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Abstract: Coffee has been shown to attenuate sarcopenia, the age-associated muscle atrophy. Myostatin
(MSTN), a member of the TGF-β growth/differentiation factor superfamily, is a potent negative regulator
of skeletal muscle mass, and MSTN-inhibition increases muscle mass or prevents muscle atrophy. This
study, thus, investigated the presence of MSTN-inhibitory capacity in coffee extracts. The ethanol-extract
of coffee silverskin (CSE) but not other extracts demonstrated anti-MSTN activity in a pGL3-(CAGA)12-
luciferase reporter gene assay. CSE also blocked Smad3 phosphorylation induced by MSTN but not
by GDF11 or Activin A in Western blot analysis, demonstrating its capacity to block the binding of
MSTN to its receptor. Oral administration of CSE significantly increased forelimb muscle mass and grip
strength in mice. Using solvent partitioning, solid-phase chromatography, and reverse-phase HPLC,
two peaks having MSTN-inhibitory capacity were purified from CSE. The two peaks were identified as
βN-arachinoyl−5-hydroxytryptamide (C20−5HT) and βN-behenoyl−5-hydroxytryptamide (C22−5HT)
using mass spectrometry and NMR analysis. In summary, the results show that CSE has the MSTN-
inhibitory capacity, and C20−5HT and C22−5HT are active components of CSE-suppressing MSTN
activity, suggesting the potential of CSE, C20−5HT, and C22−5HT being developed as agents to combat
muscle atrophy and metabolic syndrome.

Keywords: coffee silverskin; myostatin inhibition; muscle atrophy; βN-arachinoyl−5-hydroxytryptamide;
βN-behenoyl−5-hydroxytryptamid

1. Introduction

Myostatin (MSTN), also known as growth and differentiation factor-8 (GDF8), is
mainly expressed in skeletal muscle and acts as a negative regulator of skeletal muscle
growth in animals [1]. During embryonic development, MSTN suppresses muscle cell
hyperplasia by inhibiting the proliferation of muscle progenitors and myoblasts [2,3].
MSTN also plays an important role in the growth and maintenance of adult skeletal
muscle mass [4,5]. The upregulation of MSTN is closely related to muscle atrophy caused
by various physiological conditions and illnesses [6–9]. Many studies have shown that
suppressing MSTN activity using various approaches, such as administration of MSTN-
blocking proteins and peptides, delivery of MSTN-blocking genes, and RNAi method
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increases muscle mass in adult animals [10]. Studies have also demonstrated that MSTN-
blocking is a potential therapeutic strategy to combat muscle wasting occurring in a wide
range of serious illness and age-associated sarcopenia in animal models [11,12], as well
as in human clinical trials [13–16]. In addition, MSTN suppression improved the insulin
sensitivity and whole-body metabolism accompanied by a decrease in fat mass in mice and
pigs [17–20], indicating that MSTN plays a role not only in the regulation of muscle mass
but, also, in the regulation of fat mass and energy metabolism.

There has been increasing interest in natural compounds from commonly consumed
dietary or edible plants as a source of drug candidates for muscle atrophy, and extracts,
fractions, or compounds of various dietary plants have demonstrated their potential for
the treatment of muscle atrophy [21]. Given that MSTN is a strong negative regulator of
skeletal muscle growth and is upregulated in muscle atrophic conditions, examining the
MSTN-inhibitory capacities of the extracts and fractions of potential dietary plants appears
to be a strategy in searching for natural compounds to treat muscle atrophy. A recent study
showed that quercetin, a flavonoid widely distributed in edible plants, has a protective
effect on DEX-induced muscle atrophy in a muscle cell culture model [22]. The same study
also observed that quercetin enhanced the activation of Akt, a downstream effector of
the MSTN signaling pathway, suggesting a potential capacity of quercetin to suppress
MSTN activity. Coffee has been reported to attenuate the progression of sarcopenia and
to increase the regenerating capacity of injured muscles in aged mice [23]. A decrease
in blood proinflammatory cytokines and an increase in Akt activation were observed in
coffee-treated mice as compared with control mice. We thus hypothesized that the coffee
bin contains compounds capable of MSTN inhibition.

This study was designed to identify compounds that are capable of suppressing
the activity of MSTN from coffee bin extract. Our results show that ethanol extracts of
coffee silverskin (CSE) suppressed MSTN activity, and its administration to mice increased
muscle mass and grip strength along with a decrease in blood fatty acid concentration.
βN-arachinoyl-5-hydroxytryptamide (C20-5HT) and βN-behenoyl-5-hydroxytryptamide
(C22-5HT) were identified as the active constituents of CSE suppressing MSTN activity.

