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Nutrient sensing pathways are playing an important role in cellular response to different

energy levels. In budding yeast, Saccharomyces cerevisiae, the sucrose non-fermenting

protein kinase complex SNF1 is a master regulator of energy homeostasis. It is affected

by multiple inputs, among which energy levels is the most prominent. Cells which are

exposed to a switch in carbon source availability display a change in the gene expression

machinery. It has been shown that the magnitude of the change varies from cell to

cell. In a glucose rich environment Snf1/Mig1 pathway represses the expression of its

downstream target, such as SUC2. However, upon glucose depletion SNF1 is activated

which leads to an increase in SUC2 expression. Our single cell experiments indicate that

upon starvation, gene expression pattern of SUC2 shows rapid increase followed by

a decrease to initial state with high cell-to-cell variability. The mechanism behind this

behavior is currently unknown. In this work we study the long-term behavior of the

Snf1/Mig1 pathway upon glucose starvation with a microfluidics and non-linear mixed

effect modeling approach. We show a negative feedback mechanism, involving Snf1

and Reg1, which reduces SUC2 expression after the initial strong activation. Snf1 kinase

activity plays a key role in this feedback mechanism. Our systems biology approach

proposes a negative feedback mechanism that works through the SNF1 complex and is

controlled by energy levels. We further show that Reg1 likely is involved in the negative

feedback mechanism.

Keywords: SNF1, feedback, single-cell, nutrient signaling, dynamic modeling, NLME, STS

1. INTRODUCTION

Nutrients play a key role in cell survival and well-being by serving as energy sources,
cellular building blocks and as triggers for a multitude of signaling pathways. A number of
nutrient-controlled signaling pathways has been extensively studied and the crosstalk between
them has been elucidated (Shashkova et al., 2015). In the budding yeast, Saccharomyces cerevisiae,
nutrient controlled pathways distinguish between preferred and alternative nitrogen and carbon
sources, and alters the homeostasis to adjust to the extracellular conditions. The Snf1 protein
kinase, the yeast orthologue of the mammalian AMP-activated protein kinase (AMPK), regulates
energy balance and plays the main role in yeast adaptation to glucose limitation (Carlson et al.,
1981; Celenza and Carlson, 1986) via controlling genes required for utilization of non-glucose
carbon sources (Treitel et al., 1998). It works in a complex, named SNF1, which is composed of the
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catalytic subunit Snf4 and one of the three alternative stabilizing
subunits Gal83, Sip1, or Sip2 (Jiang and Carlson, 1996; Schmidt
and McCartney, 2000). Under glucose depleted conditions,
AMPK/Snf1 is activated by three upstream kinases, Tos3, Elm1
and Sak1 (Hong et al., 2003; Nath et al., 2003; Elbing et al.,
2006; Rubenstein et al., 2008), which leads to phosphorylation
of various transcription factors to facilitate cellular response
(Ghillebert et al., 2011). Glucose presence makes the Snf1
activation loop accessible for protein phosphatases (Rubenstein
et al., 2008). The Glc7-Reg1 phosphatase is the main negative
regulator of Snf1, with a contribution of Sit4 and Ptc1
phosphatases (Rubenstein et al., 2008; Ruiz et al., 2012). At
the same time, the assembly and functionality of the Glc7-Reg1
phosphatases depends on Snf1 during poor glucose conditions;
active Snf1 phosphorylates Reg1 which prevents its association
with the Glc7 subunit to form a functional phosphatase (Sanz
et al., 2000). The activation of the SNF1 complex has been shown
to correlate with a high ADP/ATP ratio (Rubenstein et al., 2008;
Chandrashekarappa et al., 2013). Furthermore, ADP binds to the
regulatory subunit of the SNF1 complex resulting in protection
of Thr210 from dephosphorylation (Mayer et al., 2011). Overall,
this suggests that the SNF1 complex is regulated by intracellular
energy levels.

Genes essential for metabolism of maltose (MAL), galactose
(GAL), and sucrose (SUC2) are regulated by the transcriptional
repressor Mig1, where SUC2 is one of the most studied (Lutfiyya
et al., 1998; Carlson, 1999). Expression of Mig1 target genes
is released upon glucose limitation, when Mig1 becomes
phosphorylated by Snf1 and relocates to the cytoplasm. In
glucose-rich extracellular conditions, the Reg1-Glc7 phosphatase

FIGURE 1 | Schematic representation of the Snf1/Mig1 pathway. Snf1 is constitutively phosphorylated by the upstream kinases. When preferred carbon-sources are

limited Snf1 phosphorylates Mig1, which results in the cytoplasmic localization of Mig1. When preferred carbon sources are available Snf1 and Mig1 are

dephosphorylated through an unknown mechanism originating from glycolysis. Mig1 localizes to the nucleus and there it represses genes which are required for the

utilization of non-fermentable carbon-sources. Dashed arrows represent signals that are transmitted via unknown mechanisms.

dephosphorylates Mig1 in a glucose-dependent manner,
however, another glucose-independent mechanism has been
reported to participate in Mig1 dephopshorylation (Shashkova
et al., 2017). When dephopshorylated, Mig1 relocates to the
nucleus (Treitel and Carlson, 1995; Wu and Trumbly, 1998)
where it recruits the Ssn6-Tup1 global co-repressor complex to
repress genes (Lutfiyya et al., 1998; Smith et al., 1999; Ahuatzi
et al., 2007).

Despite the fact the Snf1/Mig1 pathway (Figure 1) has been
extensively studied, little is known about how its response to
glucose starvation is maintained over time. Thus, it is still
unclear how the gene expression response to altered energy
levels is fine-tuned, for example, the dynamic regulation of the
pathway target genes in the long run. Also, the majority of
work on the Snf1/Mig1 pathway has been performed on cell
cultures representing the average behavior of the population.
When the aim is a cellular level mechanistic understanding
of a pathway, such as the Snf1/Mig1 pathway, a single-
cell level model is advantageous compared to a population
average model. This is due to the fact that population based
models do not account for intrinsic heterogeneity within the
population (Shashkova and Leake, 2017). Hence, a population
based model might overlook dynamic single-cell features, such
as oscillations (Cohen-Saidon et al., 2009).

Systems biology approaches exploiting single-cell techniques
to study the cellular mechanism of the Snf1/Mig1 pathway
(Bendrioua et al., 2014; Almquist et al., 2015; Welkenhuysen
et al., 2017) have previously been employed. However, these have
focused on the short-term localization of Mig1 as measurement
for the Snf1/Mig1 pathway activity. Long time-lapse observation

Frontiers in Physiology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 954

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Persson et al. Novel Mechanism of SUC2 Regulation

of pathways with microfluidics device provide high-quality
observation rich data. In combination with mathematical
modeling this data can be used to understand complex behavior
of cellular pathways. The abundance of species in Snf1/Mig1
pathway (Shashkova et al., 2015) together with previous
modeling studies (Almquist et al., 2015), suggest that the cell-
to-cell variability in Snf1/Mig1 pathway mostly arises from
differences in protein levels (extrinsic noise). Therefore, a suitable
modeling framework to study single-cell activity of the Snf1/Mig1
pathway is non-linearmixed effects modeling (NLME) (Almquist
et al., 2015; Llamosi et al., 2016).

