
was undertaken. The crossover study was registered as ISRCTN17330010. Anthropometric, clinical,
lifestyle and biochemical data were obtained by standardized techniques and questionnaires as
previously described [46]. Plasma was obtained and stored at −80 ◦C for subsequent metabolomics
determinations. Subjects provided written informed consent and the study protocol and procedures
were approved according to the ethical standards of the Helsinki Declaration and by the Human
Research Ethics Committee of the University of Valencia, Valencia (reference number: H1425917369903).

2.2. Chemicals and Reagents

LC-MS grade methanol (MeOH) and LC-MS grade acetonitrile (ACN) were purchased from
Sharlab (Barcelona, Spain), as well as Formic acid (HCOOH) eluent additive for LC-MS and reagent
grade ammonium acetate (NH4Ac). Milli-Q water purification system (Millipore Ltd., Bedford, MA,
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USA) was used to obtain HPLC-grade water. Leucine-enkephalin (mass-axis calibration) was purchased
from Sigma-Aldrich (Saint Louis, MO, USA).

2.3. Sample Treatment

Prior to analysis, the blood plasma samples were thawed at room temperature and vortexed.
A total of 400 µL of ACN was added to 100 µL of sample. The supernatant was collected after
centrifuging 12,000× rpm and a radius of 5.5 cm, 8855 g (RCF), for 10 min at 4 ◦C, and divided into 3
aliquots: two vials of 100 µL were stored at −30 ◦C, one vial of 200 µL was stored at −80 ◦C. Moreover,
20 µL of each sample were pooled and mixed to generate the Quality Control sample (QC). This is
assumed to provide a representative average sample formed by a pool equivalent aliquot of all final
sample extracts.

In order to compensate/reduce instrumental drift, samples were randomly injected into the
UHPLC-IMS- QTOF MS system. QC was used for both column stabilization purposes (by 10 QC
injections at the beginning of each sample batch) and, following the injection of every 10 samples, to
control possible instrumental drift throughout the sequence.

2.4. Instrumentation

Ultra-high performance liquid chromatography (UHPLC) with a ACQUITY UHPLC I-Class
system (Waters, Milford, MA, USA) was coupled to a VION® IMS QTof (Waters, Manchester, UK),
ion mobility hybrid Quadrupole Time-of-Flight (IMS-QTOF) High Resolution Mass Spectrometer
(UHPLC-IMS-HRMS) using a electrospray ionization interface operating in both positive (ESI+) and
negative (ESI−) mode. Equipment control and data acquisition and processing were performed using
UNIFI software (V.1.8.2, Waters, Manchester, UK).

2.4.1. UHPLC Conditions

Two LC separation procedures were employed to cover a wider range of compound polarities.
To separate the medium to nonpolar molecules, Reversed Phase Liquid chromatography (RP) was
used with a CORTECS® C18 fused-core 2.7 µm particle size analytical column 100 × 2.1 mm (Waters),
whereas a CORTECS® HILIC fused-core 2.7 µm particle size analytical column 100 × 2.1 mm (Waters)
was employed for Hydrophilic Interaction Liquid Chromatography (HILIC) to separate the polar
molecules. 0.3 mL/min flow rate, 40 ◦C column oven temperature and 1 µL sample injection volume
were selected for both types of liquid chromatography and both ionization modes.

The RP-LC gradient elution was performed using mobile phases A = H2O and B = MeOH,
both with 0.01% of HCOOH. The gradient changed from 10% B at 0 min to 90% B at 14 min, 90% B at
16 min, and 10% B at 16.01 min, with a total run time of 18 min. The same gradient was employed for
both ESI+ and ESI− ionization modes.

For HILIC separation, mobile phases A = ACN:H2O (95:5, v/v) and B = H2O, both with 0.01%
HCOOH and 10 mM NH4Ac, were employed. The gradient started with 2% B until 1.50 min, 15% B at
2 min, 50% B at 6 min, 60% B at 7.50 min and finally 2% B at 7.51 min, with a total run time of 10 min.
This gradient was the same for both ESI+ and ESI− ionization modes.

