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Abstract: Many pathogens involved in human infection have rapidly increased their antibiotic resistance,
reducing the effectiveness of therapies in recent decades. Most of them can form biofilms and effective
drugs are not available to treat these formations. Natural products could represent an efficient solution
in discovering and developing new drugs to overcome antimicrobial resistance and treat biofilm-related
infections. In this study, 20 secondary metabolites produced by pathogenic fungi of forest plants
and belonging to diverse classes of naturally occurring compounds were evaluated for the first time
against clinical isolates of antibiotic-resistant Gram-negative and Gram-positive bacteria. epi-Epoformin,
sphaeropsidone, and sphaeropsidin A showed antimicrobial activity on all test strains. In particular,
sphaeropsidin A was effective at low concentrations with Minimum Inhibitory Concentration (MIC)
values ranging from 6.25 µg/mL to 12.5 µg/mL against all reference and clinical test strains. Furthermore,
sphaeropsidin A at sub-inhibitory concentrations decreased methicillin-resistant S. aureus (MRSA) and P.
aeruginosa biofilm formation, as quantified by crystal violet staining. Interestingly, mixtures of sphaeropsidin
A and epi-epoformin have shown antimicrobial synergistic effects with a concomitant reduction of
cytotoxicity against human immortalized keratinocytes. Our data show that sphaeropsidin A and
epi-epoformin possess promising antimicrobial properties.

Keywords: fungal secondary metabolites; toxins; biological activity; biofilm; antibiotic-resistance;
sphaeropsidin A; epi-epoformin

Key Contribution: Twenty secondary metabolites produced by pathogenic fungi of forest plants
were evaluated for the first time against clinical isolates of antibiotic-resistant Gram-negative and
Gram-positive bacteria. Among them, the phytotoxic compounds epi-epoformin, sphaeropsidone,
and sphaeropsidin A showed antimicrobial activity on all test strains.

1. Introduction

In the last century, the use of antibiotics has played a fundamental role in extending the average
human life. They allow us to treat trivial or serious infections and to carry out complex medical and
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surgical procedures that would otherwise result in very high mortality. However, the excessive or
inappropriate use of antibiotics, in human medicine but also zootechnics and agriculture, results in
bacterial strains possessing increased antibiotic resistance and isolation frequency.

The ability to transfer resistance determinants horizontally makes the bacterium frequently acquire
resistance to multiple classes of drugs and consequently infection treatment becomes complicated.
Indeed, multidrug-resistant bacteria are currently considered a global health challenge.

On the other hand, the development of new drugs is very slow due to lack of investment.
The alarming epidemiological data prompted the WHO to predict that after 2050 deaths from previously
treatable infections will be 10 million per year if no action is taken [1]. Increased antibiotic resistance
has reduced the effectiveness of therapies by promoting the persistence of infections. The chronicity
of many infections is also promoted by the ability of multiple pathogens to form biofilms on biotic
or abiotic surfaces [2–4]. A biofilm is a mono- or polymicrobial community of cells embedded in an
exopolysaccharide matrix. Within the biofilm, bacteria may be less susceptible to both the effectors of
the immune response and antimicrobial drugs, so persistence of the infection is favored. The WHO
has estimated that about 80% of chronic infections are related to the formation of biofilms. Many of the
drugs currently available hardly penetrate the biofilm and the bacteria in the biofilm are 10–1000 times
more resistant than the planktonic counterpart [5].

In this scenario, alternative strategies to conventional antimicrobial therapies are necessary and
urgent. Among them, photodynamic therapy (PDT), first considered for the treatment of specific
types of cancer [6], has been paid increasing attention as an innovative treatment to eradicate localized
infections, supported by antibiotic-resistant biofilm-producing bacteria. [7,8]. Various studies report
strategies to prevent biofilm formation on medical devices such as catheters, sutures, stents and bone
cement [9–12]. Several researchers are involved in the design and evaluation of specific molecules with
potential therapeutic use in chronic and biofilm-related infections [13,14]. In particular, antimicrobial
peptides (AMPs), a small bioactive protein consisting of 12–50 amino acids, seem to have emerged
as promising active agents against bacteria, viruses, fungi, and also as potential chemotherapeutic
agents [15–18].