2. Results
2.1. Coffee Silverskin Ethanol-Extract (CSE) Suppresses MSTN Activity

Using the Colombia supremo huila variety, ethanol- and water-extracts of green beans,
roasted beans, and silverskin were prepared to determine the presence of anti-MSTN
substances in those extracts. The ethanol extract of silverskin (CSE) showed anti-MSTN
activity, but other extracts showed little MSTN-inhibitory activity (Figure 1a). Since only
CSE showed MSTN-inhibitory activity, the CSE of eight coffee varieties, including Colombia
supremo huila, India gangagiri, Ethiopia yirgacheffee, Guatemala SHB huehuetenango,
Kenya AA FAQ, Kenya AB TOP, Brazil NY2FC17/18 Cerrado, and Ethiopia kochere onacho,
were prepared, and their capacities to suppress MSTN activity were examined. The IC50
values of the above eight varieties to suppress MSTN activity were 0.60, 2.29, 2.78, 0.78, 1.31,
0.78, 0.62, and 0.80 µg/mL, respectively (Figure 1b). Colombia supremo huila, Guatemala
SHB huehuetenango, Kenya AB TOP, Brazil NY2FC17/18 Cerrado, and Ethiopia kochere
onacho showed significantly stronger anti-MSTN activity than Kenya AA FAQ. India
gangagiri and Ethiopia yirgacheffee showed the lowest MSTN-inhibitory capacity.
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Figure 1. Coffee silverskin ethanol extracts (CSE) inhibit MSTN activity. (A) Anti-MSTN activities 
of the ethanol and water extracts of Green bean, Roasted coffee bean, and Coffee silverskin of Co-
lumbia supremo huila. (B) Anti-MSTN activities of CSE from various coffee varieties. Various con-
centrations of CSE in combination with 1-nM MSTN were added to the HEK293 cells transformed 
permanently with (CAGA)12-luciferase gene construct, followed by incubation for 24 h and meas-
urement of the luciferase activity. Percentage of inhibition = (luminescence at 1 nM MSTN—lumi-
nescence at each concentration of CSE) × 100/(luminescence at 1 nM MSTN—luminescence at 0 nM 
MSTN. The error bars indicate SD (n = 3). IC50 values not sharing the same superscript are different 
at p < 0.05. E, ethanol extract; W, water extract. 

The capacity of CSE mixture of various varieties to suppress MSTN activity was com-
pared to its capacity to suppress GDF11 and Activin A, the molecules closely related to 
MSTN, using the luciferase reporter assay. The IC50 for MSTN was 0.79 µg/mL, but the 
IC50 for GDF11 and Activin A were not measurable over the concentration range tested 
(Figure 2), indicating that CSE’s suppression of MSTN is more specific than its suppres-
sion of Activin A or GDF11. 

Figure 1. Coffee silverskin ethanol extracts (CSE) inhibit MSTN activity. (A) Anti-MSTN activities of
the ethanol and water extracts of Green bean, Roasted coffee bean, and Coffee silverskin of Columbia
supremo huila. (B) Anti-MSTN activities of CSE from various coffee varieties. Various concentrations
of CSE in combination with 1-nM MSTN were added to the HEK293 cells transformed permanently
with (CAGA)12-luciferase gene construct, followed by incubation for 24 h and measurement of the
luciferase activity. Percentage of inhibition = (luminescence at 1 nM MSTN—luminescence at each
concentration of CSE) × 100/(luminescence at 1 nM MSTN—luminescence at 0 nM MSTN. The
error bars indicate SD (n = 3). IC50 values not sharing the same superscript are different at p < 0.05.
E, ethanol extract; W, water extract.

The capacity of CSE mixture of various varieties to suppress MSTN activity was
compared to its capacity to suppress GDF11 and Activin A, the molecules closely related to
MSTN, using the luciferase reporter assay. The IC50 for MSTN was 0.79 µg/mL, but the
IC50 for GDF11 and Activin A were not measurable over the concentration range tested
(Figure 2), indicating that CSE’s suppression of MSTN is more specific than its suppression
of Activin A or GDF11.
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Figure 2. Inhibition of MSTN, Activin A, and GDF11 activities by CSE. Various concentrations of 
CSE (mixture of various varieties) in combination with 1 nM MSTN, Activin A, or GDF11 were 
added to the HEK293 cells transformed permanently with (CAGA)12-luciferase gene construct, 
followed by incubation for 24 h and measurement of the luciferase activity. The error bars indi-
cated SD (n = 3). Percentage of inhibition = (luminescence at 1 nM ligands—luminescence at each 
concentration of CSE) × 100/(luminescence at 1 nM ligands—luminescence at 0-nM ligands. 

