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Abstract In this article, the setup and the application of

an empirical model, based on Newton’s law of cooling,

capable to predict daily mean soil temperature (Tsoil) under

vegetated surfaces, is described. The only input variable,

necessary to run the model, is a time series of daily mean

air temperature. The simulator employs 9 empirical

parameters, which were estimated by inverse modeling.

The model, which primarily addresses forested sites,

incorporates the effect of snow cover and soil freezing on

soil temperature. The model was applied to several tem-

perate forest sites, managing the split between Central

Europe (Austria) and the United States (Harvard Forest,

Massachusetts; Hubbard Brook, New Hampshire), aiming

to cover a broad range of site characteristics. Investigated

stands differ fundamentally in stand composition, eleva-

tion, exposition, annual mean temperature, precipitation

regime, as well as in the duration of winter snow cover. At

last, to explore the limits of the formulation, the simulator

was applied to non-forest sites (Illinois), where soil tem-

perature was recorded under short cut grass. The model

was parameterized, specifically to site and measurement

depth. After calibration of the model, an evaluation was

performed, using *50 % of the available data. In each

case, the simulator was capable to deliver a feasible pre-

diction of soil temperature in the validation time interval.

To evaluate the practical suitability of the simulator, the

minimum amount of soil temperature point measurements,

necessary to yield expedient model performance was

determined. In the investigated case 13–20 point observa-

tions, uniformly distributed within an 11-year timeframe,

have been proven sufficient to yield sound model perfor-

mance (root mean square error \0.9 �C, Nash–Sutcliffe

efficiency [0.97). This makes the model suitable for the

application on sites, where the information on soil tem-

perature is discontinuous or scarce.

Keywords Empirical model � Dynamical model �
Newton’s law of cooling � Forest soil temperature � Freeze/

thaw transition � Simulated annealing

Introduction

Various biotic, as well as abiotic processes in the soil are

temperature dependent (Rankinen et al. 2004). Usually,

these dependencies are assumed to have a non-linear nature

(Bond-Lamberty et al. 2005; Davidson et al. 2006; Mac-

donald et al. 1995; Wagle and Kakani 2014), meaning that

the response of the process to changes of temperature,

strongly depends on the temperature range it is occurring

in. Especially for high temperatures, small changes in

temperature might yield big changes in the processes

response. For the assessment of temperature dependent soil

processes, it is therefore crucial to have expedient knowl-

edge about spatial, as well as temporal fluctuations of soil

temperature (Bond-Lamberty et al. 2005). The most reli-

able source of information would be the permanent moni-

toring of subsurface ground temperature. But in practice it

is often hard to measure continuously. Usually, the modeler

has to deal with fragmentary timelines of soil temperature,
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scarce point observations or even no records of Tsoil at all

(Lei et al. 2011). To fill these gaps or to extend the timeline

beyond the measurement timeframe, the researcher has to

consider the application of a soil temperature model.

The approaches to predict subsurface ground tempera-

ture can be coarsely divided in 2 categories; (1) process

based models, and (2) empirical models (Kang et al. 2000).

Process based approaches to predict soil temperature gen-

erally use meteorological input variables (primarily tem-

perature and solar radiation) to calculate energy balance of

the soil surface, and heat transport in the soil, by solving

the heat equation (Paul et al. 2004). The applicability of

these models is often limited by their high complexity, high

demand of input data, and specific model parameters,

which are often not available for the investigated site (Lei

et al. 2011; Svensson et al. 2008). Empirical models, pre-

sented in the work of Brown et al. (2000), Kang et al.

(2000), or Paul et al. (2004), rely on the statistical rela-

tionship between meteorological parameters and soil tem-

perature. More recently, there have been successful

attempts to predict Tsoil using combinations of artificial

neural networks and fuzzy logic (Bilgili et al. 2013; Kim

and Singh 2014; Kisi et al. 2015; Talaee 2014).

Soil thermal regimes are controlled by various envi-

ronmental drivers. The most important meteorological

factors are air temperature and radiation, laying the base

for heat exchange at the soil surface (Hu and Feng 2003).

In the latter, forested sites differ substantially from other

types of land-cover: The radiation driven heat exchange

between soil surface and atmosphere, is limited due to the

shielding effect of the canopy (Paul et al. 2004). Therefore,

forested sites show strongly dampened Tsoil fluctuations,

compared to sites with sparse vegetation or bare soil

(Balisky and Burton 1993). Only a few models exist, which

explicitly address the soil thermal conditions of forested

ecosystems.