Plants and microorganisms have always been an invaluable source of secondary metabolites
(SM) that could represent an efficient solution to this problem. SM are usually low molecular
weight organic compounds produced by various organisms through the action of different enzymes.
These specialized metabolites are often not essential for the growth, development, or reproduction of
those organisms producing them, but they could be very important for functions such as protection,
competition, and species interactions. Most of the SM isolated from microorganisms and plants have
been shown to possess a broad spectrum of biological activities including antimicrobial properties.
Furthermore, SM belong to diverse structural classes of naturally occurring compounds and have
different mechanisms of action, a potential for the development of new drugs to overcome antimicrobial
resistance and to treat biofilm-related infections [19–23].

Among the terrestrial ecosystems, forests represent an enormous reservoir of pathogenic and
endophytic fungi, which have been studied for several years to evaluate their ability to biosynthesize
phytotoxic metabolites. However, several SM produced by these organisms also possess other biological
activities (including antibacterial properties) and most of them have shown potential applications in
other fields such as medicine and agriculture [24].

Thus, in our continuing effort to find new natural antibacterial metabolites, 20 secondary
metabolites produced by pathogenic fungi of forest plants and belonging to different classes of
naturally occurring compounds, such as butenolides, cyclohexen oxides, diterpenes, isobenzofuranones,
isocoumarins, macrolides, etc., were evaluated for the first time against reference and clinical strains of
antibiotic-resistant staphylococci and P. aeruginosa.
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2. Results and Discussion

The secondary metabolites assayed in this study (1–20, Figure 1) were isolated as phytotoxins
produced by different fungal genera responsible for forest plant diseases such as Diplodia, Seiridium,
Biscogniauxia, Sardiniella and Hymenoscyphus (Table 1) and are potentially involved in plant
pathogenesis [25–36].
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major rust fungi in agrarian crops P. triticina and U. pisi [39,40]. Compounds 2, 10 and 20 had 
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vector responsible for dengue fever [41]. Compound 7 induced haustorium development in radicles 
of the parasitic weeds Striga and Orobanche [42]. Compound 20 exhibited in vitro antibacterial activity 
towards Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight [43] and showed 
promising anticancer activity against drug-resistant melanoma cells [44,45]. Given that the absolute 
configuration (AC) is strictly linked to biological activity [46,47], the AC of 12-14, 19 and 20 was 
determined using different methods [48–50].  

Figure 1. The structures of compounds 1–20.

However, most of these compounds also showed other interesting biological activities as reported
in detail in a recent review [24]. In particular, some of them have already been reported for their
antifungal activity, such as cyclopaldic acid, epi-epoformin, sphaerosidins A–C, sphaeropsidone and
(R)-mellein [24–26,30,37,38]. In addition, 1 and 2 were able to inhibit the development of two major rust
fungi in agrarian crops P. triticina and U. pisi [39,40]. Compounds 2, 10 and 20 had larvicidal and biting
deterrent activity against Aedes aegypti (Diptera: Culicidae), the arboviruses vector responsible for dengue
fever [41]. Compound 7 induced haustorium development in radicles of the parasitic weeds Striga and
Orobanche [42]. Compound 20 exhibited in vitro antibacterial activity towards Xanthomonas oryzae pv.
oryzae, the causal agent of rice bacterial blight [43] and showed promising anticancer activity against
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drug-resistant melanoma cells [44,45]. Given that the absolute configuration (AC) is strictly linked to
biological activity [46,47], the AC of 12–14, 19 and 20 was determined using different methods [48–50].

Table 1. Fungal metabolites used in this study.

Number Name Chemical Family Fungal Source Ref.

1 epi-Epoformin Cyclohexene oxide Diplodia quercivora [25]
2 Cyclopaldic acid Isobenzofuranone Seiridium cupressi [26]

3 Biscopyran Pyranopyran Biscogniauxia
mediterranea [27]

4 Sphaeropsidin B Diterpenoid Diplodia cupressi [28]
5 Sphaeropsidin C Diterpenoid D. cupressi [28]
6 Sphaeropsidin G Diterpenoid Diplodia corticola [29]
7 Sphaeropsidone Cyclohexene oxide D. cupressi [30]
8 Sapinofuranone C Furanone D. corticola [31]
9 (S,S)-Sapinofuranone B Furanone D. corticola [31]