2.4.2. IMS-QTOF Set Up

The capillary voltage was set at 0.7 kV and 2.00 kV for positive (ESI+) and negative (ESI−)
electrospray ionization mode, respectively. Nitrogen was used as the desolvation gas, nebulizing gas
and collision gas. The source temperature was set to 120 ◦C and desolvation gas to 550 ◦C with a flow
rate of 1000 L/h. The mass spectrometer was operated in ion mobility (HDMSE) mode for acquisition in
both polarities. In HDMSE experiments, two acquisition functions were acquired simultaneously over
an m/z range of 50–1000 Da and a scan time of 0.3 s. Low Energy function (LE), with a fixed collision
energy of 6 eV, and High Energy function (HE) with a collision energy ramp from 28 to 56 eV was set.
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Calibrations of mass axis and DT were performed monthly with the “Major Mix IMS/T of
calibration kit” supplied by the vendor (Waters), infused at a flow rate of 20 µL/min for both positive
and negative mass calibrations as well as CCS calibration.

For automated mass measurement, a Leucine-Enkephalin solution (100 ppb) in ACN:H2O (50:50,
v/v) at 0.01% HCOOH was pumped at 20 µL/min through the lock-spray needle and measured every
5 min (ensuring a measurement at the beginning, in the middle and at the end of the chromatogram),
with a scan time of 0.3 s. The (de)protonated molecule of leucine-enkephalin, at m/z 556.27658 in ESI+
and m/z 554.26202 in ESI−was employed to recalibrate the mass axis and ensure the robust accurate
mass measurement along runs.

2.5. Data Processing and Statistical Analysis

The VION instrument data (.uep, UNIFI, Waters) were imported to Progenesis QI (V.2.3, NonLinear
Dynamics, Waters, Newcastle, UK). Then, the software automatically performs the retention time
alignment, with the QC samples as reference (except for the first 9 QC injections used for column
stabilization); the 4D peak picking (based on the intensity, m/z, retention time and DT) and response
normalization. The peak picking conditions were set as follows: all runs, limits (automatic), sensitivity
(automatic, level 2), chromatographic peak width (minimum peak width of 0.1 min), and retention
time limits (0.3 to 17 min and 0.3 to 9 min, for RP and HILIC respectively). To apply the deconvolution
tool, the selected adducts ions forms [M+H]+, [M-H2O+H]+, [M+Na]+ and [M+K]+ were selected for
positive ionization analysis and [M-H]−, [M-H2O-H]−, [M+Cl]−, [M+FA-H]− for negative ionization
analysis. Samples were divided into 4 groups (Orange t = 0 h, Orange t = 4 h, Isocaloric Beverage
(IB) t = 0 h, IB t = 4 h) in the “Experimental Design Setup”, following the “Within-subject Design”
comparison, where not only are the groups each sample belongs to specified to the software, but also the
subject from which it comes. The software will then perform a repeated measures ANOVA, to reduce
the individual differences.

The processed data were then directly exported to EZinfo (V.3.0, Umetrics, Sweden) for multivariate
statistical analysis. First, Principal Component Analysis (PCA), an unsupervised analysis, was applied
to ensure the correct grouping of the QC samples in the center of the plot after normalization and the
absence of outliers. Then, Partial Least Square–Discriminant Analysis (PLS-DA) was conducted to
maximize the separation between the groups. Ultimately, an Orthogonal PLS-DA (OPLS-DA) was
carried out to highlight the most robust markers (threshold P[corr] ≥ |0.6|).

2.6. Elucidation Workflow

The accurate mass and retention time of the most significant markers from the OPLS-DA were
obtained from the feature table and they were checked and sought in the raw data (by UNIFI Platform).
The compounds were tentatively elucidated with the aid of an elemental composition calculator (UNIFI,
V1.8.2, Waters). The DT filtered HE spectra of the target feature was searched in reliable mass spectra
data bases (HMDB, MetLin, MassBan) or were compared to in-silico fragmentation spectra (MetFrag)
with subsequent searches through general chemical data bases such as Chemspider and PubChem.

The final identity could only be confirmed by comparing the retention time, fragmentation and
CCS with a commercially available standard. When not available, CCS values were predicted by
means of our CCS prediction model [45] aimed at providing additional identification confidence.

3. Results

3.1. Participants and Experimental Setup

Table 1 shows the general characteristics of the study participants. A total of 30 healthy subjects
(97% nonsmokers) were analyzed in the intervention study and all of them completed both the dietary
intervention with oranges and the control group (isocaloric intervention with sucrose) at baseline and
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after 4 h. Plasma samples were obtained twice at baseline and after 4 h and analyzed for metabolomics
biomarkers of orange intake.