In this work we study the long-term behavior of the Snf1/Mig1
pathway upon glucose starvation with a microfluidics and NLME
modeling approach. We employ a single-cell microfluidics
technique to capture the long-term behavior of a large set of
cells after the nutrients conditions in the cell environment have
changed. We further examined activity levels of the invertase
enzyme as a readout of the SUC2 expression to investigate
the effect of Snf1 and Reg1 on target genes. Moreover, we
utilize a standard fluorescence microscopy approach on cells
subjected to a pharmacological inhibitor to show the crucial role
of the Snf1 kinase activity in regulation of Mig1 localization
that defines its function on target promoters. We show that a
feedback mechanism reduces SUC2 expression after the initial
strong activation. Our modeling approach proposes a negative
feedback mechanism that works through the SNF1 complex and
is controlled by energy levels. We further show that Reg1 is
involved in the negative feedback mechanism.

2. MATERIALS AND METHODS

2.1. Yeast Strains and Growth Conditions
Standard YPD (10 g/l yeast extract, 20 g/l bacto-peptone,
glucose according to experimental needs) and YNB [1.7 g/l
yeast nitrogen base without amino acids, without (NH4)2SO4,
5 g/l (NH4)2SO4, supplemented with glucose and amino acids
according to nutritional requirements] media were used for yeast
cells growth and transformants selection.

To delete the SNF1 gene, the LEU2 fragment from YDp-L
plasmid (Berben et al., 1991) flanked on its 5′- and 3′-termini with
50 bp up- and downstream of SNF1, respectively, was amplified
by PCR. Strain YSH2348 was transformed directly with the PCR
reaction mix by standard lithium acetate protocol (Gietz and
Schiestl, 2007) and placed on YNB leucin-deficient agar plates
supplemented with 4% glucose. Successful transformants were
verified by confirmation PCR.

2.2. Invertase Assay
Pre-grown cells were inoculated into 50 ml of fresh YPD
medium with 4% glucose and grown until mid-log phase. A
half of a culture then was harvested by rapid centrifugation
and freezing in liquid nitrogen, the other half was washed with
water, suspended in a fresh YPD medium with 0.2% glucose,
incubated at 30◦C, 180 rpm for following 4 h and harvested as
above. Yeast cells were mechanically disrupted by glass beads
in crude extraction buffer [50 mM imidazole, 100 mM KCl,
10 mM MgCl2, 0.1 mM EDTA, 1× protease inhibitor cocktail

(Roche)], and the lysates we obtained by collecting supernatants
after centrifugation for 10 min at 10,000 rpm. The total amount
of protein was quantified by RC DC protein quantification kit
(Bio-Rad). Protein extracts were mixed with acetate buffer (0.3 M
CH3COOH, 0.2MCH3COOK), and the reaction was initiated by
adding 500 mM sucrose solution (in 0.1 M CH3COOK). After 10
min the reactionmix was added to 0.1MKPO4 pH 6.5 containing
peroxidase, glucose oxidase, and O-dianisidine, and incubated at
30◦C water bath for 15 min. The reaction was stopped by adding
6M HCl, and the OD at 540 nm was measured. One unit of
invertase activity is the amount of enzyme that produces 1 nmol
of glucose per minute at pH 6.5 at 30◦C.

2.3. Epifluorescence Microscopy
Pre-grown cells carrying pSNF1-TAP or its’ analog-sensitive
version, pSNF1-I132G-TAP, were cultivated in YNB medium
with uracil-deficient amino acid supplement with 0.2% glucose
for 1 h. To block Snf1 phosphorylation, 2 µM ATP-competitive
kinase inhibitor, 1NM-PP1 (Cayman), was added to the cell
cultures for 5 min at room temperature. For the wide field
fluorescence microscopy cells were imaged using an ApoTome
camera and a Zeiss Axiovert 200M microscope (Carl Zeiss
MicroImaging). Fluorescence images were acquired by using
separate filter sets 38HE and 43HE for GFP and mCherry
excitation, respectively.

2.4. Time-Lapse Microscopy and Cell
Tracking
The yeast cells (W303, HXK1p-Citrine-ACT1t, Table S3) were
grown overnight and injected with a syringe in a two-
channel Y-formed microfluidics poly-dimethylsiloxane (PDMS)
system and allowed to sediment in the main channel. For
the switch fresh CSM media was supplied to the cells
through the other channel. The experimental setup is further
described inWelkenhuysen et al. (2018). Imaging was performed
on a Leica DMi8 inverted fluorescence microscope (Leica
microsystems). The microscope was equipped with a HCX PL
APO 40×/1.30 oil objective (Leica microsystems), Lumencor
SOLA SE (Lumencor) led light and Leica DFC9000 GT sCMOS
camera (Leica microsystems). Cell growth was recorded at
1 frame in bright-field at 20 ms exposure, and YFP was
observed with an excitation: 500/20, dichroic: 515 and emission:
535/30 filtercube at 150 ms exposure every 5 min. Analysis
of fluorescence intensity was performed with the ImageJ
distribution FIJI (Schindelin et al., 2012).

2.5. Feedback Cascade Model
The simple feedback cascade model (Figure 3A) is based on
ODEs with the rate-equations formulated using mass action and
Hill-kinetics (Equation 1). The model has three components:
Snf1/Mig1 pathway inhibitory activity (SNF1pat), SUC2 and
a potential feedback cascade (X). The model investigates if
a partial recovery in intracellular energy levels, that results
in a recovery in SNF1pat activity (meaning the inactivation
of Snf1 and activation of Mig1) (Mayer et al., 2011), might
explain the observed SUC2 expression. This is achieved by
including the likely recovery in intracellular energy levels, which
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is an effect of genes activated upon a glucose drop and the
decreased activity of SNF1pat (Hedbacker and Carlson, 2008),
via the production of X (Equation 1c). Furthermore, as a partial
recovery in energy levels should result in increased activity of the
energy regulated SNF1pat, X promotes production of SNF1pat
(Equation 1a). That is, X partially restores SNF1pat activity,
which is a measure of the intracellular energy levels during
high glucose conditions (i.e., high intracellular energy level).

dSNF1pat(t)

dt
= kglc_ex(t)− k2SNF1pat(t)+ k3X(t − τf) (1a)

dSUC2(t)

dt
=

k4

k5 + SNF1pat(t − τm)
− k6SUC2(t) (1b)

dX(t)

dt
= H(t)

k7

k8 + SNF1pat(t)
− k9X(t) (1c)