10 Seiridin Butenolide S. cupressi [32]
11 Seiricuprolide Macrolide S. cupressi [33]
12 Diplobifuranylone A Furanone D. corticola [31]
13 Diplobifuranylone B Furanone D. corticola [31]
14 Diplobifuranylone C Furanone D. corticola [31]
15 (R)-Mellein 3,4-Dihydroisocoumarin Sardiniella urbana [34]
16 cis-4-Hydroxymellein 3,4-Dihydroisocoumarin S. urbana [34]
17 trans-4-Hydroxymellein 3,4-Dihydroisocoumarin S. urbana [34]
18 Viridiol Furanosteroid Hymenoscyphus fraxineus [35]
19 Diplopyrone Pyranopyrone D. corticola [36]
20 Sphaeropsidin A Diterpenoid D. corticola [31]

Compounds 1–20 were tested at a single concentration of 100 µg/mL against reference and
clinical strains of antibiotic-resistant Gram positive and Gram negative bacteria. epi-Epoformin
(1), sphaeropsidone (7), and sphaeropsidin A (20) showed antimicrobial activity on all test strains;
the growth inhibition rates were higher than 90% for Gram-positive bacteria and ranged from 50
to 100% for Gram-negative bacteria (Table 2). Dimethylsulphoxide (DMSO), used to dissolve the
tested compounds, was simultaneously assayed at increasing concentrations (ranging from 0.1% to
the maximum concentration used of 1%) to evaluate a possible effect on bacterial growth. The results
showed no inhibition of the test strains in the presence of any of the DMSO concentrations used
(data not shown). Therefore, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) values of substances 1, 7, 20 were determined (Table 3).

Sphaeropsidin A (20) was effective at low concentrations with MIC values ranging from 6.25 µg/mL
to 12.5 µg/mL against all reference and clinical strains of both Gram-negative and Gram-positive
bacteria. This result appears to be relevant because multi-drug resistant clinical strains were used
as test strains. MBCs of compound 20 ranged from 25 to 100 µg/mL against Gram-positive bacteria,
while MBC values were higher than 200 µg/mL for P. aeruginosa strains. MIC values of compound
1 were 100 µg/mL against all tested Gram-positive bacteria, with MBCs of 100 µg/mL, suggesting
a bactericidal action. MIC values of 50 µg/mL were obtained for compound 1 against P. aeruginosa
strains, while MBC values were higher than 200 µg/mL. For compound 7, a MIC at concentrations
below 100 µg/mL was not found for any of the test strains; the MBC values were all above 200 µg/mL.

In order to obtain increased antimicrobial activity using lower concentrations of the more active
compounds, we evaluated the potential synergistic effect of sphaeropsidin A (20) in combination with
epi-epoformin (1) or sphaeropsidone (7).
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Table 2. Antibacterial activity, expressed as the percentage of growth inhibition, of 1–20 at the 100 µg/mL
concentration against Gram-positive and Gram-negative test strains 1,2.

Compound

Bacterial Strain

S. aureus ATCC
43300 MRSA1118-116 S. haemolyticus

ATCC 29970
S. haemolyticus

VR 1219-118
P. aeruginosa

PAO1
P. aeruginosa

0418-925

1 ≥90 ≥90 ≥90 ≥90 ≥90 ≥90
2 ≥90 ≥90 ≥90 ≥90 - ≥90
3 - - - - 50 60
4 ≥90 ≥90 ≥90 ≥90 - 60
5 - - - - 60 60
6 ≥90 ≥90 ≥90 ≥90 - -
7 ≥90 ≥90 ≥90 ≥90 50 ≥90
8 - - - - 60 60
9 - - - - 60 60

10 - - - - 50 60
11 - - - - 60 50
12 - - - - 50 50
13 - - - - 50 60
14 - - - - 50 60
15 - - - - 60 60
16 - - - - 60 70
17 - - - - 60 60
18 ≥90 ≥90 ≥90 ≥90 - -
19 - - - - - -
20 ≥90 ≥90 ≥90 ≥90 ≥90 ≥90

AK nt nt nt nt >90 >90
TE >90 >90 >90 >90 nt nt

1 For inhibition values below 50%, no data have been reported (-). AK = Amikacin; TE = Teicoplanin; nt = not tested.
2 Amikacin (32 µg/mL) and teicoplanin (4 µg/mL) were used as positive controls.