Table 1. Demographic, anthropometric and clinical characteristics of the participants by sex.

Characteristics Total (n = 30) Men (n = 22) Women (n = 8)

Age (years) 25.0 ± 0.5 25.4 ± 0.6 23.8 ± 0.9
BMI (Kg/m2) 25.0 ± 1.0 25.8 ± 1.3 22.6 ± 1.1
SBP (mm Hg) 124 ± 3 129 ± 3 111 ± 3
DBP (mm Hg) 74 ± 2 75 ± 2 74 ± 2

Total cholesterol (mg/dL) 186.7 ± 5.9 191.4 ± 6.8 172.3 ± 11.6
LDL-C (mg/dL) 121.5 ± 4.6 126.8 ± 5.0 104.9 ± 8.8
HDL-C (mg/dL) 57.5 ± 2.7 53.6 ± 2.7 68.2 ± 5.4

Triglycerides (mg/dL) 75.4 ± 7.5 83.6 ± 9.7 52.8 ± 3.4
Fasting glucose (mg/dL) 86.7 ± 1.1 88.2 ± 1.3 82.7 ± 1.6

Values are mean ± SE for continuous variables. BMI indicates body mass index; SBP indicates Systolic Blood
Pressure, DBP indicates Diastolic Blood Pressure; LDL-C indicates Low-Density Lipoprotein cholesterol; HDL-C
indicates High-Density Lipoprotein cholesterol.

Regarding sample treatment, the only step taken was deproteinization with ACN to eliminate
the macromolecules (nucleic acids and proteins) present in the plasma and, thereby, avoid possible
interferences in the metabolomic analysis and so focus on the low-weight molecules (metabolites).
The sample treatment must be as low selective as possible to cover a larger range of compounds.
The supernatant was directly injected in the UHPLC-IMS-QTOF MS system. The samples extracts were
injected in randomized order to avoid bias in the methodology and QC was injected every 10 samples
for normalization and instrumental drift control.

Owing to the aqueous nature of the plasma samples, LC was the most convenient chromatographic
separation technique. Furthermore, due to the high sensitivity of the instrument employed, only a low
volume injection was possible (1 µL). This allowed the samples extracts (ACN:H2O, 80:20 v/v) to be
directly injected not only in HILIC, where the initial chromatographic conditions were predominantly
in the organic phase; but also in RP, without the need to evaporate and redissolve in a more suitable
solvent mixture (predominantly aqueous medium). RP and HILIC were employed to detect as many
compounds as possible, in positive (pos) and negative (neg) ionization modes. RP (C18 column) is
more suited to nonpolar hydrophobic molecules and HILIC (silica-based column) for polar hydrophilic
compounds. Finally, we obtained four data sets for the samples under study (RP pos, RP neg, HILIC
pos and HILIC neg).

All data were acquired in HDMSE, where, apart from the DT (ms) measurement by ion mobility,
LE and HE spectra were also acquired simultaneously, obtaining precursor ion information and
full-scan accurate mass fragmentation information, respectively. Therefore, at the end of the analysis,
a four-dimensional data matrix was obtained, which allowed each feature to be characterized by means
of the retention time from chromatographic separation, the intensity, the CCS calculated from the DT
together with the accurate mass and fragmentation spectra. Moreover, the cleaned HE MS spectra
afforded by the DT separation enhanced the structural elucidation since it only shows the fragments
that have been generated from a “precursor” ion with a given DT. This is because the ion mobility
separation prior to the fragmentation ensures that the precursor ion shares the same DT as its fragments
on the three-dimensional plots, allowing one to align the feature and its fragments and reduce the
interference of co-eluting components, thus rendering a HE spectra of MS/MS quality.

3.2. Data Processing and Analysis

The four data sets (RP pos, RP neg, HILIC pos and HILIC neg) were acquired with UNIFI software
(Waters, UK) and the raw data were exported to *.uep format (unifi export package). To the best
of our knowledge, there is no program but Progenesis QI (NonLlinear Dynamics, Waters, Uk) able
to interpret this data format and process four-dimensional data (RT, m/z, area and CCS) for -omics
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purposes. The processing workflow in Progenesis QI starts with data import, followed by retention
time alignment, peak picking and normalization. The alignment score values for all runs were higher
than 85% and normalization was performed using all compounds. The peak picking resulted in the
detection of 6951, 6238, 5283 and 4479 ions in RP pos, RP neg, HILIC pos and HILIC neg, respectively.
According to the adduct ions specified, the deconvolution tool allowed us to group the features coming
from the same compound and annotate them under a single label (xx.xx_yyy.yyyyn, xx.xx being the
retention time in minutes and yyy.yyyy the exact neutral mass when more than one adduct ion is found
for the same compound; or xx.xx_zzz.zzzzzm/z, zzz.zzzz being the exact mass of the single ion found).