SNF1pat(t) = SNF1patt0 ∀t ∈ [t0 − τm, t0] (1d)

SUC2(t) = SUC2t0 , t = t0 (1e)

X(t) = 0, ∀t ∈ [t0 − τf, t0] (1f)

Besides standard model building procedures, three challenges
had to be addressed when constructing the model. Firstly,
the model aims to describe the SUC2 expression. However,
the SUC2 expression is measured via matured YFP. Secondly,
the feedback affecting the SNF1 pathway is likely a cascade
of events. The fluorescence maturation and feedback cascade
can be represented by adding multiple states to the model.
However, to keep the model identifiable, time-delays τi were
used instead (Figure 3A). As the data shows a variation in
feedback response-time (Figure 2B), τf was estimated from the
data. As the YFP maturation time has been reported to be
39 ± 7 min (Gordon et al., 2007), and the data shows an
increase in YFP at 32 min (Figure 2B), τm was fixated at
32 min. Thirdly, at time zero the model is at rich glucose
conditions. At rich glucose conditions, the SNF1 pathway, and
thus the model should be at steady state. Hence, the rate

equations were forced to be zero at time zero, which yielded
expressions for initial values, as functions of rate constants,
that ensures an initial steady-state (Equation 2b). The glucose
downshift which breaks the steady state, was included in the
model by reducing glucose in-signal and activating the feedback
mechanism close to time zero (Equation 2a). It should be noted
that X initially in high glucose, is modeled to not interact with
SNF1pat and thus has zero activity (Equations 1c and 2a). This
is because the feedback is modeled to be dependent on the
energy saving processes that are activated upon an external
glucose drop (Hedbacker and Carlson, 2008). In addition to
the information presented here, a more detailed description
of each state and accompanying rate equations is presented
in Table S1.

kglc_ex(t) =

{

k1 t < 0.0483

k1/40 t ≥ 0.0483
, H(t) =

{

0 t < 0.0483

1 t ≥ 0.0483

(2a)

SNF1patt0 = k1/k2, SUC2t0 =
k4

(

k5 + SNF1patt0
)

k6
(2b)

When fitting the model to the SUC2 data, all unknown
parameters except two (k5 and k8) were estimated with a full
random effects covariance matrix �. These two parameters
were estimated without random effects to reduce the size of �,
and consequently keeping the standard errors of the estimated
parameters acceptable (Table S4). It should also be noted that
fixing k5 and k8 does not, unrealistically, removes cell-to-cell
variability in the reactions they govern. This is because k4 and
k7 are assumed to vary between cells (Equations 1b and 1c).
The unidentifiable Hill-coefficients (Equations 1b and 1c) where
fixed to the smallest integer that produced a good fit (n = 1). In
addition to the information presented here, inference details for
each parameter is presented in Table S1.

FIGURE 2 | Expression from the SUC2 promotor over time, expressed as fluorescence intensity of YFP divided by area. (A) time-lapse images of cells exposed to

shift from high (4%) to low (0.1%) glucose. Both bright field and yellow fluorescence images are displayed. Below is the intensity over time of one cell (annotated by

white arrow). The fluorescence intensity was observed for 480 min with an interval of 5 min between every image acquisition. (B) Fluorescence intensity over time of all

analyzed cells. Each gray line represents the trace of one single cell, and the 0.05, 0.5, and 0.95 quantiles of the cells are represented with a dashed black line. Four

randomly selected cells are represented with a blue line. 124 cells were analyzed in the experiment.
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FIGURE 3 | The feedback cascade model. (A) Schematic representation. The model proposes that the SUC2 expression decreases during glucose starvation due to

a feedback acting on the inhibitory activity of the Snf1/Mig1 pathway. A potential source of this feedback is partial recovery in the intracellular energy levels. The

feedback-cascade, and maturation time of the promoterSUC2-YFP (measured output), were represented by time-delays, τi . (B,C) Simulated and observed population

behavior of the SUC2-intensity (note same scale on y-axis). The simulated data was generated by simulating 10,000 cells using the estimated parameter distributions

for the NLME and STS approaches.

2.6. Feedback Mediated Model
The feedback mediated model (Figure 4D) accounts for
phosphorylated and dephosphorylated forms of nuclear Mig1
as well as for observed movement of Mig1 out of the nucleus
upon a glucose downshift. The model consists of five states,
phosphorylated (active) SNF1-complex (SNF1p), nuclear
Mig1 (Mig1), phosphorylated nuclear Mig1 (Mig1p), SUC2
and a feedback mediating component (Y). All rate-equations,
excluding Mig1 nuclear transport, were constructed using mass
action and Hill kinetics (Equation 3). A sigmoid function,
σ (SNF1p), was implemented and parameterized to match
observed Mig1 behavior (Equation 4b, for parametrization
details see Figure S3), so that Mig1 stays in the nucleus during
low SNF1 activity (Figure 4A), and that roughly as much
Mig1 moves out of the nucleus when the external glucose is
reduced from 4 to 1.5%, as when it is reduced from 4 to 0.1%
(Bendrioua et al., 2014). The model investigates if a recovery in
intracellular energy, resulting in a decrease in SNF1p activity
(Mayer et al., 2011), can explain the observed SUC2 expression.
This is achieved by including the likely recovery in intracellular
energy levels, which is an effect of genes activated upon glucose
starvation and the increased SNF1p-activity (which results in
increased SUC2 expression) (Hedbacker and Carlson, 2008),
via the production of Y (Equation 3e). Furthermore, as a
partial recovery in energy levels should result in reduced SNF1-
complex activity and hence SUC2 activity, Y inhibits formation
of SNF1p (Equation 3a).

dSNF1p(t)

dt
= k1 − kex_glc(t)A(t)SNF1p(t)− k10Y(t)SNF1p(t)

(3a)

dMig1(t)

dt
= k2 − k3SNF1p(t)Mig1(t)+ k4Mig1p(t)

− k5

(

1+ σ
(

SNF1p(t)
)
)

Mig1(t) (3b)

dMig1p(t)

dt
= k3SNF1p(t)Mig1(t)− k4Mig1p(t)

− k5

(

1+ σ
(

SNF1p(t)
)
)

Mig1p(t) (3c)

dSUC2(t)

dt
=

k6

K +Mig1(t − τm)
− k7SUC2(t) (3d)

dY(t)

dt
= k8

(

SUC2(t)− SUC2t0
)

− k9Y(t) (3e)

SNF1p(t) = 0, t = t0 (3f)

Mig1(t) = Mig1t0 ∀t ∈ [t0 − τm, t0] (3g)

Mig1p(t) = 0, t = t0 (3h)

SUC2(t) = SUC2t0 , t = t0 (3i)

Y(t) = 0, t = t0 (3j)