Zheng et al. (1993) set up a dynamical Tsoil model

based on Newton’s law of cooling, assuming the change of

Tsoil proportional to the temperature difference between air

and soil. The fact, that the vegetation cover limits radia-

tion driven heat flux, is taken into account by utilizing a

heat transfer coefficient, which depends on the stands leaf

area. They assume, that the canopy’s damping effect is

more pronounced for incoming radiation, than for emis-

sion from the ground. This is incorporated, by applying

different heat transfer coefficients, whether the soil is

warming or cooling. The damping term, dependent on

LAI, only comes into effect for soil warming conditions.

Based on this work, Kang et al. (2000) set up a spatially

resolved Tsoil model. To describe the soil thermal regimes

of South Korean forest sites, they extended the latter

approach by introducing a more ‘mechanistic’ element,

based on Fourier’s law of heat transport. Besides the

spatial and temporal variability of the leaf area, this

approach also accounts for the effect of the stands litter

layer on soil heat flux. The authors assumed, that Tsoil does

not fall below freezing for most Korean forest sites. As

well as in the latter approach, Tsoil estimates below 0 �C
were replaced with 0 �C.

Brown et al. (2000), predicted daily mean Tsoil of 4

different Northern Hardwood stands, utilizing a statistical

relationship between Tsoil and the average air temperature

of the previous day. As a correction term, accounting for

the phase shift or ‘lagging behind’ of the annual course of

Tsoil compared to air temperature, they introduced a cosine

function of the Julian day. Despite the simple model

structure, the predictions of Tsoil were quite precise (dis-

regarding the cold season).

To predict daily Tsoil of various Australian forest sites,

Paul et al. (2004) used daily average air temperature and

stand parameters like leaf area, understory growth, and

litter mass. They assumed Tsoil oscillating around an annual

mean soil temperature, which is calculated from annual

mean air temperature, modified with a correction factor,

derived from information about the stands’ vegetation

cover and litter layer. The resulting temperature wave is

then offset by a term describing daily fluctuations of Tsoil,

which again, is derived from air temperature. The model

specifically addresses the thermal conditions of the topsoil.

Therefore, phase shift and attenuation of the temperature

oscillation, which become relevant with increasing soil

depth, were not considered.

Bond-Lamberty et al. (2005) examined the spatiotem-

poral dynamics of soil thermal regimes during stand

development of a disturbed boreal forest. To accompany

this investigation and for laying the base to simulate forest

dynamics, they implemented an empirical Tsoil model.

Accounting for the influence of recent past air temperature

conditions on present Tsoil, they calculate running averages

of the daily mean air temperature. Tsoil is then calculated as

a linear function of multiple running averages, centered to

different days in the past. The authors report difficulties to

predict Tsoil close to the freeze/thaw transition.

To evaluate the suitability of Tsoil as a predictor for the

treeline position in the Swiss Alps, Gehrig-Fasel et al.

(2008) presented an approach, which strongly differs from

others described in this section. To satisfy the statistical

requirements for regression modeling, the data was first

detrended and then transformed for first differences. After

performing the regression analysis, the data was trans-

formed back. Considering that daily mean air temperature

was the only input parameter, the model showed high

performance in the validation timeframe. Assuming only

an insignificant influence of winter soil temperatures on the

treeline position (Körner and Paulsen 2004), the validation

could be limited to the warm season.
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Most approaches presented here disregard Tsoil dynamics

of the cold season. The decoupling of the soil from the

atmosphere by a fluctuating snowpack (Betts et al. 2001), the

heat transformation processes at the phase change from liquid

to frozen (Beltrami 2001; Viterbo et al. 1999), or changes in

heat capacity and conductivity seem difficult to be captured in

the framework of an empirical approach. In cases where

winter Tsoil is assumed to reach or fall below 0 �C, process

based approaches, presented by e.g. Rankinen et al. (2004),

should be preferred. But, even though this model could be

described ‘simple’ from a mechanistic point of view, solely

the empirical snow accumulation/melt module, upstream to

the Tsoil model, requires the assignment of 11 free parameters.

An alternative might be the semi-empirical model presented

by Katterer and Andren (2009). Making the approach suit-

able for colder temperature conditions, the formulation pre-

sented by Kang et al. (2000) was modified. They interposed a

surface temperature term, which acts as link between air and

soil temperature. In this term the influence of air temperatures

below 0 �C is attenuated by a constant factor. This way, they

account for the low thermal conductivity of snow.

The objective of this article is the presentation of a model

to predict soil temperature of forest stands, which aims to

perform like a ‘well-tuned’ mechanistic simulator, using the

straightforwardness of an empiric formulation. The model

enables the transformation of fragmentary records of forest

soil temperature, into a complete time series of Tsoil, using

average daily air temperature as only input. In this specific

case, the created time series is laying the base for the

modeling of temperature dependent, biogeochemical soil

processes. Due to the fact that many biotic soil processes are

sensitive to winter conditions (Campbell et al. 2005),

emphasis is laid on an expedient representation of the

temperature dynamics of the cold season.