PCA was applied to each data set, so providing a nonsupervised exploratory visualization of
the results to detect possible outliers and to ensure that the differences between the groups were
not coming from the instrumental drift over time or error in the data treatment. For this purpose,
QC injections were injected at the beginning of the batch for column conditioning and after every
10 samples. The QCs (n = 14 per data set) should be grouped in the center of the PCA plots, as they
behave as an “average sample” (pool of all the samples analyzed) and thus demonstrate the correct
acquisition of the data, as well as that the differences between the groups are not caused by instrumental
processing. Figure 1 shows the PCA of the HILIC pos data set, where noninherent differentiation
between the group of samples can be observed. Although, the grouping of the QC samples near to the
center of the plot proves the proper performance of the analytical system along the run. PCA plots of
the data sets HILIC neg, RP pos and RP neg are shown in Figures S1–S3 respectively.Nutrients 2020, 12, 1916 8 of 21 
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Figure 1. PCA score plot component 1 vs. component 2 of Hydrophilic Interaction Liquid
Chromatography (HILIC) in positive ionization mode, explaining the 20.6% and 17.7% of the variance,
respectively. The purple points (14 QC samples) are grouped and centered in the plot. Four plasma
samples were obtained from each of the 30 participants obtaining 30 samples per group. A total of
120 plasma samples were analyzed. The samples obtained at t = 0 h and t = 4 h after the intake of an
isocaloric beverage (IB) and the samples obtained at t = 0 h and t = 4 h after orange intake are colored
in green, blue, black and orange, respectively.

As this was a crossover trial, control samples of each participant were collected and a
“Within-subject Design” comparison performed. In this type of experimental design, where samples
of each participant are taken in different conditions, not only must the time the sample was taken be
specified, but also which subject it came from. In these cases, standard ANOVA is not appropriate
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because data violates the independence ANOVA assumption and a repeated measures ANOVA should
be applied. The data were filtered by means of repeated measures ANOVA p-value ≤ 0.05 to reduce
the individual differences and focus on the potential markers. Thus, the data matrices were reduced
to 262, 302, 298 and 149 relevant features in RP pos, RP neg, HILIC pos and HILIC neg, respectively.
These reduced data sets were joined into a single file (1011 features data matrix).

The next step was to apply a supervised multivariate statistical method by means of PLS-DA
modeling to highlight the differences between the preselected groups. This analysis was applied to
the compendium of the reduced data sets per ANOVA. Figure 2 shows a remarkable discrimination
between samples taken after orange consumption and those obtained in fasting or after isocaloric
beverage intake (with 38.3% of the variance explained with two components).Nutrients 2020, 12, 1916 9 of 21 
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data sets with a repeated measures ANOVA p-value ≤ 0.05 were highlighted as discriminatory between 
the samples after orange consumption and the group of composite samples without orange intake with 
a P[corr] ≥ |0.6|. Nevertheless, the list of possible markers could be reduced still further to seven features 
for various reasons. For example, two features higher in the orange sample with the same exact mass and 
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Figure 2. PLS-DA score plot based on the features with repeated measures ANOVA p-value ≤ 0.05. A
2D vision component 1 vs. component 2 with 24.5% and 13.8% of the variance explained, respectively.
The samples obtained at t = 0 h and t = 4 h after the intake of an isocaloric beverage (IB) and the
samples obtained at t = 0 h and t = 4 h after orange intake are colored in green, blue, black and
orange, respectively.