The initial values for phosphorylated Mig1p and SNF1 were set
to 0 as the model is in rich glucose conditions at time zero. By
the same arguments as for the simple feedback model, the initial
value for the feedback component (Y) was fixed to 0, the YFP-
maturation was represented by a time-delay, and a steady state
which is broken by a reduction in the external glucose signal
was enforced at time zero (Equation 4a). To ensure an initial
steady state for SNF1p, it was noted that the external glucose
signal should be heavily amplified (A) during high glucose
conditions (Equation 4a and Table S2), as multiple processes
negatively regulates SNF1p during high glucose conditions (Ruiz
et al., 2011, 2013; Zhang et al., 2011; McCartney et al., 2016).
Furthermore, by assuming a steady state expression for the
initial values of Mig1 and SUC2 were obtained as a function of
rate parameters (Equation 4c), and an expression of kglc_ext(t)
was obtained as a function of k1 (Equation 4a). Lastly, as the
simple model suggested a delayed feedback, this was added
in the model by making the feedback dependent on the YFP
activity of the Snf1/Mig1 regulated SUC2 gene. In addition to
the information presented here, a more detailed description
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FIGURE 4 | Experimental data and modeling suggests SUC2 regulating feedback via SNF1 complex. (A) Cells with genomically integrated Mig1-GFP and

Nrd1-mCherry fusions and expressing the wild type Snf1 or its analog-sensitive version, Snf1-I132G, were incubated in low (0.2%) glucose conditions with

subsequent addition of 1NM-PP1 for 5 min prior to imaging. Images were enhanced using FiJi software for representation. (B) A read-out of invertase activity

measured in cell lysates obtained from cultures pre-grown in 4% glucose medium, then incubated in 0.2% glucose conditions for 4 h. Error bars represent standard

deviation. (C) A read-out of invertase activity measured in cell lysates obtained from cultures pre-grown in 4% glucose medium, then incubated in 0.2% glucose

conditions for 4 h. Error bars represent standard deviation. (D) Feedback mediated model. The model, which is an extension of the cascade model (Figure 3),

proposes that the SUC2 expression decreases upon long term glucose starvation due to a feedback acting on the phosphorylated SNF1-complex (SNF1p). The

maturation time of the promoterSUC2-YFP (measured output) was represented by a time-delay. The Mig1 nuclear export was represented by a SNF1p dependent

sigmoid function. (E) Simulated and observed SUC2 expression. The simulated data was obtained by simulating 10,000 cells from the feedback mediated model. (F)

Simulated deletions obtained by simulating 10,000 cells for each case from the feedback mediated model. Simulated intensity was sampled at discrete time-points.

Error bars represent the 0.20 and 0.80 quantiles within the simulated single cell population.

of each state and accompanying rate equations is presented
in Table S2.

kex_glc(t)A(t)SNF1p(t)

=













kGlcext A(t)SNF1p(t)
︸ ︷︷ ︸

≈1

≈ kGlcext
steady state

= k1, t < 0.0483

kGlc
ext

40 A(t)
︸︷︷︸

=1

SNF1p(t) = k1
40SNF1p(t), t ≥ 0.0483

(4a)

σ
(

SNF1p(t)
)

=
1

1+ exp
(

− 3
(

SNF1p(t)− 4.5/3
)
) (4b)

Mig1t0 =
k2

k5

(

1+ σ
(

SNF1p(t0)
)
)

SUC2t0 =
k6

(K +Mig1t0)k7
(4c)

When fitting the model to the SUC2 expression data all
unknown parameters, except one which was fixed (K = 0.1),
were estimated with a full random effects covariance matrix
�. This approach reduces the size of � and consequently
ensures acceptable standard errors of the estimated parameters
(Table S5). The unidentifiable Hill-coefficient (Equation 3d) was
fixed to the smallest integer that produced a good fit (n = 1). In
addition to the information presented here, inference details for
each parameter is presented in Table S2.

It should be noted that the reaction-scheme in Figure 4D can
also be modeled by an approach that requires less assumptions,
and is more consistent with the feedback cascade model
(Equation 1). This by replacing kex_glcASNF1p with; −kex_glc −
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k11 SNF1p, a steady state argument will result in the same
expression for kex_glc as in Equation (4a) (kex_glc = k1, t <

0.0483 and kex_glc = k1/40, t ≥ 0.0483). Overall, this approach
also produces a good fit (Figure S4A), with the same dynamic
characteristics as in the feedback mediated model, e.g., Mig1
partially relocates back into the nucleus upon long term glucose
starvation (Figure S4B). However, this approach also results in a
non-identifiablemodel, since by adding the k11 rate-parameter an
additional 12 parameters have to be estimated due to the random
effects covariance matrix. Hence, we used the model presented
in Equation (3) as it is identifiable, is biologically justifiable
(Table S2), captures key biological features, such as having
practically zero SNF1p activity during high glucose (McCartney
and Schmidt, 2001), and also keeps the dynamics of the approach
with less assumptions.

Furthermore, it should be noted that the SNF1 related
state variables in the two models correspond to different
entities. In the feedback cascade model (Figure 3A), SNF1pat
represents the inhibitory activity of the Snf1/Mig1 system. The
inhibitory, instead of the activating activity, of the Snf1/Mig1
pathway was implemented in the model as the Snf1/Mig1
pathway generally is reported to inhibit the activity of the
SUC2 promoter (Broach, 2012). As the feedback mediated
model (Figure 4D) is more detailed regarding the Snf1/Mig1
pathway, the SNF1 related state variable SNF1p represents the
activity of phosphorylated SNF1-complex. The reason for using
SNF1p, instead of SNF1 (non-phosphorylated complex), is 2-
fold. Firstly, our data show how SNF1p affects Mig1 nuclear
export (Figure 4A). Secondly, Mig1 is phosphorylated in a
SNF1p-dependent manner (Shashkova et al., 2017). However, it
is not known how SNF1 affects dephosphorylation of Mig1p,
hence a term Mig1p · SNF1 would not be justifiable to
include in the model. As the SNF1 related state variables
correspond to different entities, they reflect the amount
of intracellular energy levels, which SNF1 senses via the
ATP/ADP ratio (section 3.2), differently. More precisely, high
intracellular energy levels is represented by high SNF1pat and
low SNF1p, with the conversely holding for low intracellular
energy levels.

2.7. Parameter Estimation
In an ODE-model where the unknown model parameters are
allowed to vary between cells, the dynamics of cells i = 1, . . . , n
are given by

dxi(tj)

dt
= g

(

xi, ki, u(tj), tj
)

, xi(t0) = xi0, (5)

where g is the reaction kinetics governed by the value of
the model states xi, kinetic parameters ki and potential input
functions u(t). In NLME and the standard two stage (STS)
approach, the goal is to estimate the unknown model parameters
bi = (ki, xi0) and their underlying parameter distribution using
observed data y = (y1, . . . , yn). In the course of this work, the
models (Figures 3A, 4D), were related to the observed SUC2
expression data (Figure 2B) via, as in a previous study with

similar data (Almquist et al., 2015), an additive error model

yi(tj) = yij = ŷij(bi)
︸ ︷︷ ︸

simulated SUC2

+eij, eij ∼ N (0, s2), (6)

where s2 is the variance of the measurement error.