Running the simulation requires the adjustment of nine

empirical parameters, which are not defined in a strict

physical sense. This is making it hard to deduce parameter

values directly from site information. For a proper site

specific parameterization, at least some snapshot mea-

surements of Tsoil are recommended. Therefore, this model

primarily aims to sites were Tsoil data is available, but the

time series are inconsistent, or have to be extended beyond

the timeframe of measurement.

Materials and methods

Model description

The model describes Tsoil as a function of daily mean air

temperature (Tair,t). It employs a daily time step. The for-

mulation is based on Newton’s law of cooling (Bergman

et al. 2011), which is applied 2 times consecutively.

Utilizing a relatively small heat transfer coefficient

(kshift), the first application of Newton’s law provides a

phase shifted temperature time series (Tshift,t) which lacks

the high frequency fluctuations of Tair,t.

Tshift;t ¼ Tair;t þ Tshift;t�1 � Tair;t

� �
exp �kshiftð Þ ð1Þ

A fictive environmental temperature (Tenv,t) is postu-

lated as the weighted mean of the elements Tair,t, Tshift,t, and

a constant correction temperature (Tcorr). pcair, pcshift, and

pccorr are partitioning coefficients, which define the relative

weight of the specific element.

Tenv;t ¼ Tair;tpcair þ Tshift;tpcshift þ Tcorrpccorr ð2Þ

The partitioning coefficients sum up to 1, so 2 have to be

defined as model parameters, one can be deduced.

pccorr ¼ 1 � pcair þ pcshiftð Þ ð3Þ

DT states the difference of the soil temperature to Tenv,t.

DT ¼ Tenv;t � Tsoil;t�1 ð4Þ

Taking into account the insulating effect of the snow

cover and the heat release/consumption due to the phase

change of soil water from liquid to solid and vice versa

(Beltrami 2001), a variable heat transfer coefficient (keff) is

implemented (Fig. 1). kmax represents the transfer coeffi-

cient above the upper threshold temperature (T1). Below T1

keff gets reduced, reaching the minimum (kmin) at the lower

threshold (T0), where different kmin are applied for soil

warming and cooling.

kmin ¼ kthaw; DT [ 0

kfrost; DT � 0

�
ð5Þ

The transition of the transfer coefficient in betweenT1

andT0 is described, using a third order polynomial.

Fig. 1 Polynomial transition of the heat compensation coefficient

(keff), between 2 threshold soil temperatures (T0, T1), close to soil

freezing. The reduction of the coefficient pays respect to the energy

release/demand of phase changes, from liquid to solid and vice versa.

High model performance was achieved, using different minimal

compensation coefficients for soil cooling (kfrost) (solid line) and

warming (kthaw) (dashed line) respectively
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keff ¼ kmin þ kmax � kminð Þ
kmin; Tsoil;t�1�T0

3x2 � 2x3ð Þ; T0\Tsoil;t�1\T1

kmax; Tsoil;t�1�T1

8
<

:

ð6Þ

Tsoil,t-1 has to be transformed into an auxiliary variable

inside the interval 0–1.

x ¼ Tsoil;t�1 � T0

T1 � T0

ð7Þ

At last, Newton’s law is applied the 2nd time. The actual

daily mean soil temperature calculates as:

Tsoil;t ¼ Tenv;t � DTexpð�keffÞ ð8Þ

Study sites/input data

Austria

In the framework of the International Co-operative Pro-

gramme on Assessment and Monitoring of Air Pollution

Effects on Forests (ICP Forests), the Austrian Research

Centre for Forests operates several, intensively monitored,

forest sites (Level II) (Neumann et al. 2001). In addition to

various other environmental parameters, meteorological

conditions are monitored continuously. Soil temperature

records exist for soil depths, ranging from 5 to 60 cm.

The model was originally set up on data from the Level

II Plot Klausen-Leopoldsdorf, which is located in the

Vienna Woods (48�0701600N, 16�0205200E), at an elevation

of 510 m a. s. l. The research site is a pure beech (Fagus

sylvatica L.) stand, which was planted in the late thirties of

the last century. The location is facing NE with an incli-

nation of 20 %. The actual forest vegetation coincides with

the potential natural one, and can be classified as Hordy-

lemo-Fagetum (Mucina et al. 1993).

Subsequently data from 5 other Level II forest stands

were accessed (Fig. 2, Table 1). The selection aims to

cover a broad range of site characteristics. Investigated

sites show a strong altitudinal and climatic gradient. The

elevation of the investigated stands ranges from 290 (Un-

terpullendorf) to 1540 m a.s.l. (Murau), leading to annual

mean temperatures from 9.6 to 5 �C, respectively. Austria

lies in the transition zone between oceanic and continental

climate. Progressing from west to east, investigated loca-

tions therefore experience a strong decline in annual pre-

cipitation sums, ranging from 1521 mm for mountainous

stands in the north-west, affected by orographic precipita-

tion (Mondsee), to 630 mm in the continentally influenced

east of the country (Unterpullendorf).