Since CSE demonstrated MSTN inhibitory capacity, we examined whether CSE in-
hibits MSTN binding to its receptor. MSTN signals through binding predominantly to 
activin type IIB (ActRIIB) and two type I receptors (ALK4/5) to elicit its biological function 
[24,25]. The binding of MSTN to ActRIIB recruits and activates type I and type IIB activin 
receptors, resulting in the phosphorylation of Smad2/3 transcription factors to regulate 
the expression of downstream target genes, as well as the crosstalk with other signaling 
pathways [26–28]. GDF11 and Activin A are also known to have signaling pathways sim-
ilar to MSTN, binding to ActRIIB and activating Smad2/3 pathways [29,30]. Thus, the 
phosphorylation of Smad3 was examined in HepG2 cells treated by MSTN, GDF11, Ac-
tivin A, with or without CSE. Smad3 was phosphorylated in cells treated by MSTN, and 
the phosphorylation was suppressed when treated by MSTN with CSE (Figure 3). Both 
GDF11 and Activin A phosphorylated Smad3 (Figure 3), indicating that MSTN, GDF11, 
and Activin A have similar signaling pathways. In contrast to MSTN, the phosphorylation 
of Smad3 induced by GDF11 or Activin A was not inhibited by CSE (Figure 3), demon-
strating that CSE inhibits the Smad signaling pathway induced by MSTN but not induced 
by GDF11 or Activin A. Given that MSTN, GDF-11, and Activin A share the same receptor 
for their signaling, it appears that the CSE inhibition of Smad3 phosphorylation is via CSE 
binding to MSTN but not via CSE binding to its receptor, ActRIIB. 

 

 

Figure 2. Inhibition of MSTN, Activin A, and GDF11 activities by CSE. Various concentrations of CSE
(mixture of various varieties) in combination with 1 nM MSTN, Activin A, or GDF11 were added
to the HEK293 cells transformed permanently with (CAGA)12-luciferase gene construct, followed by
incubation for 24 h and measurement of the luciferase activity. The error bars indicated SD (n = 3).
Percentage of inhibition = (luminescence at 1 nM ligands—luminescence at each concentration of CSE)
× 100/(luminescence at 1 nM ligands—luminescence at 0-nM ligands.

Since CSE demonstrated MSTN inhibitory capacity, we examined whether CSE inhibits
MSTN binding to its receptor. MSTN signals through binding predominantly to activin type
IIB (ActRIIB) and two type I receptors (ALK4/5) to elicit its biological function [24,25]. The
binding of MSTN to ActRIIB recruits and activates type I and type IIB activin receptors,
resulting in the phosphorylation of Smad2/3 transcription factors to regulate the expression
of downstream target genes, as well as the crosstalk with other signaling pathways [26–28].
GDF11 and Activin A are also known to have signaling pathways similar to MSTN, binding to
ActRIIB and activating Smad2/3 pathways [29,30]. Thus, the phosphorylation of Smad3 was
examined in HepG2 cells treated by MSTN, GDF11, Activin A, with or without CSE. Smad3
was phosphorylated in cells treated by MSTN, and the phosphorylation was suppressed when
treated by MSTN with CSE (Figure 3). Both GDF11 and Activin A phosphorylated Smad3
(Figure 3), indicating that MSTN, GDF11, and Activin A have similar signaling pathways. In
contrast to MSTN, the phosphorylation of Smad3 induced by GDF11 or Activin A was not
inhibited by CSE (Figure 3), demonstrating that CSE inhibits the Smad signaling pathway
induced by MSTN but not induced by GDF11 or Activin A. Given that MSTN, GDF-11,
and Activin A share the same receptor for their signaling, it appears that the CSE inhibition
of Smad3 phosphorylation is via CSE binding to MSTN but not via CSE binding to its
receptor, ActRIIB.

2.2. Oral Administration of CSE Increases the Muscle Mass and Grip Strength but Not Body
Weight and Bone Mass in Mice

Since CSE showed MSTN-inhibitory activity in vitro, we examined in vivo effects of
CSE in mice. The oral administration of CSE for 29 days resulted in a significant increase in
the forelimb’s muscle mass (2.28 ± 0.142 vs. 1.70 ± 0.102 mg, p < 0.001) as compared with
the control group, but the hindlimb’s muscle mass was not significantly different from the
control group (2.68 ± 0.231 vs. 2.60 ± 0.101 mg) (Figure 4c). Additionally, the grip strength of
CSE-treated mice was significantly greater as compared with that of the control mice on day
22 (0.21 ± 0.079 vs. 0.11 ± 0.068 N, p < 0.05) and on day 29 (0.31 ± 0.161 vs. 0.09 ± 0.073 N,
p < 0.05) but not on day 8 and 15 (Figure 4b). Body and bone weights were not affected by the
CSE administration (Figure 4a,d).
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Figure 3. CSE (mixture of various varieties) blocks Smad3 phosphorylation induced by MSTN but 
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min. The blots are representative of three independent assays (Figure S1) and have been sequen-
tially probed with antibodies against phospho-Smad3 (p-Smad3), total Smad3 (Smad3), and β-
actin. Densitometry analyses of the blots were from three independent assays. The relative phos-
phorylation level of p-Smad3 was normalized by the expression level of total Smad3. The error 
bars indicate standard deviation (n = 3). Different letters are different at p < 0.05. 
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Figure 3. CSE (mixture of various varieties) blocks Smad3 phosphorylation induced by MSTN but
not by GDF11 or Activin A in HepG2 cells. Cells were cultured in serum-free DMEM for 4 h, followed
by treatment with 10 nM MSTN, 10 nM MSTN plus CSE (50 µg/mL), 10 nM GDF11, 10 nM GDF11
plus CSE (50 µg /mL), 10 nM Activin A, and 10 nM Activin A plus CSE (50 µg /mL) for 30 min. The
blots are representative of three independent assays (Figure S1) and have been sequentially probed
with antibodies against phospho-Smad3 (p-Smad3), total Smad3 (Smad3), and β-actin. Densitometry
analyses of the blots were from three independent assays. The relative phosphorylation level of
p-Smad3 was normalized by the expression level of total Smad3. The error bars indicate standard
deviation (n = 3). Different letters are different at p < 0.05.
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muscle and bone are combined weights of both right and left sides. Data are means ± SEM (n = 6). 
** p < 0.05; *** p < 0.001. 
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test. + p < 0.1. CSE; The ethanol extracts of coffee silverskin. The relative level is expressed as per-
centages of the values of the CSE group from those in the control group. Values are means ± SE (n 
= 6). Statistical analyses were performed using Student’s t-test. + p < 0.1. CSE; the ethanol extracts 
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Mice 