2.7.1. Non-linear Mixed Effect Approach
In the non-linear mixed effect (NLME) approach, the unknown
parameters are split into a fixed effect b, and an individual
random effect ηi. Here, the individual parameters were assumed
to be lognormally distributed; bi = beηi , ηi ∼ N (0,�).
Lognormal parameters were assumed instead of normally
distributed parameters by two reasons. Firstly, lognormality
ensures positive parameters. Secondly, rate constants are
generally products of different factors (Atkins et al., 2013).
Thus, a lognormal distribution is more suitable than a normal
distribution (Limpert et al., 2001).

The fixed effects, covariance matrix of random effect and the
noise parameter, ψ = (b,�, s2), are estimated simultaneously in
NLME by maximizing a likelihood function

L(ψ |y) =
n

∏

i=1

∫

p(yi|ηi, b, s
2)p(ηi|�)dηi. (7)

The integral in Equation (7) is generally intractable, and
is computationally expensive to approximate (Davidian and
Giltinan, 2003). Consequently, other methods than the classical
optimization methods must be used to maximize the likelihood.
Here the SAEM-algorithm (Kuhn and Lavielle, 2005), via the
Monolix software (Lixoft, 2019), was used. The SAEM-algorithm
was chosen as it works well for NLME-models (Chan et al., 2011),
and it’s convergence has been rigorously proven (Delyon et al.,

1999). Given estimated population parameters ψ̂ = (b̂, �̂, ŝ), new
cells were simulated by first randomly drawing a ∼ N (0, �̂), and
then calculating the parameters corresponding to a simulated cell

by bsimulated = b̂ea.
To construct diagnostic plots based on individual predictions

(IPRED-plots Figures S1A, S2A), the empirical Bayes estimates

(EBS:s) were used; b(EBE)i = argmax p(bi|ψ̂ , yi) (Davidian and
Giltinan, 2003). To construct diagnostic plots of the parameter
distributions (Q-Q plots Figure S1B), random samples from the
conditional distribution p(ψ i|yi) were used instead of the EBE:s,
avoiding potential effects of η-shrinkage on model diagnostics
(Lavielle and Ribba, 2016).

Identifiability was investigated by calculating the standard
errors of the estimated parameters. The standard errors were
obtained by inverting the observed Fisher Information Matrix
(FIM), which was calculated via a stochastic approximation
algorithm implemented in Monolix (Lixoft, 2019). The method
of profile likelihood (Raue et al., 2009), is typically superior
to asymptotic approaches, such as FIM for investigating
model identifiability. However, the computational burden of
optimizing and evaluating the likelihood (Equation 7), makes the
profile likelihood method too computationally expensive to be
used here.
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2.7.2. Standard Two Stage Approach
In the standard two stage (STS) approach, bi is first estimated
for each cell. Given individual estimates b̂i, the parameter
distribution is inferred. The parameters were assumed to follow a
lognormal distribution (section 2.7.1).

The individual parameters were estimated by the maximum
likelihood method (Llamosi et al., 2016). To avoid a constrained
optimization problem, and to facilitate a more efficient
optimization (Raue et al., 2013), the parameters were estimated
on the log-scale. Given the errormodel (Equation 6), the log-scale
parameters lbi are obtained by maximizing the log-likelihood

( ˆlbi, ŝi) = argmax
lbi ,si

−
ni

2
ln s2i −

1

2σ 2
i

ni∑

j=1

(

yij − ŷij(lbi)
)2

−
ni

2
ln 2π

︸ ︷︷ ︸

=constant

. (8)

To solve the optimization problem (Equation 8), the BOBYQA
algorithm (Powell, 2009) was used.

Given estimated individual parameters on the log-scale ˆlbi,
simulated cells were obtained by: (1) Noting that as the
model parameters are assumed to be log-normal, the log-
scale parameters lbi become multivariate normal. (2) Via the
method of maximum likelihood estimating the parameters of this
multivariate normal distribution

µ̂ =
1

n

n
∑

i=1

lbi, 6̂ =
1

n

n
∑

i=1

(lbi − µ̂)(lbi − µ̂)T. (9)

(3) generating simulated parameter vectors on the log-scale,
that is a simulated cells, by randomly drawing vectors from
lbsimulated ∼ N (µ̂, 6̂).

2.7.3. Comparison of STS and NLME Approach
Two parameters, k5 and k8, in the feedback cascade model
(Figure 3A and Equation 1) were assumed to not vary between
cells. Thus, they were estimated without random effect using the
NLME-framework. There is no obvious, single, way to include
parameters without random effect in the STS-approach. Thus,
two different approaches were used for the STS-estimation. (i) All
parameters were allowed to vary between cells. (ii) All parameters
were allowed to vary in a first parameter estimation run. Then in
a second run k5 and k8 were fixed according to the mean-values
obtained in the first run. Approach (ii) yielded better results,
as approach (i) to a larger degree overestimated the variability
when simulating the population behavior (Figure S1F), and is
thus used for comparison.

2.7.4. Implementation Details
In the implemented NLME approach, the population parameter
ψ , EBE:s, samples from p(ψ i|yi) and the standard errors were
calculated using Monolix (version 2019R2) (Lixoft, 2019). For
the STS approach, the individual parameters (Equation 8) were
estimated using the BOBYAQ algorithm in the NLopt (version
0.5.1) library in the Julia (version 1.3.1) programming language

(Powell, 2009; Bezanson et al., 2017; Johnson, 2020). To ensure
a fair comparison between NLME and STS, the same starting
values were used for both approaches. For the cascade feedback
model (Figure 3A) starting values were obtained by choosing
the parameters values which produced the best model fit to the
observed mean value using a multiple shooting approach. For
the feedback mediated model (Figure 4D) this approach was not
feasible due to stability issues. Consequently, starting values were
obtained by taking the population parameters obtained when
running the SAEM algorithm on manually adjusted starting
values. To simulate new cells, the DifferentialEquations (version
6.11.0) library in Julia was used for solving the delay-differential
equation system that makes out the models (Rackauckas and Nie,
2017). All the calculations were performed on a Dell Latitude
with eight cores [Intel(R) Core(TM) i5-8365U CPU @ 1.60 GHz]
running on Ubuntu 18.04.4.

The code used to produce all results in this paper can be
found on GitHub (https://github.com/cvijoviclab/SUC2_long_
term_regulation). Efforts have been made to make the result as
reproducible as possible by basing the directory structure on two
suggestions (Noble, 2009; Wilson et al., 2017). Given a Unix-
based operative system, Monolix (version 2019R2) and Julia
(version 1.3.1) the results should be reproducible by running the
Run_all-script. More details about reproducing the results can be
found on GitHub.