Table 3. MIC (µg/mL) and MBC (µg/mL) of compounds 1, 7, 20 against Gram-positive and
Gram-negative test strains 1.

Bacterial Strain
Compound 1 Compound 7 Compound 20 Amikacin Teicoplanin

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

S. aureus ATCC 43300 100 100 100 >200 12.5 100 nt nt 1 4
MRSA 1118-116 100 100 100 >200 6.25 25 nt nt 0.5 4
S. haemolyticus ATCC 29970 100 100 100 >200 12.5 50 nt nt 2 >4
S. haemolyticus VR 1219-118 100 100 100 >200 12.5 50 nt nt 2 >4
P. aeruginosa PAO1 50 >200 >100 >200 12.5 >200 4 32 nt nt
P. aeruginosa 0418-925 50 >200 100 >200 12.5 >200 16 >32 nt nt

1 Amikacin and teicoplanin were used as positive controls; nt = not tested.

Compound 7 showed no synergistic effect in combination with sphaeropsidin A (Fractional
Inhibitory Concentration (FIC) index = 2, data not shown). For the combination of epi-epoformin with
sphaeropsidin A, we obtained the highest synergistic interaction against Gram-positive bacteria at
a concentration of 6.25 µg/mL sphaeropsidin A (1/2 MIC) and 3.12 µg/mL epi-epoformin (1/32 MIC).
The highest synergistic interaction against Gram-negative bacteria was obtained at 3.12 µg/mL
epi-epoformin (1/16 MIC) and 3.12 µg/mL sphaeropsidin A (1/4 MIC) (Figure 2).

The FIC index showed a synergistic effect of epi-epoformin and sphaeropsidin A against
Gram-negative strains (FIC index < 0.5), and an additive effect against Gram-positive strains (0.5 ≤ FIC
index ≤ 1.0).

The cytotoxic activity of metabolites 1, 7, and 20 was evaluated on human spontaneously immortalized
HaCat keratinocytes. HaCat cells were treated at a concentration ranging from 3.12 µg/mL to 100 µg/mL
of metabolites 1, 7, and 20 for 24 h and then subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay. At a concentration of 100 µg/mL, all tested metabolites dramatically
reduced HaCat cell viability. At 12.5 and 6.25 µg/mL, sphaeropsidin A reduced cell viability to 38% and
43%, respectively. However, when HaCat cells were treated with a mixture of 3.12 µg/mL of sphaeropsidin
A and 3.12 µg/mL of epi-epoformin, cell viability was around 60%. This combination was substantially less
cytotoxic than 6.25 µg/mL of each compound alone (Figure 3). This result is encouraging given that the
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combination of these two metabolites, at 3.12 µg/mL each, was shown to synergize against Gram-negative
strains. A mixture of 6.25 µg/mL of sphaeropsidin A and 3.12 µg/mL of epi-epoformin showed an additive
effect against Gram-positive bacteria. This combination reduced HaCat cell viability to 54% and was slightly
less cytotoxic than 9.37 µg/mL of each compound alone (Figure 3).Toxins 2020, 12, x FOR PEER REVIEW 6 of 14 
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Figure 3. MTT viability test. Hacat cells were incubated with the indicated amount of spheropsidin
A (compound A) and epi-epoformin (compound B) alone or in combination (AB) for 24 h. The MTT
viability test was performed as described in Material. The values were the mean’s three values for each
experimental point of two biological replicates. Each pair of means were compared using a Tukey’s
multiple comparisons test p-value < 0.05, *** p < 0.001; **** p < 0.0001)

The persistence of infections is also frequently favored by the ability of bacteria to grow in the
form of biofilm, within which the microorganism is protected from the host’s response as well as from
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many antimicrobial agents. Sphaeropsidin A (20) was also tested for its potential ability to inhibit
biofilm formation, starting from sub-MIC concentrations that had shown no influence on the planktonic
growth of the test strains (data not shown). In comparison with the untreated control, compound
20 was able to reduce the adhesion of P. aeruginosa clinical and reference strains by 62% and 50%,
respectively, at a concentration of 3.12 µg/mL, corresponding to 1/4 MIC. The biofilm formation of
MRSA clinical and reference strains was inhibited by 53% and 60% at the concentration of 1.56 µg/mL
and 3. 12 µg/mL, respectively, corresponding to 1/4 MIC of compound 20 (Figure 4).
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serial dilutions of sub-MIC concentrations. Biofilm formation was determined by cristal violet assay.
Values are presented as mean percentage ± SD. ** p-value = 0.009, **** p-value < 0.001.