The effect of the oral administration of CSE on the expression of mRNA genes related 
to energy metabolism was examined. The mRNA expression levels of the Ppargc1a (143%, 
p < 0.05) and Ucp1 (508%, p < 0.01) genes were significantly upregulated in the CSE-treated 

Figure 4. Effects of the oral administration of CSE (mixture of various varieties) on weight gain (A),
grip strength (B), muscle weight (C), and bone weight (D). Open circle (o) and closed square (�)
indicate 0 and 5-mg/kg body weight oral administration of CSE, respectively. The weights of
muscle and bone are combined weights of both right and left sides. Data are means ± SEM (n = 6).
** p < 0.05; *** p < 0.001.
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2.3. CSE Administration Decreases the Blood Free Fatty Acid Level

The free fatty acid level in the blood of CSE-treated mice tended to be lower than that
of the control group (588.6 ± 127.37 µEq/L vs. 745.8 ± 119.59 µEq/L, p < 0.1). However,
glucose, total cholesterol, and triglyceride in the blood between the two groups were not
significantly different (Table 1).

Table 1. Effects of CSE on blood glucose, total cholesterol, triglyceride, and free fatty acid level on day 30.

Group Glucose
(mg/dL)

Total Cholesterol
(mg/dL)

Triglyceride
(mg/dL)

Free Fatty Acid
(µEq/L)

Control 286.0 ± 8.07 127.2 ± 5.74 129.8 ± 11.21 745.8 ± 119.59
CSE 291.8 ± 13.48 132.5 ± 8.12 129.3 ± 11.58 588.6 ± 127.37 +

Relative level (%) 102.0 104.1 99.6 78.9

The relative level is expressed as percentages of the values of the CSE group from those in the control group. Values are means ± SE (n = 6).
Statistical analyses were performed using Student’s t-test. + p < 0.1. CSE; The ethanol extracts of coffee silverskin. The relative level is
expressed as percentages of the values of the CSE group from those in the control group. Values are means ± SE (n = 6). Statistical analyses
were performed using Student’s t-test. + p < 0.1. CSE; the ethanol extracts of coffee silverskin.

2.4. Administration of CSE Upregulated the mRNA Expression Level of Ppargc1a and Ucp1
in Mice

The effect of the oral administration of CSE on the expression of mRNA genes re-
lated to energy metabolism was examined. The mRNA expression levels of the Ppargc1a
(143%, p < 0.05) and Ucp1 (508%, p < 0.01) genes were significantly upregulated in the
CSE-treated group compared with the control group, while the mRNA expression levels of
Fndc5 and Mstn were not significantly different between the two groups (Figure 5).
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The blots are representative of three independent assays (Figure S2). Data are means ± SE (n = 3).
Statistical analyses were performed using Student’s t-test. * p < 0.05; ** p < 0.01.

2.5. Purification and Structural Identification of Compounds with MSTN-Inhibitory Capacity

Solvent partitioning results showed that chloroform and hexane fractions inhibited
more than 80% of 1-nM MSTN activity while water and 60% ethanol fractions inhibited
less than 20% of 1-nM MSTN activity in HEK293 cells carrying (CAGA)12-luciferase gene
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construct (Figure 6a). Solid-phase extraction chromatography of the chloroform fraction
with the C18 Sep-Pak cartridge showed that 80% and 100% methanol fractions had MSTN-
inhibitory capacities (50% and 70%, respectively) in HEK293 cells carrying (CAGA)12-
luciferase gene construct (Figure 6b).
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dependent (Figure 7c). 

Figure 6. Inhibition of MSTN activity by the organic solvent fractions (Water, Hexane, Chloroform,
and 60% Ethanol fractions) of the CSE (A) and by the fractions (0%, 20%, 40%, 60%, 80%, and
100% methanol) obtained by applying chloroform layer to C18 Sep-Pak cartridge (B). The frac-
tions in combination with 1-nM MSTN were added to the HEK293 cells transformed permanently
with (CAGA)12-luciferase gene construct, followed by incubation for 24 h and measurement of the
luciferase activity. The error bars indicate the SD (n = 3).