Moreover, these last three groups are mixed and behave in a similar way. Thus, an OPLS-DA was
applied contrasting the samples collected 4 h after orange intake vs. the other samples (Figure S4 shows
the scatter plot of the OPLS-DA). From OPLS-DA an S-Plot was generated (Figure 3), each feature being
assigned a number between −1 and 1 according to their discrimination power between the two groups
called P[corr]. Consequently, the most relevant features in the discrimination are in the extreme parts
of the plots: those with a higher presence in the orange intake sample have a P[corr] near to 1 and those
significant for the other group have a P[corr] near −1. To ensure the validity of these features as possible
markers, a PCA analysis was conducted with only the 43 highlighted features in the S-Plot as variables.
As can be noticed in Figure S5, the samples obtained before and after the isocaloric beverage and the
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samples before the orange consumption are clustered and completely separated from the samples
obtained 4 h after the orange intake. Figure 3 shows that, from the total of 1011 features, only 43 from
all data sets with a repeated measures ANOVA p-value ≤ 0.05 were highlighted as discriminatory
between the samples after orange consumption and the group of composite samples without orange
intake with a P[corr] ≥ |0.6|. Nevertheless, the list of possible markers could be reduced still further to
seven features for various reasons. For example, two features higher in the orange sample with the
same exact mass and the same CCS (127.18 Å2) but different retention time (HIpos_5.02_143.0941n and
RPpos_0.64_143.0947n, with P[corr] = 0.96 and 0.92, respectively) corresponded to the same compound,
but detected under HILIC and RP separation. In other cases, some types of adducts (such as dimers)
had not been specified for the Progenesis QI deconvolution step, and therefore these adducts could
appear as independent features in the statistics.
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3.3. Elucidation Process

A total of 7 statistically representative compounds were tentatively identified (Figure 4, Table 2) as
early markers of orange consumption in plasma. In order to accomplish the elucidation, the HDMSE

spectra were studied to determine the candidate identity based on mass accuracy and both parents
and fragment ions.

Marker 1 elucidation workflow was selected as an illustrative example of the elucidation process.
Figure 5 shows the differences obtained in the mass spectra when it is filtered or not by the DT of the
parent ion (4.97 ± 0.21 ms). The ion mobility separation prior to the fragmentation implies that both
parent and fragment ions will have the same recorded DT. Hence, it is possible to filter the target ion
by DT and obtain cleaner spectra without interfering ions appearing at the same retention time for
the LE spectrum and without co-elutant fragments in the HE spectrum. The possibility of visualizing
only “product” ions derived from a specific “precursor” ion, allows us to obtain a quasi-MS2 spectrum,
without the need for reinjecting the samples.
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Table 2. Compound list obtained from the untargeted metabolomic approach for determining acute biomarkers of orange consumption.

No. Compound Elemental
Composition P[corr] Feature Rt (min) Experimental

Neutral Mass (Da)
Theoretical

Neutral Mass (Da)
Mass Error
(mDa/ppm)

CCS (Å2)
de/protonated
Molecule m/z

Predicted CCS
(Å2) Protonated
Molecule m/z1

CCS Delta
Error (%)