3. RESULTS

3.1. Long-Term Observation of SUC2
Promoter Expression Reveals Regulation
of Promoter Activity After Initial Activation
For a pathway to react appropriately to a stimuli it first needs to
be activated, and thereafter the activation needs to be regulated
according to the strength of the stimuli. For the Snf1/Mig1
pathway, the current understanding can only result in the
monotonic behavior of the activation (Welkenhuysen et al.,
2017). That is, if a cell is presented with glucose depletion
Mig1 leaves the nucleus and remains there until glucose is
available again in the cellular environment. However, recent
long-term continuous observation of Snf1/Mig1 pathway has
shown pulsatile behavior over an extended period of glucose
availability (Dalal et al., 2014; Lin et al., 2015). To elucidate the
mechanism behind the long-term adjustment of the Snf1/Mig1
pathway activity upon glucose depletion yeast cells grown on 4%
glucose were exposed to a shift to 0.1% in a microfluidic device.
These cells contained a construct carrying YFP behind a SUC2
promoter, allowing formeasurement of the SUC2 expression used
to calibrate the models (Figure 2A). The SUC2 gene encodes
for two types of invertase, a secreted glycosylated form and an
intracellular, non-glycosylated form. The former is regulated by
the Snf1-pathway while the latter is produced constitutively in
small amounts compared to the glycosylated form (Carlson and
Botstein, 1982). Therefore, the non-glycosylated form was not
considered in the developed models. The fluorescence intensity
was observed for 480 min with an interval of 5 min, yielding a
data-set with a rich amount of data points and cells (124 cells with
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97 data points each). Initially the level of fluorescent intensity
increased 212% on average (Figure 2B), thereafter between time
points 180 and 210 min the signal started to decline. The decline
of signal occurs when the production of new protein is smaller
then the turn-over of the YFP protein through breakdown and
bleaching. Hence, the decline implies that a decrease of SUC2
promoter activity has taken place. This suggests that after an
initial activation time a negative feedback takes place in the
nutrient signaling network which reduces the expression of the
SUC2 promoter.

3.2. Modeling Suggests Delayed Negative
Feedback Due to a Partial Recovery in
Intracellular Energy Levels After Initial
Activation
The single-cell SUC2 expression data suggests the existence of
a negative feedback, which upon long-term glucose starvation
reduces the SUC2 expression (Figure 2B). A possible source of
this feedback is a partial recovery in the intracellular energy
levels, that is an increase in cellular metabolism which results
in an increase of the ATP/ADP ratio which further regulates
the SNF1 complex. More specifically, during low intracellular
energy levels the SNF1-complex is bound by ADP and protected
(sterically) against deposphorylation, while the phosphorylation
of the complex occurs continuously (Rubenstein et al., 2008;
Chandrashekarappa et al., 2013). Conversely, during rich
intracellular energy levels, e.g., rich glucose conditions, SNF1 is
not ADP bound and is exposed to dephophorylation resulting
in low SNF1 activity (Mayer et al., 2011). Hence, a partial
recovery in intracellular energy levels could explain the SUC2-
expression, as it should be reflected by an increased inhibitory
activity of the Snf1/Mig1 pathway (decreased inhibitory activity
on Mig1 by the SNF1 complex), ultimately resulting in
reduced SUC2-expression. Furthermore, a partial recovery in
intracellular energy levels is expected upon long-term glucose
starvation. For example, upon starvation reduced Snf1/Mig1
pathway inhibitory activity results in metabolism of alternative
carbon sources and turns off energy producing processes
(Hedbacker and Carlson, 2008).

To investigate if feedback mechanism via energy levels is
mechanistically possible, we constructed a simple dynamic
model (Figure 3A and Equation 1). The potential recovery
in energy levels, which is a consequence of genes activated
by glucose starvation and low Snf1/Mig1 pathway inhibitory
activity, was modeled via the production of the feedback cascade.
Furthermore, as a recovery in energy levels should result in
increased Snf1/Mig1 pathway inhibitory activity, the feedback
cascade was modeled to promote inhibitory activity. When fitted
using a NLME approach, the model captures the single-cell
behavior of the SUC2 expression. More specifically, the model
captures the observed individuality (Figure S1A) and also, by
sampling from the estimated parameter distribution, is capable
of simulating the observed population behavior (Figure 3B). An
interesting model parameter is the feedback time-delay, τf, whose
estimated distribution is separated from zero (Figure S1C). This
suggests a delayed feedback with respect to the glucose downshift.

Overall, the feedback cascade model (Figure 3A) is able to
explain the observed SUC2 reduction upon long-term glucose
starvation. As the feedback is modeled to behave as a partial
recovery in intracellular energy levels, the feedback might act
mainly via Snf1. However, due to the simplicity of the model it
is not possible to deduce if this is a sufficient mechanism, e.g., the
feedback might also act via Mig1 (Figure 1).

3.2.1. NLME Outperforms STS for Data Rich in

Observations
Considering that parameter estimation for single-cell time-lapse
data is challenging, we explored and compared the performance
of standard two stage (STS) (Karlsson et al., 2015) and non-linear
mixed-effect (NLME) (Almquist et al., 2015; Karlsson et al., 2015;
Llamosi et al., 2016; Fröhlich et al., 2019; Marguet et al., 2019)
approaches. NLME is considered superior to STS when the data
is not rich (Karlsson et al., 2015). However, the experimental
SUC2 data obtained in this work can be viewed as sufficiently
rich according to the criteria used by Karlsson et al. (2015). This
is because the noise appears small, as there is a clear signal to
noise ratio (Figure 2B) and furthermore, the data is not sparse
(124 cells, with 97 non-zero observations each). Consequently,
first fitting the simple feedback model to each cell, and from
the fitted parameters infer the population parameters might yield
as accurate parameter estimates, as the more advanced NLME-
framework (Karlsson et al., 2015). It should be noted that when
a system is perturbed by an external stimuli that yields a small
effect, NLME outperforms the STS-approach (Karlsson et al.,
2015). However, the observed SUC2 data has no such stimuli,
making this criteria irrelevant here.

Although both approaches appear to produce almost equally
good individual fits (NLME slightly is better) to the observed
SUC2 data (Figures S1A,D), our analysis suggests that the STS-
approach to a larger degree overestimates the variability when
simulating the observed population behavior (Figures 3B,C).
Furthermore, the STS fit does not capture the decrease in
intensity for upper quantile equally well as the NLME approach.
This suggests that the STS-approach estimates the parameter
distribution incorrectly. Consequently, the STS-estimated
distribution is unsuitable to use for further analysis, like
model extrapolations. This is non-ideal from a computational
perspective, as the computational times vary for two approaches
(2.2 h to run the easily parallelizable STS estimation on a single
core, compared to 5.0 h for the NLME estimation on eight cores).
The difference when simulating the population behavior, might
be due to outliers in the individual parameter estimates for the
STS-approach. For example, the distribution assumption of k6 is
violated due to outliers in the STS-approach (Figure S1E).