Reversed-phase HPLC of the 100% methanol fraction showed two peaks (Fractions 16
and 19) with MSTN-inhibitory capacity (Figure 7a,b), and the inhibitions were dose-
dependent (Figure 7c).

In the electrospray ionization mass spectrometry spectrum (ESIMS), peak1 (fraction 15)
showed a protonated [M + H]+ ion at m/z 471.4. The 1H NMR spectrum of peak1 evidenced
the presence of a long alkyl chain due to characteristic signals (δH 0.92 and 1.30), three aromatic
protons (δH 7.16, 6.95, and 6.67), an olefinic proton (δH 7.02), and two methylene protons
(δH 3.46 and 2.88). The UV spectrum of peak1 was similar to those of 5-hydroxytryptamine
with the UV absorption patterns at 280 and 300 nm. Additionally, the spectroscopic data
comparison between observed and previously reported data further confirmed that the peak1
is βN-arachinoyl-5-hydroxytryptamide (C20-5-HT) (Figure 8a and Figure S3). The NMR data
of the peak2 were similar to those of βN-arachinoyl-5-hydroxytryptamide, but the ESIMS
showed a molecular ion peak at m/z 499 ([M]+), which exceeded that of the latter compound
by 28 amu. Additionally, the 13C NMR spectrum of peak2 gave additional methylene signals
at δC 28.4−29.7, in comparison with that of βN-arachinoyl-5-hydroxytryptamide. Thus,
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the structure of the peak2 was elucidated as βN-behenoyl-5-hydroxytryptamide (C22-5-HT)
(Figure 8b and Figure S4).
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Figure 7. The HPLC profile for the purification of MSTN inhibitors. (A) 100% methanol fraction
of C18 Sep-Pak cartridge was subjected to the reverse-phase HPLC on a Pursuit XRs 5 C18 column
(10 × 250 mm, Agilent technology). It was eluted with an isocratic gradient of 80% methanol for 10 min,
then 100% methanol for 20 min at a flow rate of 3.5 mL/min. The absorbance was monitored at 280 nm.
Bars indicate inhibition parts against MSTN activity. (B) Each fraction (1 µg/mL) eluted from HPLC was
examined for its inhibitory capacity of 1-nM MSTN. (C) Fraction 15 (peak1) and 19 (peak2) at various
concentrations were examined for their inhibitory capacities of 1-nM MSTN.
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3. Discussion

This study first introduces a novel function of the ethanol extract of coffee silverskin
(CSE) by showing that CSE suppressed the activity of MSTN, a potent negative regulator of
skeletal muscle mass. The MSTN inhibitory capacity of CSE measured by pGL-(CAGA)12
luciferase reporter gene assay was further confirmed by CSE’s blocking of Smad3 phos-
phorylation, a critical component of the canonical MSTN signaling pathway. MSTN, as a
member of the TGF-β superfamily, is closely related to Activin A and GDF11 and shares
functional redundancy and signaling process via Smad phosphorylation with these ligands,
but at the same time, these ligands elicit their specific cellular effects [31]. In this regard,
MSTN-inhibitors need to be specific for MSTN inhibition with minimal inhibition of other
TGF-β superfamily ligands to minimize the nontarget effects in vivo. The current result
shows that CSE suppressed MSTN in a pGL-(CAGA)12 luciferase reporter gene assay,
while Activin A and GDF11 were not inhibited by CSE in the concentration range tested.
Furthermore, CSE blocked Smad3 phosphorylation induced by MSTN but not by GDF11
or Activin A, indicating that CSE has the potential as a specific MSTN inhibitor.

Studies have shown that the suppression of MSTN activity increases muscle mass in
adult animals [10], as well as improves body metabolism and insulin sensitivity [17,20].
Since CSE demonstrated MSTN-inhibitory capacity in vitro experiment, we examined
the effects of CSE on muscle mass and strength and blood metabolites by daily oral
administration of CSE for 29 days in mice. The administration of CSE significantly increased
forelimb muscle mass with a concomitant increase in forelimb grip strength. Unexpectedly,
hindlimb muscle mass was not affected by the CSE administration. With the current
data, the reason for the differential effect cannot be explained, and future studies are
needed to confirm and explain the result with detailed mechanistic investigations. Notably,
despite the increase in forelimb muscle mass, the body weight was not affected by the
administration of CSE. The fat content was not measured in this experiment. Given that
MSTN inhibition is known to reduce fat accumulation in mice [17,18], it is likely that the
reason for no change in body weight was due to a decrease in fat mass. The free fatty acid
concentration in serum was tended to decrease by the administration of CSE, indicating
an active utilization of blood free fatty acids by CSE administration. This result is in
agreement with other studies that also reported a decrease in blood free fatty acid level
by the administration of MSTN-inhibitory compounds in mice fed either a regular [32] or
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high-fat diet [33]. However, the levels of blood glucose and triglyceride were not affected
by the administration of CSE in contrast to the results of the above reports [17,31], where
decreases in blood glucose and triglyceride were observed by MSTN-inhibitory compound
administration. Aligning with the enhanced use of fatty acid by MSTN-inhibition, a
study showed that MSTN-inhibition increased the expression of genes regulating lipid
metabolism and energy expenditure, such as the Ppargc1a, Ucp1, and Fndc5 genes [17].
Ppargc1a upregulates genes involved in the TCA and mitochondrial fatty acid cycles and
mitochondrial biogenesis to regulate energy metabolism [34–36]. Both the Ucp−1 and Fndc5
genes, adipose browning markers, have shown to be upregulated by the Ppargc1a [37,38].
Our results also showed that the Ppargc1a and Ucp1 gene expression was upregulated by
CSE administration, while the Fndc5 gene expression was not significantly upregulated,
even though the mean was greater (122%, p = 0.129). These results, the increase in muscle
mass and strength, suppressed level of blood fatty acids, and enhanced expression of
genes in lipid metabolism, suggest that the CSE administration suppressed MSTN activity
in vivo. Furthermore, the results also suggest that the MSTN-inhibiting compound(s)
present in CSE is orally active in suppressing MSTN activity in vivo. This study, however,
could not thoroughly examine underlying signaling pathways associated with muscle
protein metabolism regulated by MSTN, as well as muscle cellularities, such as muscle
fiber hypertrophy and hyperplasia, and fiber-type composition, thus future studies need to
investigate the underlying mechanisms.