Adducts
Detected

1 Synephrime hydrogen
sulfate

C9H13NO5S 0.64 HIPOS_2.17_247.0510n 2.17 247.0510 247.0514 −0.4/−1.6 158.27 149.79 −5.36

[M+H]+

[M-H2O+H]+

[2M+H]+

[2M+Na]+

0.86 HINEG_2.22_246.0434m/z 2.22 247.0507 247.0514 −0.7/−2.8 155.40 — —

[M-H]−

[(M-H+Na)-Cl]−

[2M-H]−

[2M-2H+Na]−

2 N-methyltyramine hydrogen
sulfate

C9H13NO4S 0.63 HIPOS_1.89_232.0629m/z 1.89 231.0556 231.0565 −0.9/−3.9 154.00 146.16 −5.09 [M+H]+

0.82 HINEG_1.89_230.0483m/z 1.89 231.0556 231.0565 −0.9/−3.9 154.49 — — [M-H]−

3 Hesperitin hydrogen sulfate C16H14O9S 0.61 HINEG_0.58_381.0279m/z 0.58 382.0352 382.0359 −0.7/−1.8 175.63 — — [M-H]−

0.57 HIPOS_0.57_383.0430m/z 0.57 382.0357 382.0359 −0.2/−0.52 172.50 186.02 −7.83 [M+H]+

4 N-methyl-proline C6H11NO2 0.84 HIPOS_4.73_130.0856m/z 4.73 129.0783 129.0790 −0.7/−5.4 127.17 124.4 −2.18 [M+H]+

5 Betonicine C7H13NO3
0.93 HIPOS_4.79_159.0890n 4.79 159.0890 159.0895 −0.5/−3.1 129.02 130.25 +0.95

[M+H]+

[M+Na]+

[M+K]+

[2M+Na]+

0.92 RPPOS_0.66_160.0970m/z 0.66 159.0897 159.0895 +0.2/+1.3 129.02 130.25 +0.95 [M+H]+

[M+Na]+

6 Stachydrine C7H13NO2
0.92 HIPOS_5.02_143.0941n 5.02 143.0941 143.0946 −0.5/−3.5 127.17 127.55 +0.30

[M+H]+

[M+Na]+

[M+K]+

[2M+H]+

[2M+Na]+

0.96 RPPOS_0.64_143.0947n 0.64 143.0947 143.0946 +0.1/+0.7 127.18 127.55 +0.29 [M+H]+

[M+Na]+

7 unknown C6H11NO3 0.65 HIPOS_2.76_146.0806m/z 2.76 145.0733 145.0739 −0.6/−4.1 123.81 127.11/127.03 +2.66/+2.60 [M+H]+
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Figure 5. HDMSE spectra from HILIC pos analysis for Marker 1 with and without DT filtering: (A) LE
function (without DT filtering), (B) DT filtered LE function, (C) HE function (without DT filtering), and
(D) DT filtered HE function.

However, information was also obtained from the unfiltered spectra. Since the adduct ions are
formed before ion mobility separation, their DT could be different, and therefore they would not be
shown in the DT filtered spectrum. In the case of Marker 1 (HIPOS_2.17_247.0510n, P[corr] = 0.64),
as can be seen in Figure 5A, the dimers [2M+H]+ and [2M+Na]+ are also present, as dimers were
not selected as possible “adduct” ions in the Progenesis QI deconvolution, but were assigned as
independent features. These features were also highlighted as discriminant in the OPLS-DA with a
P[corr]>0.6.



Nutrients 2020, 12, 1916 12 of 19

Marker 1 was also found in HILIC neg analysis (HINEG_2.22_246.0434m/z) with different ion
forms. The extracted ion chromatograms for the ions and dimers founded corresponding to this
marker are shown in Figure S6, and all of them are highlighted as markers. The most likely elemental
composition for this marker was found to be C9H17NO5S (error: −0.4 and −0.07 mDa in positive
and negative HILIC analysis, respectively). The mean retention time across the samples was 2.2 min
and CCS value 158.27 Å2 and 155.40 Å2 for protonated and deprotonated ion, respectively. Figure 6
shows the LE and HE spectra obtained in HILIC pos and HILIC neg analysis, filtered by the DT of the
protonated and deprotonated ion, respectively.
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function in HILIC neg analysis, (C) HE function in HILIC pos analysis and (D) HE function in HILIC
neg analysis. A proposed structure and fragmentation are shown.

In the HILIC pos LE function, an in-source fragment m/z 230.0476 ([C9H12NO4S]+, error: −0.7 mDa)
corresponding to a neutral loss of H2O (not very specific fragment) can be seen. From the HILIC neg
LE function is obtained a more specific in-source fragment m/z 148.0762 ([C9H10NO]−, error: −0.7 mDa)
corresponding to the neutral loss of H2SO4, a typical loss of phase II sulfate conjugated metabolites.
This ion is also present in the HILIC neg HE spectrum as a product ion, with m/z 133.0529 ([C8H7NO]−,
error: −0.1 mDa) assigned as consecutive neutral loss of CH3, followed by neutral loss of HCN with
m/z 106.0418 ([C7H6O]−, error: −0.05 mDa). These ions were also present in HILIC pos HE spectra
in their corresponding positive adducts m/z 150.0905 ([C9H12NO]+, error: −0.8 mDa), m/z 135.0673
([C8H9NO]+, error: −0.6 mDa) and m/z 107.0418 ([C7H7O]+, error: −0.2 mDa), among other product
ions. After the automated searching in databases with the UNIFI (Waters) tool, in-silico fragmentation
tools and spectra comparison with data bases as HMDB if it is available, Synephrine hydrogen sulfate,
phase II sulfate conjugated metabolite of synephrine, was the most likely tentative identification,
and this match was supported by the fragmentation spectra.