The formation of biofilm by S. haemolyticus strains did not appear to be inhibited by sphaeropsidin
A. This latter, tested in synergy with epi-epoformin in combinations lower than the synergistic
concentrations inhibiting planktonic growth, did not influence the anti-biofilm effect showed by
sphaeropsidin A alone (data not shown).

S. aureus, as commensal of the skin, and P. aeruginosa, as an environmental saprophyte, are the
most frequent opportunistic pathogens causing infections of surgical and traumatic wounds and
burns [51–54]. The isolation of antibiotic resistant strains is continuously increasing [55–57]. Moreover,
their attachment to host tissues, as well as to medical implants and the production of biofilm, play an
important role in the persistence of these infections [58,59]. The establishment of a mature biofilm,
which is significantly less sensitive to antimicrobial agents than genetically identical non-adherent
planktonic cells, considerably delays the healing process [4,60,61]. A biofilm-focused therapeutic
approach, that reduces the ability of these pathogens to form biofilms, would decrease the antibiotic
recalcitrance of these infections, thus allowing treatment with the antibiotics in use, and faster and
more effective healing. Therefore, our data seems to be interesting since sphaeropsidin A appears
capable of reducing biofilm formation by all the test strains. To our knowledge, this is the first report
on the anti-biofilm activity of sphaeropsidin A. This compound was able to inhibit the biofilm of
clinical MRSA at a concentration of 1.56 µg/mL; this result encourages further studies on a greater
number of clinical strains and on other bacterial species. In addition, epi-epoformin and sphaeropsidin
A synergized against Gram-negative and showed an additive effect against Gram-positive bacteria.
However, the clinical value of a drug is strictly dependent on the evaluation of its cytotoxicity for
the host cells, but sphaeropsidin A and epi-epoformin did not show sufficient selectivity between
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bacteria and eukaryotic cells. Nevertheless, in our opinion, the screening performed represents a
promising basis to identify scaffolds with antimicrobial potential. epi-Epoformin, spheropsidone and
sphaeropsidin A (1, 7 and 20) contain structural features known to be responsible for such activity in
naturally occurring compounds [62]. The functionalities are the epoxy group in 1 and 7 and the α,
β-unsaturated ketone group in 1 and 20, which could react with a nucleophilic group of the receptor
(such as -NH2 or -SH, etc.). In fact, the epoxide, through a bimolecular nucleophilic substitution (SN2),
and the α, β-unsaturated carbonyl group, through a Michael addition, could yield conjugates with a
stable covalent bond, which could also be shown using spectroscopic techniques such as MS-TOF [63].
The knowledge of the action mechanism of these compounds could suggest chemical modifications of
their structure to synthesize derivatives with acceptable biocompatibility and improved antimicrobial
properties against multi-resistant and biofilm-producing bacteria.

3. Conclusions

Our results represent preliminary data on the antimicrobial activity of fungal secondary metabolites
evaluated for the first time against clinical isolates of P. aeruginosa and S. aureus, considered as
common opportunistic pathogens inducing severe human infections. Sphaeropsidin A activity
appears noteworthy for its ability to inhibit biofilm formation, preventing a growth mode that results in
particular resistance to antibiotic treatment. The results obtained are preliminary to further experiments
aimed at developing biocompatible formulations of epi-epoformin and sphaeropsidin A, suitable for
wound treatment to prevent the development of serious infections.