To fill gaps in the record of average daily air tempera-

ture, data were accessed, provided by the European Cli-

mate Assessment (ECA&D) (Tank et al. 2002). Missing

values were replaced, using linear regression with available

neighboring stations.

East Coast of the United States

Intending to test the models over regional validity, the

continent was switched. Data were accessed from 2

Fig. 2 Location of study sites in the United States and in Austria. The sites used for parameterization of the forest soil temperature simulator

cover a broad range of characteristics. For a brief site description see Table 1
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intensive long-term ecological research areas in New

England; (1) the Hubbard Brook Experimental Forest

(HBEF), and (2) Harvard Forest (Fig. 2, Table 1).

The HBEF is located in the White Mountain National

Forest in north-central New Hampshire (43�560N,

71�420W). The elevation of the investigated watershed

ranges from 250 m to 1000 m. The forest type can be

classified as Northern Hardwood, dominated by Sugar

maple (Acer saccharum Marsh). The climate is cool, con-

tinental, and humid, with mean annual precipitation sums

around 1400 mm (Bailey et al. 2003). Approximately one-

third of the precipitation is falling as snow, leading to a

snowpack, typically lasting from December to April. Soils

can be classified as well-drained Spodosols (WRB: Pod-

zol), developed on glacial till (Campbell et al. 2010).

Daily Tsoil (depth: 5 cm) data, recorded within the

framework of the project ‘Snow Depth & Soil Freezing as a

Regulator of Microbial Processes’ (Duran et al. 2014),

were obtained. Data of 3 intensive high elevation plots

(mean elevation: 560 m, exposition: North) and 3 intensive

low elevation plots (mean elevation: 430 m, exposition:

South) were used. For each altitude class, one mean time-

series of Tsoil was calculated.

Because of their proximity to the investigated stands,

records of air temperature (Bailey et al. 2003) from

meteorological station 23 and 1, for high and low elevation

plots respectively were obtained. Missing data were

replaced, using offset temperatures of highly correlated

neighboring stations. To fill remaining gaps in the air

temperature record, the GHCN-Daily dataset was accessed,

provided by the NOAA (Menne et al. 2012a, b), utilizing

data from the station Wentworth, New Hampshire

(43�5202200N, 71�5403100W).

The Harvard Forest Research Station is located in

Central Massachusetts (42�320N, 72�110W). The climate is

cool, temperate, and humid. Precipitation is distributed

evenly through the year, with annual sums in the range of

1080 mm. The annual mean temperature is 8.5 �C (Ber-

beco et al. 2012). The elevation of the investigated loca-

tions is approximately 350 m a. s. l. Soils can be classified

as Typic Dystrudepts (WRB: Dystric Cambisol). After a

severe disturbance in the beginning of the last century, the

forest regrew naturally, resulting in an even aged stand of

mixed hardwood species, with Red oak (Quercus rubra L.)

dominating (Butler et al. 2012).

Within the forest site, the simulator was applied to 2

sub-sites: (1) Barre Woods (Melillo et al. 2003), and (2)

Prospect Hill (Melillo et al. 1999). Both locations were set

up to study the effect of soil warming on carbon and

nitrogen turnover, by artificially heating the ground (Ber-

beco et al. 2012; Melillo et al. 2002). The model was

adjusted to the topsoil (depth 5 cm) of the undisturbed

control plots, whereat on the Prospect Hill site data from 6

control plots were combined, calculating a mean time-

series of Tsoil. Daily air temperature was obtained from the

EMS tower (Munger and Wofsy 1999), where the record

7.6 m above ground was selected. Data gaps were closed,

using offset temperature measurements at other heights, or

Table 1 Investigated locations cover a broad range of site characteristics and distinct climatic and altitudinal gradients

Elevation

(m a. s. l.)