Synephrine is a citrus compound and commonly present in dietary supplements (coming from citrus
extracts) used in weight loss, and therefore its metabolism and toxicity has been extensively studied [47].
Moreover, it has previously been reported as a biomarker of citrus intake in urine, along with other
metabolites of other flavonoids citrus compounds as Marker 2 and 3, tentatively identified as phase
II sulfate conjugated metabolites of N-Methyltyramine and Hesperitin, respectively (Tables 2 and 3).
These compounds have been previously studied due to their antioxidants and anti-inflammatory
properties [48,49]. Moreover, hesperitin phase I/II conjugates have already been described as major
metabolites of other citrus containing the flavonoids hesperidin and naringenin [50,51].
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Table 3. Literature found on biomarkers related with the citrus intake.

No. Compound Related Compounds Found in
the Literature

Citrus Fruit and/or
Product Consumed Bio Fluid Sample Analysis Platform Literature on Detection

as Metabolite
Literature Demonstrating

the Presence in Citrus

1 Synephrime hydrogen sulfate Synephrine and/or other phase
I/II metabolites orange juice urine LC-MS/MS

LC-ECD [30,52] [49,53]

2 N-methyltyramine
hydrogen sulfate

N-methyltyramine and/or other
phase I/II metabolites

orange, grapefruit,
orange juice urine LC-HRMS [54] [49,53]

3 Hesperitin hydrogen sulfate Hesperitin and/or other phase I/II
metabolites

orange, grapefruit,
orange juice urine LC-HRMS

LC-MS/MS [17,54] [55]

4 N-methyl-proline orange juice urine LC-HRMS [21,25,27,28] [56]

5 Betonicine orange, grapefruit,
orange juice plasma, urine

FIA-HRMS
LC-HRMS
LC-MS/MS

[17,19,25,28,54] [56]

6 Stachydrine
orange, grapefruit,

orange juice,
grapefruit juice

plasma, serum,
urine

FIA-HRMS
LC-M/MS
LC-HRMS
1H NMR

[16–21,23–25,27,28,54] [56]

7 Unknown NA NA NA NA NA NA

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS); LC coupled to electrochemical detection (LC-ECD); LC coupled to high-resolution mass spectrometry
(LC-HRMS); Flow injection analysis coupled HRMS (FIA-HRMS) and; proton nuclear magnetic resonance (1H NMR)
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.
In the case of Marker 6, Figure 7 shows the extracted ion chromatograms and HDMSE spectra in

HILIC pos analysis. This marker was also found in the dead volume in RP pos due to its high polarity,
corresponding to the features HIpos_5.02_143.0941n and RPpos_0.64_143.0947n highlighted in Figure 3,
among other features corresponding to dimers. Similar behavior occurred in Marker 5. These two
markers were the ones with higher P[corr] and abundancy. Therefore, they are the most differentiating
markers present in the plasma samples 4 h after orange consumption (Table 2). These markers were
tentatively elucidated as Betonicine and Stachydrine (proline betaine). These betaines have been
extensively reported as a citrus intake biomarker in blood and urine (Table 3).
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Indeed, stachydrine is one of the most commonly used dietary biomarkers for dietary assessment
of citrus intake and it has even been related to the amount consumed [18,20]. Betonicine has also
been detected in several studies, as well as other betonicines as Marker 4, tentatively elucidated
as N-methyl-proline, due to the close retention time and fragmentation pattern. Marker 3 had
fragmentation spectra similar to the other betaines reported. Some chemical structures were proposed
based on the amino acid proline, although there are not enough data to propose a definitive structure
(Figure 4). Table 3 shows the available literature dealing with the biomarkers related to citrus intake.