Our results indicated that the potential compound(s) suppressing MSTN activity is
mostly present in silverskin and is ethanol-soluble, since ethanol extracts of green beans
and roasted beans, as well as the water extract of silverskin, showed little MSTN-inhibitory
activity. Caffeine and chlorogenic acid, which are most abundant in green and roasted
coffee beans, have various biological activities [34,39]. Given that ethanol- or water-extract
of green or roasted coffee beans showed little MSTN-inhibitory activity, it is unlikely that
caffeine or chlorogenic acid contributed to the MSTN-inhibitory capacity. Our purification
and identification results showed that βN-arachinoyl-5-hydroxytryptamide (C20-5-HT) and
βN-behenoyl-5-hydroxytryptamide (C22-5-HT) isolated from CSE inhibit MSTN activity.
The N-alkanoyl-5-hydroxytryptamides, including C20-5-HT and C22-5-HT, are found in
the waxy layer of green coffee beans as the major constituent [40,41], as well as in roasted
coffee powder [42]. Of note, the ethanol-extract of green coffee bean which was expected
to have N-alkanoyl-5-HT did not show MSTN-inhibitory capacity, suggesting that the
concentration of C20-5-HT and/or C22-5-HT in the ethanol extract of the green coffee bean
is considerably lower than the CSE.

In summary, results show that ethanol extract of coffee silverskin (CSE) suppresses
MSTN activity in vitro, and its administration increased the muscle mass and strength,
along with a decrease in the level of blood free fatty acids in mice. C20-5HT and C22-5HT
were isolated from CSE as the major compounds contributing to the MSTN inhibition,
suggesting the potential of CSE, C20-5HT, and C22-5HT being developed as agents to
combat muscle atrophy and metabolic syndrome.

4. Materials and Methods
4.1. Coffee Beans

Green coffee beans, roasted coffee beans, and coffee silverskins of eight different vari-
eties, including Colombia huila supremo, India gangagiri, Ethiopia yirgacheffee, Guatemala
SHB huehuetenango, Kenya AA FAQ, Kenya AB TOP, Brazil NY2FC17/18 Cerrado, and
Ethiopia kochere onacho, were obtained from the Haeram Coffee Company (Gangneung,
Korea). The samples were ground to powder using a coffee grinder following the procedure
described previously [43].

4.2. Preparation of Ethanol and Water Extracts of Samples

To extract the ethanol-soluble fraction of green coffee beans, coffee silverskins, and
roasted coffee beans, 20-g powder samples were mixed with 1 L of 100% ethanol and
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incubated at room temperature for 24 h under a dark condition to reduce light-induced
chemical reactions. Two additional extractions were performed and combined. To extract
the water-soluble fraction, 20-g powder samples were boiled in 1 L of water for 20 min.
The debris residue was removed by centrifugation (3000× g, 10 min). The weights of
ethanol-soluble and water-soluble extracts were measured after complete evaporation of
ethanol and water under vacuum at 30 ◦C and 50 ◦C, respectively. After the resolubilization
of the ethanol and water extracts, the extracts were filtered through a 0.22-micron syringe
filter before use, as described previously [43].