Exp. Slope (�) MAT (�C) MAP (mm) Dominant species Soil type

Level II Jochberg 1050 NE 4 5.7 1358 Picea abies Dystric Cambisol

Mondsee 860 SE 14 *5.7 1521 Picea abies Eutric Cambisol

Murau 1540 N 33 5.0 918 Picea abies Dystric Cambisol

Mürzzuschlag 715 S 10 6.0 933 Picea abies Eutric Cambisol

Klausen-

Leopoldsdorf

510 NE 11 8.2 804 Fagus sylvatica Stagnic Cambisol

Unterpullendorf 290 – 0 9.6 630 Quercus petraea/cerris Planosol

HBEF High Elevation Plots 560 N *13 5.0 1400 Betula alleghaniensis Podzol

Low Elevation Plots 430 S *11 6.1 1400 Acer saccharum Podzol

Harvard Forest Prospect Hill 365 – 0 8.5 1080 Quercus rubra Dystric Cambisol

Barre Woods 305 – 0 8.5 1080 Quercus rubra/velutina Dystric Cambisol

ICN Freeport 265 – 0 *9.1 *860 Sod covered ground

St. Charles 226 – 0 *9.3 *780 Sod covered ground

Champaign 219 – 0 *11.3 *1020 Sod covered ground

Belleville 133 – 0 *12.7 *960 Sod covered ground

Brownstown 177 – 0 *12.3 *960 Sod covered ground

Olney 134 – 0 *12.5 *1010 Sod covered ground

MAT mean annual temperature, MAP mean annual precipitation sum
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data from the Fisher meteorological station (Boose 2001).

If no other source was available, the GHCN-Daily dataset

was again accessed, applying offset air temperature data

from the Municipal Airport station at Orange, Mas-

sachusetts (42�3304600N, 72�1605900W).

Non-forested sites in Illinois

At last, to explore the limits of the formulation, the model

was applied to 6 sites which lack the shielding properties of

a dense forest canopy. Therefore, data were obtained from

the Illinois Climate Network, (ICN), which operates sev-

eral open field meteorological stations in Illinois (Fig. 2,

Table 1). Air temperature was measured 2 m above

ground. Gaps in the air temperature record were closed,

using offset temperature measurements of, highly corre-

lated, and neighboring stations. Soil temperature was

recorded in 10 cm and 20 cm depth (Hollinger et al. 1994)

under sod covered ground. Soil texture was assessed as silt

loam, throughout all studied locations. The elevation of the

investigated sites ranges from 133 to 265 m a. s. l.

Illinois’ climate is typically continental with cold win-

ters and warm summers. Moving from north to south, mean

annual air temperatures increase from 8.9 to 14.5 �C. Also

annual precipitation sums reveal a strong north–south

gradient, ranging from 810 to 1220 mm. Stations in the

north-west of the state are climatically influenced by Lake

Michigan, which is attenuating temperature extremes and

enhancing winter precipitation (lake effect snow) (Chang-

non et al. 2008).

Model application

Parameterization

The model was applied to each site and depth specifically.

Emphasis was laid on its application on longest possible

records of Tsoil, to cover the broadest possible range of

different environmental states, which might have a potential

influence on soil thermal regimes. On the other hand it

seems obvious, that due to changes in leaf area, under-

growth, litter layer, water consumption, etc., forest Tsoil

regimes undergo a certain shift during stand development

(compare Kang et al. 2000). In cases where, for reasons

unknown, an obvious change in the soil thermal regime was

observed, the time frame of the investigation was manually

narrowed down. Both Tsoil,t and Tshift,t were initialized at

8 �C. The simulator ran a 150 day spin-up prior to the

analysis time frame. For model parameterization a simu-

lated annealing algorithm (Kirkpatrick et al. 1983) was

applied, selecting an exponential cooling schedule. Opti-

mization/evaluation criterion was in every case the Nash–

Sutcliffe model efficiency (NSE) (Nash and Sutcliffe 1970).

NSE ¼ 1 �
Pn

i¼1 Tsoil;obs;i � Tsoil;sim;i

� �2

Pn
i¼1 Tsoil;obs;i � Tsoil;obs

� �2
ð9Þ

Enabling a balanced split, the calibration was conducted

on data from odd years, data from even years served in the

evaluation. Making the simulation result comparable to

other works, other performance indices like Root Mean

Squared Error (RMSE), mean absolute error (MAE) and

mean bias error (MBE) were calculated.

RMSE ¼ n�1
Xn

i¼1

Tsoil;obs;i � Tsoil;sim;i

� �2

" #1=2

ð10Þ

MAE ¼ n�1
Xn

i¼1

Tsoil;obs;i � Tsoil;sim;i

�� �� ð11Þ

MBE ¼ n�1
Xn

i¼1

Tsoil;obs;i � Tsoil;sim;i ð12Þ

Parameterization on limited input data

To test the simulators practical suitability to cope with

limited input data, the Tsoil record of Klausen Leopolds-

dorf (15 cm depth) was used, ranging from November

2001 to June 2013 (*11 years, 4053 valid observations).

The dataset was split into n sectors of approximately

equal size. The parameterization (simulated annealing)

was performed, drawing only one random observation per

sector. The remaining observations served in the evalua-

tion. This step was repeated 12 times per n, each time

with different random observations, to generate a dis-

tributed result. After 12 iterations, n was incremented,

starting with n = 4, gradually progressing to n = 2000.