Despite having linked all these compounds with orange consumption, it must be emphasized
that they are usually exclusive to this type of food. Stachydrine is the most used biomarker as proof
of citrus consumption. However, in some populations, it has also been detected as marker for other
foods such as tubers of the vegetable Stachys affinis, also known as Chinese artichoke [26]. Therefore,
previous information of the foods more consumed in each population is important to select the most
specific marker of orange intake, or even to use a combination of markers, and not just one, in selected
populations. In order to achieve more confidence in tentative identification, a CCS predictor model
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machine-based in artificial neural network (ANN) developed for protonated ions by our group was
employed [45]. The CCS values predicted for protonated ions are shown in Table 2. No prediction
for the other adduct or dimers could be made as this tool is not yet developed for them. The relative
errors obtained with this prediction tool were below 6% for 95% of all CCS values tested. Nevertheless,
the results obtained for the phase II sulfate conjugated metabolites (of synephrine, hesperitine and
N-methyltyramine) were between 5% and 7%. This higher error value is probably due to the lack of
glucuronides and sulfate metabolites during the building of the CCS prediction model. Compared
to other markers, good results were obtained, showing a prediction error below 1% for stachidrine
and betonicine and below 3% in de case of N-methyl-proline and Marker 3. The CCS predicted in the
two structure proposals for marker 7 did not differ enough to decide between them.Despite having
linked all these compounds with orange consumption, it must be emphasized that they are usually
exclusive to this type of food. Stachydrine is the most used biomarker as proof of citrus consumption.
However, in some populations, it has also been detected as a marker for other foods such as tubers of
the vegetable Stachys affinis, also known as Chinese artichoke [26]. Therefore, previous information of
the foods more consumed in each population is important to select the most specific marker of orange
intake, or even to use a combination of markers, and not just one, in selected populations. In order to
achieve more confidence in tentative identification, a CCS predictor model machine-based in artificial
neural network (ANN) developed for protonated ions by our group was employed [45]. The CCS
values predicted for protonated ions are shown in Table 2. No prediction for the other adduct or
dimers could be made as this tool is not yet developed for them. The relative errors obtained with this
prediction tool were below 6% for 95% of all CCS values tested. Nevertheless, the results obtained for
the phase II sulfate conjugated metabolites (of synephrine, hesperitine and N-methyltyramine) were
between 5% and 7%. This higher error value is probably due to the lack of glucuronides and sulfate
metabolites during the building of the CCS prediction model. Compared to other markers, good results
were obtained, showing a prediction error below 1% for stachidrine and betonicine and below 3%
in de case of N-Methyl-proline and Marker 3. The CCS predicted in the two structure proposals for
marker 3 did not differ enough to decide between them. The CCS is used as an additional identification
point that allows the identity confirmation. If the CCS is different enough it will be able to distinguish
between two isobaric and even isomeric compounds. Nevertheless, there is not enough information
and CCS recompilation to apply this differentiation.

The increasing interest in the CCS as an additional molecular descriptor for untargeted metabolomic
studies lies in its high capability to improve identification workflows. With IMS, postionization
separation is undertaken based on the shape of the compounds and providing CCS as an additional
physicochemical. In contrast to other parameters such as retention time, this value is highly reproducible
since it is not influenced by the nature of the matrix or the separation employed. Therefore, it is of great
importance to report these results, so that they can be included in compound libraries and, in this way,
potentially improve the very time-consuming identification step in untargeted metabolomics studies.

Nevertheless, the ideal situation for unequivocally confirming the identity of the reported markers
would be a comparison with a reference standard. Unfortunately, many of them are not commercially
available, or are very expensive.

4. Conclusions

The potential of the untargeted metabolomics approach, along with the novelty of
UHPLC-IMS-QTOF instruments for food intake biomarkers has been demonstrated with the tentative
elucidation of 7 short-term markers of orange consumption (Clementines) in human plasma:
Stachydrine, betonicine, N-methyl-proline, as well as phase II sulfate conjugate of synephrine,
N-methyltyramine and hesperitin (only reported as biomarker of citrus intake in urine). Moreover,
the recompilation in databases of CCS as an additional molecular descriptor, independent from the
sample matrix nature and separation technique, will facilitate the future compound identification
process. The markers have turned out to be indicators of citrus intake, not just orange. However,



Nutrients 2020, 12, 1916 16 of 19

oranges (mainly Citrus reticulata and Citrus sinensis) are the fruits most consumed in the citrus group).
The combined use of two or more of these markers can contribute to increase the specificity of the
citrus intake.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/7/1916/s1,
Figure S1: PCA score plot component 1 vs. component 2 of HILIC in negative ionization mode, explaining the
41.8% and 14.7% of the variance; Figure S2: PCA score plot component 1 vs. component 2 of RP in positive
ionization mode, explaining the 47.1% and 11.7% of the variance; Figure S3: PCA score plot component 1 vs.
component 2 of RP in negative ionization mode, explaining the 28.5% and 26.7% of the variance; Figure S4:
OPLS-DA score plot based on the features with repeated measures ANOVA p-value ≤ 0.05, where the 94% of the
total variance is explained; Figure S5: PCA score plot component 1 vs. component 2 obtained with the 43 features
highlighted in the OPLS-DA with a P[corr] ≥ |0.6|, explaining the 79.3% and 9.6% of the variance; Figure S6:
Extraction ion chromatograms of ions present in the LE function of HILIC pos and HILIC neg analysis.
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