4. Materials and Methods

4.1. General Experimental Procedures

The secondary metabolites used in this study (1–20, Figure 1) have been isolated from pathogenic
fungifollowing procedures previously reported and listed in Table 1. All the data regarding their source,
their chemical family and literature are reported in Table 1. The purity of each compound was >98%,
as ascertained by TLC, ESI-MS and NMR using well-established methods. Analytical and preparative
thin-layer chromatography (TLC) was performed on silica gel (Kieselgel 60, F254, 0.25 and 0.5 mm
respectively) plates (Merck, Darmstadt, Germany); the spots were visualized by exposure to UV light
or by spraying with 10% H2SO4 in CH3OH and then 5% phosphomolybdic acid in EtOH, followed by
heating at 110 ◦C for 10 min. ESI-MS spectra were recorded on Agilent Technologies 6120 quadrupole
LC/MS instrument (Agilent instruments, Milan, Italy); 1H NMR spectra were recorded at 400 MHz,
on Bruker spectrometer (Bruker BioSpin GmbH., Karlsruhe, Germany), using the same solvent as an
internal standard.

4.2. Microbial Strains and Culture Conditions

Bacterial strains used in this study were methicillin-resistant Staphylococcus aureus ATCC 43300,
Staphylococcus haemolyticus ATCC 29970 and Pseudomonas aeruginosa PAO1 as reference strains, and three
multi-drug resistant clinical isolates: methicillin-resistant S. aureus (MRSA) 1118-116, methicillin and
vancomycin-resistant S. haemolythicus (VRSH) 1219-118, and extended-spectrum beta-lactamase (ESBL)
producing P. aeruginosa 0418-925. The strains were obtained from a collection previously established at
the Department of Molecular Medicine and Medical Biotechnologies (University of Naples Federico II).
No ethical approval was required for the study because there was no access to patients’ data. All strains
were stored as 15% (v/v) glycerol stocks at −80 ◦C. Before each experiment, cells were sub-cultured
from the stocks onto TSA plates at 37 ◦C for 24 h. Identification was performed by biochemical
characterization using the Vitek2 (Biomerieux, Mercy-l’Etoile, France) and Phoenix (Becton Dickinson,
Sparks, MD, USA) systems and confirmed by MS MALDI-TOF (Bruker Daltonics, Bremen, Germany).
Susceptibility to antibiotics was assessed using automatic (Vitek2; Phoenix) and Kirby Bauer disk
diffusion (Thermo Fisher Scientific, Basingstoke, UK) antibiotic sensitivity testing.
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4.3. Antimicrobial Assays

The initial screening of 20 fungal metabolites was performed by standard broth micro-dilution
assay in 96-wells polystyrene plates using Mueller-Hinton Broth 2 (MHB2) to test a single high
concentration against all test strains. Briefly, 2 × stock solutions of all compounds were made by
dissolving them in 2% DMSO. For each strain, the cell suspension was prepared at 0.5 McFarland
standard (corresponding to approximately 108 CFU/mL) and subsequently adjusted to approximately
5 × 106 CFU/mL−1. One hundred µL aliquots (5 × 105 CFU) of these bacterial suspensions were treated
with 100 µL of 100 µg/mL solution of the compound under investigation; wells with only MHB2 were
used as negative control and wells with no compounds as positive growth control. The effect of serial
dilutions of DMSO starting from 1% on the growth of test strains was separately tested. Plates were
incubated at 37 ◦C for 19 h under shaking (300 rpm). Then the medium turbidity was measured by a
microtiter plate reader at 595 nm (Bio-rad Laboratories s.r.l.). Antimicrobial activity was expressed
as a percentage of microbial growth inhibition. Each compound was tested in triplicate and each
experiment was performed twice. Minimal inhibitory concentration (MIC) and Minimal Bactericidal
Concentration (MBC) of selected compounds were determined by the broth micro-dilution assay.
The starting inoculum was 5 × 106 CFU mL−1, and the concentrations of the metabolites ranged from
200 to 0.78 µg/mL (twofold dilutions). As positive controls, conventional antimicrobials, selected
depending on antibiotic-susceptibility profiles of the test strains, were included: amikacin (ranged
from 32 to 2 µg/mL) was used for Gram-negative strains and teicoplanin (ranged from 0.5 to 4 µg/mL)
for Gram-positive strains. Medium turbidity was measured by a microtiter plate reader at 595 nm.
The MIC was defined as the lowest concentration of compound that caused ≥90% inhibition of bacterial
growth. The MBCs were determined by transferring 200 µL of each sample, previously treated with
compound concentrations equal to or higher than the MIC, onto TSA plates and incubating the plates
at 37 ◦C for 24/48 h. The lowest compound concentration that yields no microbial growth on agar
plates will be defined as the MBC. Each compound was tested in triplicate; each experiment was
performed twice.