This way, the minimum number of point observations was

determined, necessary to yield satisfactory model

performance.

Results and discussion

The model was applied to various sites and depths. In this

work, a representative selection of 36 simulation runs is

displayed (Table 2). The simulator delivered good esti-

mates of Tsoil on all investigated forest sites. NSE values

above 0.979 and RMSE consistently below 1 �C underline

the outcome (Table 3), whereat good results were not

limited to the topmost soil horizons. Increasing phase shift

and the attenuation of the temperature wave with increas-

ing soil depth, were also captured by the simulation

(Fig. 3b). Winter Tsoil dynamics are strongly affected by

(1) heat transformations at the freeze/thaw transition and

(2) the insulating by the snowpack (Beltrami 2001). The
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presented model does not specifically address these effects,

but it is capable, to account for both effects combined. In

most cases, the description of the winter soil thermal

regime was successful. Figures 3a, d and 4a clearly show

the decoupling of ground temperature from air temperature

under snow cover. The simulator was able to track this

behavior, where in some cases it failed to predict the exact

time when soil temperature rises in spring (Fig. 4a): The

melting of the snow cover causes a sharp increase in Tsoil

due to the ceasing insulating effect, hand in hand with an

abrupt decrease in surface albedo, making the forest ground

susceptible for short wave radiation inputs, which are

already considerable in early spring. Rankinen et al. (2004)

solved this problem by incorporating a snow dynamics

routine into the calculations, but this would require the

embedding of more model parameters and meteorological

input data. In consideration of the models practical appli-

cability, this was set aside.

Table 2 Parameterization result for 36 sites and depths

Parameter

z (cm) kmax kaux kfrost kthaw T0 (�C) T1 (�C) Tcorr (�C) pccorr pcair

Jochberg 15 0.4059 0.0365 0.0041 0.0568 1.3 3.6 2.7 0.142 0.505

30 0.2781 0.0327 0.0044 0.0806 1.5 5.6 3.5 0.181 0.440

60 0.1349 0.0273 0.0008 0.0942 1.0 9.2 3.2 0.216 0.380

Mondsee 15 0.4653 0.0708 0.0026 0.0700 0.9 7.6 11.2 0.124 0.438

30 0.3090 0.0541 0.0056 0.0616 1.2 8.3 9.3 0.234 0.306

60 0.3672 0.0419 0.0084 0.2010 1.7 12.0 8.1 0.334 0.078

Murau 15 0.3686 0.0447 0.0000 0.0285 0.6 7.0 3.4 0.257 0.285

30 0.2934 0.0424 0.0005 0.0296 0.8 7.0 3.8 0.298 0.247

60 0.2514 0.0379 0.0037 0.0498 1.5 6.7 3.8 0.350 0.158

Mürzzuschlag 15 0.2494 0.0208 0.0028 0.0140 0.3 2.7 7.4 0.188 0.480

30 0.1687 0.0184 0.0130 0.0244 0.9 2.7 7.4 0.213 0.451

60 0.1119 0.0177 0.0031 0.0321 -0.3 6.4 7.1 0.274 0.353

Klausen-Leopoldsdorf 05 0.5092 0.0261 0.0131 0.1840 1.5 5.4 7.5 0.129 0.538

10 0.3949 0.0244 0.0130 0.1374 1.6 6.2 7.9 0.151 0.500

15 0.3006 0.0229 0.0123 0.1287 1.5 7.6 7.9 0.168 0.471

30 0.2104 0.0214 0.0147 0.0947 2.0 8.3 8.2 0.201 0.432

60 0.1138 0.0204 0.0021 0.0590 0.9 9.3 8.3 0.278 0.349

Unterpullendorf 15 0.4752 0.0383 0.0360 0.0541 -2.3 12.5 13.6 0.137 0.528

30 0.2824 0.0313 0.0177 0.0191 -3.2 12.3 12.9 0.172 0.460

60 0.1443 0.0254 0.0091 0.0101 -2.6 9.3 12.0 0.216 0.366

HBEF, intensive high 05 0.6399 0.0418 0.0024 0.0133 1.1 5.3 10.9 0.300 0.411

HBEF, intensive low 05 0.5584 0.0355 0.0001 0.0075 0.9 3.1 11.4 0.286 0.515

Harvard Forest, Prospect Hill 05 0.8723 0.0447 0.0000 0.0116 -0.4 9.2 14.2 0.160 0.516

Harvard Forest, Barre Woods 05 0.7238 0.0467 0.0000 0.0357 0.4 7.0 16.3 0.153 0.502