4.3. pGL3-(CAGA)12-Luciferase Assay

The luciferase assay was performed in the same manner as in the previous study [44].
Briefly, HEK293 cells stably expressing (CAGA)12-luciferase gene construct [45] were
seeded on 96-well plates at 2 × 104 cell//well and grown in DMEM containing 10%
FBS, 1% penicillin/streptomycin, and 1% geneticin at 37 ◦C with 5% CO2 for 24 h. After
incubation, the medium was replaced with 100-µL serum-free DMEM, then 1-nM MSTN,
Activin A, or growth and differentiation factor 11 (GDF11) (R&D Systems, Minneapolis,
MN, USA), plus various concentrations of the water or ethanol extracts of green bean,
coffee silverskin, or roasted coffee bean were added to each well and incubated for 24 h.
After incubation, luciferase activity was measured by a microplate luminometer (Berthold,
Oak Ridge, TN, USA) using the Bright-Glo luciferase assay system (Promega, Madison,
WI, USA). The percentage inhibition of MSTN activity was calculated by the following
formula: Percentage of inhibition capacity = (luminescence at 1-nM ligands: MSTN, Activin
A, or GDF11)—luminescence at the concentration of each extract) × 100/(luminescence
at 1-nM ligands: MSTN, Activin A, or GDF11)—luminescence at 0-nM ligands (MSTN,
Activin A, or GDF11). The IC50 (ligand concentration inhibiting 50% of MSTN, GDF11,
or Activin A activity) values were estimated by a nonlinear regression model defining a
dose-response curve using the Prism6 program (GraphPad, San Diego, CA, USA). The
equation for the model was Y = Bottom + (Top-Bottom)/[1 + 10ˆ(X-LogIC50)], where Y is %
inhibition, Bottom is the lowest value of % inhibition set at 0%, Top is the highest value of
% inhibition set at 100%, and X is Log ligand concentration. IC50 values were analyzed by
ANOVA using the same program.

4.4. Western Blot Analysis

The effects of the coffee silverskin ethanol extracts (CSE; mixture of various varieties)
on MSTN-, GDF11-, and Activin A-induced Smad3 phosphorylation were examined by the
Western blot analysis following the procedure previously described [32]. HepG2 cells were
seeded in 6-well plates at 2 × 105 cells per well and grown in DMEM containing 10% FBS
and 1% penicillin/streptomycin at 37 ◦C with 5% CO2 for 24 h. Cells were then switched
to serum-free DMEM for 4 h, followed by treatment with 10-nM MSTN (R&D Systems,
Minneapolis, MN, USA), 10-nM MSTN plus CSE (50 µg/mL), 10-nM GDF11 (R&D Systems,
Minneapolis, MN, USA), 10-nM GDF11 plus CSE (50 µg /mL), 10-nM Activin A (R&D
Systems, Minneapolis, MN, USA), and 10-nM Activin A plus CSE (50 µg /mL) for 30 min.
Then, cells were lysed in RIPA buffer (20-mM Tris-HCl, pH 7.5, 150-mM NaCl, 1-mM EDTA,
1-mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5-mM sodium pyrophosphate, 1-mM
β-glycerophosphate, 1-mM Na3VO4, and 1-µg/mL leupeptin (Cell Signaling Technology,
Danvers, MA, US) containing the protease and phosphatase inhibitor cocktails (Roche, Nutley,
NJ, USA). The lysates were sonicated for 15 s in ice and centrifuged at 14,320× g for 20 min
at 4 ◦C. Protein lysates were quantified by the BCA assay (Thermo Scientific, Waltham, MA,
USA). Fifty micrograms of protein were separated by 10% SDS-PAGE and transferred to
polyvinylidene fluoride membranes (PVDF; Millipore, Danvers, MA, USA). The membranes
were blocked with 5% BSA in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TTBS) for
3 h at room temperature. To assess phosphorylated and total Smad3, the membranes were
incubated with primary antibodies specific for target proteins for 3 h at room temperature. The
following primary monoclonal antibodies were purchased from Cell Signaling Technology:
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Smad3 (1:1000) and phospho-Smad3 (1:1000). The membranes were washed with TTBS for
10 min four times and incubated for 3 h at room temperature with horseradish peroxidase-
conjugated anti-mouse IgG (1:5000). After washing, the reactive bands were detected by
the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific, Waltham,
MA, USA) and visualized on Kodak Omat X-ray films. Densitometry analysis of the images
obtained from X-ray films was performed using the Image J software (NIH).

4.5. Animal Experiment
4.5.1. Animals

ICR male mice (6-week-old and weighing 30–35 g) were obtained from Central Lab
Animal Inc. (Seoul, Korea). We followed the current regulations for the care and use of
laboratory animals, and all the procedures of animal care were approved by the Animal
Ethics Committee of Gangneung-Wonju National University, Gangneung, Korea (protocol
#, GWNU-2017-19). The mice were maintained in a room at a constant temperature
of 24 ± 1 ◦C under a 12-h light/12-h dark cycle at 65% humidity. Pellet diet (Purina,
Seoul, Korea) and water were provided ad libitum. For a CSE (ethanol extract silverskin)
oral administration experiment, mice (6-week-old and weighing 30–35 g) were randomly
divided into two groups (n = 6 per group). CSE (mixture of various varieties) was diluted
in 0.9% saline solution (0.75 µg/µL) and orally administered (200 µL) daily for 29 days in
the treatment group. Mice in the control group were orally administered with 0.9% saline
solution (200 µL). Body weight was measured on days 0, 8, 15, 22, and 29.