Overall, the STS-approach is less suitable compared to NLME
when simulating the observed population behavior, despite that
both approaches have almost equally good individual fits.

3.3. SNF1 Is Central in Regulating SUC2

Expression and Mig1 Nuclear Localization
The feedback cascade model (Figure 3A), does not reveal on
which components of the Snf1/Mig1 pathway a SUC2-regulating
feedback might act, but suggests a partial recovery in intracellular
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energy levels. Thus, a candidate is that the feedback acts mainly
via the believed to be energy regulated (Rubenstein et al., 2008;
Chandrashekarappa et al., 2013), SNF1-complex. A criteria for
the feedback to act via SNF1, is that SUC2 should be strongly
regulated in a SNF1-dependent manner. To investigate this,
we examined SUC2 expression by measuring invertase activity
under glucose rich and limited conditions (Figure 4B). Wild
type (WT) cells showed an increased amount of glucose formed
under glucose depletion compared to high glucose conditions.
Absence of the SNF1 gene resulted in decrease of the invertase
activity regardless of the glucose presence. This supports previous
findings that SUC2 expression is regulated in a SNF1-dependent
manner (Carlson et al., 1981; Neigeborn and Carlson, 1984).
To be able to construct a model that examines the possibility
of a SUC2 regulating feedback acting via the SNF1-complex,
we investigated the role of Snf1 in Mig1 localization. This was
done by examining Mig1 localization when Snf1 kinase activity
is inhibited (Figure 4A). We introduced SNF1-I132G, a PP1
analog-sensitive version of Snf1, into the cells with genomically
integrated Mig1-GFP fusion as well as Nrd1-mCherry as a
nuclear localization reporter. An I132Gmutation at the ATP-
binding pocket of Snf1 generates a novel structure sensitive to
1NM-PP1, an ATP competitive kinase inhibitor (Knight and
Shokat, 2007; Rubenstein et al., 2008). Functionality of the
analog-sensitive version of Snf1 has already been previously
reported (Rubenstein et al., 2008; Shashkova et al., 2017). Upon
glucose limitation, incubation of cells expressing SNF1-I132G
with 25 µM 1NM-PP1 resulted in Mig1 retention in the nucleus,
while the wild type Snf1 was irresponsive to the inhibitor. This
is consistent with previous observations that Snf1 kinase activity
is key for Mig1 nuclear export (Shashkova et al., 2017; Wollman
et al., 2017).

Overall, experimental data suggests that SUC2 is regulated
in a SNF1-dependent manner. Furthermore, our data
confirms that Snf1 activity is key for Mig1 nuclear export
(Shashkova et al., 2017).

3.4. Modeling Reveals Potential Feedback
Mechanism via Phosphorylated SNF1 After
Initial Activation
Having the Mig1 localization and invertase activity data
(Figures 4A,B), we were able to investigate the hypothesis that
SUC2 is mainly regulated in a SNF1-dependent manner upon
long term glucose starvation by constructing a new dynamic
model (Figure 4D and Equation 3). Considering that SUC2
is regulated by SNF1 via Mig1 (Figure 1) we included the
phosphorylated and dephosphorylated forms of nuclear Mig1.
Further, it has been observed that upon a glucose downshift,
a majority of Mig1 moves out of the nucleus (Treitel et al.,
1998; Delyon et al., 1999), however, the mechanism behind this
behavior is not known. To account for this observation, the
transport behavior of Mig1 was included into the model by
a sigmoid function (Equations 3b,c), which was parameterized
to match observed Mig1 behavior (Figure S3). The potential
partial recovery in energy levels, which is a consequence of genes
activated by glucose starvation and high phosphorylated SNF1

activity (Hedbacker and Carlson, 2008), was modeled via the
feedback mediating component whose production is promoted
by high expression of Snf1/Mig1-controlled genes. Lastly, owing
to available data (Figure 4), knowledge of the Snf1/Mig1 system
(Shashkova et al., 2017), and that this model is more detailed
regarding the Snf1/Mig1 pathway compared to the feedback
cascade model (Figure 3A), the SNF1 related state variable was
modeled to correspond to phosphorylated SNF1 (for detailed
motivation see section 2.6). Thus, intracellular energy levels are
reflected in the model by the activity of phosphorylated SNF1
(section 3.2). Hence, the feedback component which is promoted
by a partial recovery in intracellular energy levels is modeled to
inhibit the SNF1 related state variable (Figure 4D), in contrast to
feedback cascade model where the feedback promotes inhibitory
Snf1/Mig1 activity (Figure 3A).

Similarly to the first model, this model captures the observed
individuality in SUC2 data using a NLME approach as well
as observed population behavior (Figure 4E and Figure S2A).
It further captures that total nuclear Mig1 (phosohorylated
+ dephosphorylated) moves out of the nucleus upon glucose
starvation (Figure S2B). Also, the model suggests that the total
amount of nuclear Mig1 partially recovers upon long term
glucose starvation (Figure S2B), which has been shown before
(Dalal et al., 2014; Lin et al., 2015), due to decrease in nuclear
export rate owing to the feedback acting on phosphorylated SNF1
(Figure S2C). Deleting the SNF1 component in the model by
setting it to zero, leads to a constant low SUC2 expression upon
glucose starvation (Figure 4F). This matches the experimentally
observed low SUC2 activity when SNF1 is deleted (Figure 4B).
However, the model suggests higher SUC2 expression than
observed in experimental data under the same conditions. To see
further effects of deletions in the model, the ability of the model
to mediate the feedback was removed by setting the feedback
mediating component Y to zero (Figure 4F). This resulted in
a strong increase of SUC2-expression compared to wild type.
Deleting SNF1 and feedback mediating component yields the
same result as when only deleting SNF1. This is expected, as the
model assumes external glucose signals to be mediated to SUC2
solely via the SNF1 complex.

Overall, the feedback mediated model (Figure 4D) is
able to explain the experimental data reporting a reduction
in SUC2 expression upon long-term glucose starvation. As
phosphorylated SNF1 is regulated via intracellular energy levels
(section 3.2), this suggests that SUC2 expression decreases due to
a partial recovery in intracellular energy levels.

4. DISCUSSION

Nutrient sensing pathways are playing an important role
in cellular response to different energy levels. Current
understanding of this response only results in monotonic
behavior of the SUC2-promoter upon starvation. However,
our single-cell microfluidics data show that SUC2 expression
decreases in the long-term. To investigate the regulation of the
SUC2-promoter upon long-term glucose starvation we have
combined fluorescence microscopy and microfluidics data
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together with non-linear mixed effect modeling. The single-cell
time-lapse data show that after an initial activation time a
negative feedback takes place in the nutrient signaling network
reducing the expression of the SUC2 promoter (Figure 2B).
Our invertase assay and microscopy data confirm that SUC2 is
regulated in a SNF1-dependent manner and that Snf1 activity is
key for Mig1 nuclear export (Figures 4A,B). Finally, we propose
via dynamic modeling that the decrease in SUC2 expression is
due to a partial recovery in intracellular levels which results in a
feedback that acts on the SNF1-complex (Figures 4D,E).