Freeport 10 0.7111 0.0974 0.0009 0.1094 -0.8 7.3 118.1 0.012 0.495

20 0.5157 0.0808 0.0014 0.1598 -0.4 10.2 94.5 0.016 0.437

St. Charles 10 0.7541 0.0915 0.0045 0.1397 -0.5 7.1 182.4 0.007 0.573

20 0.5323 0.0771 0.0035 0.2367 -0.7 10.7 80.4 0.012 0.540

Champaign 10 0.8515 0.1215 0.0000 0.3250 0.2 6.0 264.2 0.008 0.487

20 0.5223 0.0822 0.0000 0.3130 00.5 8.8 95.2 0.022 0.512

Belleville 10 0.6570 0.0722 0.0072 0.6131 -0.1 11.0 83.8 0.014 0.468

20 0.4561 0.0598 0.0044 0.4558 -0.1 11.3 68.9 0.017 0.481

Brownstown 10 0.6627 0.0916 0.0003 0.4320 -0.4 13.3 32.6 0.029 0.508

20 0.4212 0.0754 0.0036 0.2782 -0.3 13.2 22.6 0.046 0.528

Olney 10 0.8012 0.1035 0.0010 0.4226 -0.7 7.7 343.5 0.003 0.544

20 0.5477 0.0909 0.0015 0.4373 -0.4 10.0 431.5 0.003 0.492

Optimization was performed, using a simulated annealing algorithm. Performance criterion was the Nash–Sutcliffe Efficiency (NSE)
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Fig. 3 Four years of observed air and soil temperature, overlaid with

simulated Tsoil. Calibration was performed on odd years, performance

evaluation on even ones. Plot (a) and (d) clearly show the effect of

snow cover on winter soil thermal regimes. In both cases the trend

was successfully captured by the simulator. Also increasing phase

shift and attenuation of the soil temperature wave with increasing soil

depth (b) were captured. Stronger fluctuations of Tsoil under open-

field conditions (e), where the heat exchange might be dominated by

radiation fluxes, did also not limit the simulators capability
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Compared to forested locations, the biotic site compo-

nents at the open field meteorological stations are kept

intentionally constant. This enabled the successful predic-

tion of Tsoil over a long timeframe. On 2 sites in the

northern part of the state (Freeport, St. Charles) we

accomplished good results over 24 years of calibration and

evaluation. But the best performance (evaluation NSE

C0.99 over several years) was achieved on comparatively

Fig. 4 One year section of observed and simulated Tsoil time series

plus the corresponding performance scatterplot. Note that the

scatterplots cover the whole investigation timeframe! (a, b) winter

snow cover decouples the course of air and soil temperature. The

melting of the snowpack in the end of March causes Tsoil to escalate,

due to the ceasing insulation plus the abrupt decrease in surface

albedo, making the soil susceptible for short wave radiation inputs,

which are already considerable in early spring. As the snowpack is not

modeled explicitly, the simulator fails to predict the exact time when

Tsoil rises in spring (c, d). Failure to predict a major soil frost event,

due to limitations in the model structure: Temperature fluctuations in

early winter indicate the absence of a snow pack. When in midwinter

all latent heat is released due to the freezing of soil water, Tsoil

suddenly drops. In the formulation the transfer coefficient below the

lower threshold temperature (T0) remains constant. As a consequence,

our formulation applies best, to sites where severe soil frost plays only

a subordinate role (e, f)

32 Page 10 of 14 Model. Earth Syst. Environ. (2015) 1:32

123



warm locations, located at low elevations, in the south of

Illinois (Belleville, Brownstown, Olney). In contrast to

forested sites, open field sites, lack the attenuating proper-

ties of a dense canopy, or a thick litter layer. Especially for

cold, but snow-free winters, these locations were prone to

soil frost (Fig. 4c, St. Charles). Temperature fluctuations in

early winter indicate the absence of a thick insolating snow

pack. When in midwinter all latent heat is released, due to

the freezing of soil water, Tsoil suddenly drops. Due to the

structure of the model, this behavior could not be tracked: In

the presented formulation the transfer coefficient below the

lower threshold temperature (T0) remains constant at a

reduced level, suppressing further soil cooling. This model

limitation could be tackled by letting the transfer coefficient

rise at temperatures below T0. On the other hand, that would

require the segregation of the effects of freeze/thaw pro-

cesses and snow cover insulation, making the model again

more complex and input data demanding.

The examination, to determine the minimum amount of

point observations of soil temperature, necessary to yield

suitable results, was performed on, an 11-years time series, of

air and soil temperature at the Level II plot Klausen-

Leopoldsdorf (15 cm depth). The time frame was divided in

n sectors. Only one observation was selected randomly by

sector. All other observations served in the evaluation. Disre-

garding single outlier runs, good results (NSE [0.97,

RMSE\0.9 �C) were achieved with n B 13. Having avail-

able 50 or more daily observations, there was only little dif-

ference to the result, compared to utilizing*50 % (n = 2000)

of the available data in the calibration process (Fig. 5).