4.4. Synergy Assays

The interactions between selected metabolites were evaluated by the checkerboard method in
96-well microtiter plates [64]. The compounds to be tested in combination were serially diluted, one
along with the x-axis and the other along with the y-axis. The final compounds’ concentrations (after
two-fold dilutions) varied from 0.19 µg/mL up to the 12.5 µg/mL for each one. The checkerboard plates
were inoculated with test strains at a concentration of 5 × 106 CFU/mL and incubated at 37 ◦C for 19 h,
then the microbial growth was visually assessed, and the turbidity measured by the microplate reader
at 595 nm. To evaluate the effect of the combination treatment, the fractional inhibitory concentration
(FIC) index for each combination was calculated as follows: FIC index = FIC of compound A + FIC
of compound B, where FIC of compound A (or compound B) will be defined as the ratio of MIC of
compound A (or compound B) in combination and MIC of compound A (or of compound B) alone.
The FIC index values are interpreted as follows: ≤0.5, synergistic; >0.5 to ≤1.0, additive; >1.0 to ≤2.0,
indifferent; and >2.0, antagonistic effects [64].

4.5. Biofilm Formation Inhibition Assay

The total biomass of the biofilm was analyzed using the Crystal Violet (CV) staining method
in flat-bottomed 96-well microplates as described by Stepanović et al. [65]. For each strain, a cell
suspension in MHB2 supplemented with 10% (w/v) glucose was prepared for turbidity of 0.5 McFarland.
This suspension was further diluted at 1:100 and 100 µL of the suspension (1 × 106 CFU/mL) were
incubated with 100 µL of MHB2 containing the selected compound at serial dilutions of sub-MIC
concentrations. The negative control was prepared by inoculating 200 µL of a microbial suspension
inactivated by boiling. The positive controls were compound-free wells. To assess biofilm formation,
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the culture broth was gently aspirated, and each well was washed twice with PBS to remove exclusively
non-adherent cells and dried at 60 ◦C for 45 min. The biofilm was stained by incubation for 30 min with
100 µL of a 0.1% (w/v) crystal violet solution. Any excess of crystal violet was removed by washing
with PBS before adding 200 µL of absolute ethanol to release the dye from the biofilm. The absorbance
was measured at 595 nm by a microplate reader and was related to the amount of biofilm produced.
The percentage of biofilm mass reduction was calculated using the formula: [(Ac-At)/Ac] × 100,
where Ac is the OD595 for control wells and At is the OD595 in the presence of the tested compound.

4.6. Cytotoxicity Test

HaCaT (human spontaneously immortalized keratinocytes from adult skin) were purchased from
Cell Line Service (CLS, Hattersheim am Main, Germany). Cells were cultured in DMEM High Glucose
(Gibco BRL Thermo Fisher, Milan, Italy) supplemented with 10% Fetal Bovine Serum (Gibco BRL,
Thermo Fisher, Milan, Italy), 1% L-Glutamine (Gibco BRL) and 1% Pen-Strep solution (Gibco BRL) in a
humidified incubator at 37 ◦C and 5% CO2. Cells were routinely checked for mycoplasma contamination,
using a mycoplasma detection kit (ABM, Vancouver, Canada). Cytotoxicity was determined by the
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (Sigma-Aldrich, St Louis,
MO, USA). HaCaT were seeded in 24-well plates at 3.0 × 104 per well and treated with sphaeropsidin
A, sphaeropsidone, and epi-epoformin at concentrations between 3.125 µg/mL and 100 µg/mL for 24 h.
The assay was performed according to the manufacturer’s instructions. The optical absorbance was
determined at 570 nm and 630 nm using an iMark microplate reader (Bio-Rad, Milan, Italy). Each value
shown in the plot is mean ± SD of triplicate determinations. Asterisks represent significant results
(*** p > 0.001; **** p < 0.0001).

4.7. Statistical Analysis

Statistical analyses were carried out using the GraphPad Prism 8 software (San Diego, CA).
Data were represented as the mean ± standard deviation and analyzed for statistical significance using
ordinary one-way or two-way analysis of variance (ANOVA) and multiple comparisons. For all tests,
p < 0.005 was considered to indicate a statistically significant difference.
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