Without feedback, the SUC2 would continue to increase,
resulting in an excessive amount of invertase protein considering
the energy supply and demand of the cell. This would result
in the uneconomic use of cellular resources. Therefore, it is
necessary to regulate the level of SUC2 expression according to
the cellular demand. Signals arising from changes in metabolic
flux can be used to regulate invertase production (Litsios et al.,
2018). Our feedback mediated model suggests that the expression
of the target genes in the Snf1/Mig1 pathway is regulated
through a feedback loop acting via a potential feedbackmediating
component (Y) (Figure 4D). We suggest that this component
controls energy supply, produced through cellular metabolic flux.
By coupling the metabolic flux with the production of enzymes,
a stable and fast re-balancing of the enzymatic protein supply
and demand can be created, which leads to optimal energy
homeostasis. As it has been shown that the ratio of ADP/ATP in
the cell controls the dephosphorylation of Snf1 in yeast (Mayer
et al., 2011; Xiao et al., 2011; Chandrashekarappa et al., 2013),
this ratio could be the sensor which couples metabolic flux
(energy levels) in the cell with production of invertase, and
thereby the mechanism responsible for the negative feedback.
Also, other known mechanisms could be responsible for the
negative feedback, such as the Reg1 phosphorylation by PKA,
which activity is controlled by secondary messenger and ATP-
derivative cAMP (Castermans et al., 2012). Further could the
negative feedback also involve other proteins targeted by the
Snf1 pathway, such as Cat8, Adr1, and Sip4. These proteins are
directly phosphorylated by Snf1 kinase and the expression of
the encoding genes is controlled by Mig1 (DeVit et al., 1997).
Cat8, Adr1, and Sip4 are involved in the cellular reprogramming
during the diauxic shift and through this role influence the cell
energy-metabolism (Vincent and Carlson, 1998; Haurie et al.,
2001; Young et al., 2003). The alteration caused in themetabolism
by these protein could be pivotal in the changing behavior of the
SUC2 expression.

The Glc7-Reg1 phosphatase is required for Snf1
dephosphorylation (Rubenstein et al., 2008). At the same
time, Snf1 itself acts on Reg1 and prevents its association with
the Glc7 subunit for the formation of the functional phosphatase
(Sanz et al., 2000). This loop makes Reg1 a potential candidate
to be involved in the energy regulated feedback proposed by
our modeling (Figure 4D). Our simulations on cells deficient in
potential feedback mediated component (Y) suggest an increase
in the SUC2 expression compared to the wild type (Figure 4F).
We tested how the target genes are affected in yeast cells carrying
the Reg1 deletion. Our experimental data suggests an increase
in invertase activity upon REG1 deletion compared to the WT

(Figure 4C). Furthermore, invertase activity on the cells without
both Reg1 and Snf1 shows reduced invertase-activity, which is
in agreement with the reduced SUC2 expression when deleting
SNF1 and feedback mediated component (Y) in the model. This
suggests that Reg1 is a central part of the feedback. However, as
the feedback mediation in the model encompasses all potential
energy regulated components that affects SNF1 activity, more
components than Reg1 are likely involved in the feedback.

Our feedback meditating model suggests that the fine-tuning
of expression, after the initial strong activation, of the target
genes in the Snf1/Mig1 pathway is regulated through a feedback
loop acting via a potential feedback mediating component
(Y). Mig1 regulates genes essential for utilization of carbon
sources (Lutfiyya et al., 1998), hence, Mig1 participates in
controlling energy metabolism in the cell. This is another
evidence supporting Reg1 being central part of the feedback
mediated component as the intracellular energy levels have
been shown to play an important role in the activation of
Snf1, thus, its communication with the Glc7-Reg1 phosphatase
(Rubenstein et al., 2008).

Deletion of Snf1 in the feedback mediated model resulted in
a stable SUC2 expression at a level similar to simulated wild
type at time 0, which corresponds closely to SUC2 expression
at 4% glucose (Figure 4F). However, the invertase activity assay
shows that the activity in the SNF1 deletion strain is lower
then the WT at 4% glucose (Figure 4B). This highlights that
the model does not fully capture the behavior of the SUC2
expression at 4% glucose. A probable cause of this discrepancy is
the simplicity of the model. Other pathways have been shown to
influence the SUC2 expression and cross-talk has been suggested
to be ubiquitous in the nutrient signaling system (Kayikci and
Nielsen, 2015; Shashkova et al., 2017). A larger model, opposed
to the small-scale model in this work, could include other
pathways known to be able to influence the expression of
SUC2. Larger mathematical models have been made (Kayikci
and Nielsen, 2015; Welkenhuysen et al., 2018), however they are
Boolean models and consequently cannot capture the dynamic,
single-cell behavior of cells exposed to several environmental
conditions. Due to this inherit drawback of Boolean models and
the connectivity of the nutrient sensing pathways, a large-scale
single-cell model is probably needed to fully understand the
Snf1/Mig1 pathway dynamics.

Parameter estimation would pose a considerable challenge in
constructing a large scale, mechanistic single-cell model of the
nutrient sensing network. Here, we compared two estimation
methods for single-cell time-lapse data, STS and NLME.
Although our data is rich in observations, NLME outperformed
STS when estimating the population parameter distribution
(Figure 3). As discussed by Almquist et al. (2015), this is probably
due to some cells not carrying sufficient information to properly
estimate all parameters. Hence, parameters like k6 can take
extreme values for certain cells (Figure S1E), ultimately resulting
in bad estimates of the population parameters. Our result thus
highlight that data rich in observations, is not equal to data
that is optimally sampled for each cell. Consequently, it is
far from guaranteed that STS, although it happens (Karlsson
et al., 2015), equals NLME in performance for observation
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rich data. This fact, combined with previous underperformance
(Almquist et al., 2015; Llamosi et al., 2016), suggests that
the STS-approach is not a preferred method. However, this
does not mean that the current NLME framework should
be the preferred method for a large-scale model built on
time-lapse data. For example, here we show that NMLE is
computationally demanding even for a small model. The global
two-stage (GTS) approach has been proposed as an alternative
to NLME (Dharmarajan et al., 2019). However, GTS currently
cannot handle multi-experiment data (Loos and Hasenauer,
2019), and it is questionable if a large model can be calibrated
using single-experiment data. Overall, these shortcomings
highlight that further development in parameter estimation
methods is required for constructing large-scale mechanistic
single-cell models.

In summary, our systems biology approach suggests that SUC2
expression decrease upon long-term glucose starvation is due
to a partial recovery in intracellular energy levels acting on the
SNF1-complex.
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