Two considerations led to the implementation of

decreasing transfer coefficients with decreasing soil tem-

perature: (1) The heat release/consumption at the freeze/

thaw transition (Beltrami 2001), and (2) the insulating

effect of the winter snow cover. So intentionally, values for

T0 and T1 were searched around 0 �C. Surprisingly, in most

cases the optimization process led to T1 values much

higher, meaning that the attenuation of the transfer coef-

ficient starts already at higher temperatures. The idea

behind utilizing different responses for soil warming and

cooling, was the assumption, that soil warming in spring is

strongly driven by incoming solar radiation, which is

accelerating the temperature rise.

As this model is primarily of an empirical nature, used

parameters lack a specific meaning, in a strict physical

sense. Nevertheless, it was noted that parameter values

Fig. 5 Model optimization

result for Klausen-

Leopoldsdorf, 15 cm: to

determine the amount of point

observations, necessary to

achieve sound model

performance, the investigated

time series was divided into

n intervals of equal size,

drawing one random point

observation each. These

n observations were used to

optimize the model (simulated

annealing). The remaining

observations were used to

validate model performance.

For each n, the procedure was

repeated 12 times with different

random observations, to

generate a distributed result.

Performance measures shown

are (a) root mean squared error,

and (b) Nash–Sutcliffe

efficiency. Both indices show

high performance

(RMSE B 0.9 �C, NSE C 0.97)

with n C 13. For n C 50 there

was only little difference in

performance, compared to

optimization utilizing the full

calibration timeframe

(n = 2000, horizontal, grey

line)
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were strongly affected by certain site characteristics: kmax

values clearly decreased with increasing soil depth

(Fig. 6a). Meaning, the time demand, to compensate a

fraction of the temperature difference between soil layer

and air, rose with increasing soil depth. Also the relative

partition of the correction temperature (pccorr), in the cal-

culation of the environmental temperature, increased in

deeper soil layers (Fig. 6c). In contrast, the direct influence

of air temperature (pcair) showed a decrease downwards.

Investigated open field sites differed strongly from for-

est sites, in parameter values of the correction temperature

(Tcorr). Where on forest locations Tcorr resided closely to

the stands annual mean air temperature, open field sites

revealed Tcorr values, around and above 100 �C (Fig. 6d).

On the other hand, their relative weight (pccorr) in the

calculation of the environmental temperature, is much

lower than on forested sites. It is assumed, that in these

cases, they correct for direct radiation energy inputs, which

are obviously much higher without the presence of a

shielding canopy. The reason that, even under such con-

ditions, the simulator (which does not particularly address

radiative heat flux) delivers good estimates of Tsoil, might

be found in the strong correlation between energy balance

components, and the air temperature itself (Hock 2003).

Conclusion

The primary intention of this work was the provision of a

tool, which enables the transformation of fragmentary

records of forest soil temperature, into a complete time

series of Tsoil, using average daily air temperature as only

input. In this specific case, the created time series is laying

the base for the modeling of temperature dependent, bio-

geochemical soil processes.

To test the resilience of this model, it was applied to

various locations and depths, covering a broad amplitude of

site characteristics. The simulator delivered accurate pre-

dictions of the temperature of the topsoil, as well as of

deeper layers. The high performance was not limited to the

warm season. The combination of the insulating effect of

the snow cover plus the effect of heat transformations at the

freeze/thaw transition, on soil thermal regimes were cap-

tured sufficiently. The formulation was applied to forested,

as well as open to field locations, where in the open field it

failed to reproduce some major soil frost events. Bearing

this limitation in mind, this simulator seems to be well

applicable to other land use types.

bFig. 6 Four selected parameters and their change with increasing soil

depth. a Transfer coefficient values showed a clear decreasing trend

with increasing soil temp. b Also the fraction of the air temperature in

the calculation of the environmental temperature showed, almost

linear, decrement. d Where the correction temperature on forested

sites was in a close range to the annual mean air temperature, the open

field locations (star symbol) revealed much higher values. On the

other hand, the relative weighting (c) of these temperatures was much

smaller on non-forested sites. It is assumed, that on these locations,

both parameters combined compensate for direct shortwave radiation

inputs
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The model parameters lack a specific meaning in a strict

physical sense. Therefore, currently the parameterization

requires at least a modest amount of Tsoil observations, to

yield sufficient results. A challenging impulse for future

work, would be the attempt to derive model parameters,

directly from more easily obtainable site characteristics.

This also would enable the capability of the simulator to

deal with a changing soil thermal regime, during stand

development.
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