On day 29, after grip strength measurement, mice fasted for 12 h. After fasting,
mice were anesthetized with an intramuscular injection of Zoletil 50 (Virbac, Carros,
France; 10 mg/kg), and blood was collected by cardiac puncture. Serum was prepared by
centrifugation at 890× g for 15 min at 4 ◦C and stored at −70 ◦C until use. After blood
collection, the skin was peeled off; then, forelimbs and hindlimbs were disarticulated from
scapula to carpus and from ilium to medial malleolus, respectively. The weight of forelimbs
and hindlimbs were immediately measured, and the bones were removed immediately
from the forelimb and hindlimb and weighed and frozen in liquid nitrogen, then stored at
−70 ◦C until use. The muscle weight was calculated by subtracting the bone mass from the
weight of the forelimbs and hindlimbs.

4.5.2. Forelimb Grip Strength Measurement

Grip strength was measured on day 0 (before the first oral administration), 8, 15, 22,
and 29. The tensile force generated by each mouse was measured using a force transducer
with a rectangular 4× 5 cm2 metal net (Model-RX-10 Aikoh Engineering Co., Osaka, Japan).
Briefly, the mouse was slowly pulled by the tail in the opposite direction while its two
forelimbs gripped the metal net. The grip strength was recorded in Newtons (N). Each
mouse was subjected to a grip test three times, with at least a 1-min rest between trials, and
the maximum grip force was recorded as the forelimb grip strength.

4.5.3. Analysis of Blood Glucose, Cholesterol, Triglyceride, and Free Fatty Acids

Total cholesterol, triglyceride, and glucose levels in serum were measured by the SD
LipidoCare® system-analyzer (SD Biosensor, Seoul, Korea). The level of free fatty acids
in serum was measured by colorimetric assay kits (FFA, #K612-100, Biovision, Milpitas,
CA, USA).

4.5.4. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from both side of forelimb muscles for qRT-PCR analysis of
Mstn (myostatin), Fndc5 (fibronectin type III domain containing 5), PGC-1a (peroxisome pro-
liferative activated receptor gamma coactivator 1 alpha), and Ucp1 (uncoupling protein 1)
genes using TRIzol reagents (Invitrogen, Waltham, MA, USA) following the manufac-
turer’s instructions, and the RNA was used to synthesize cDNA using the PrimeScriptTM

1st strand cDNA synthesis kit (Takara, Shiga, Japan). Briefly, 1-µg RNA was added to
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a 9-µL reaction mixture for reverse transcription and placed in a PCR machine at 65 ◦C
for 5 min. After 5 min, the reaction mixture was adjusted to 20 µL by adding 4 µL of 5x
PrimeScript buffer, 0.5 µL of RNase inhibitor, 1 µL of PrimeScript RTase, and 4.5 µL of
RNase free dH2O. Thereafter, the reaction mixture was incubated at 42 ◦C for 60 min and
finished at 95 ◦C for 5 min.

PCR amplification was carried out using the iCycler Thermal Cycler (Bio-Rad, Her-
cules, CA, USA). The 25-µL PCR reaction mixture contained 1 µL of cDNA template
(150 ng/µL); 1 µL of each primer (100 pM/µL); 1 µL of dNTP mix (consisting of 0.1 mM
each of dATP, dCTP, dGTP, and dTTP); 2.5 µL of 10x buffer; 0.5 µL of pfu DNA polymerase;
and 18 µL of distilled water. The cycling parameters consisted of an initial incubation
at 94 ◦C for 30 sec, 30 cycles of 15-s denaturation at 94 ◦C, 30-s annealing at 56 ◦C, and
30-s extension at 72 ◦C, and a final 3-min extension step at 72 ◦C to ensure the complete
extension of the amplified products. PCR products were subjected to 1.5% agarose gel
electrophoresis and analyzed by the Vilber Lourmat Imaging System (Vilber Luourmat,
Marne La Vallee, France). Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was used
as an internal control to normalize the expression in determining the relative expression of
the target genes. The primer sequences used in this study are shown in Table 2.

Table 2. The sequence of primers used for RT-qPCR in this study.

Gene Forward Primer (5′–3′) Reverse Primer (5´–3´) Size
(bp) Accession

Mstn GCTTGACTGCGATGAGCACT GCACCCACAGCGGTCTACTA 316 NM 010834
Fndc5 TTGATGTGGCAGCAGACTTC CTTATCCGTCCCTCCTCTCC 312 NM_027402

Ppargc1a ATGTGTCGCCTTCTTGCTCT GCGGTATTCATCCCTCTTGA 350 NM_008904
Ucp1 CTTCTCAGCCGGAGTTTCAG TGCCACACCTCCAGTCATTA 331 NM_009463
Gapdh CGTCCCGTAGACAAAATGGT TCTCCATGGTGGTGAAGACA 328 NM_001289726

4.5.5. Statistical Analysis

The Student’s t-test was performed to examine the effect of CSE administration on
muscle mass and function, blood metabolites parameters, and gene expressions using the
Prism6 program (GraphPad, San Diego, CA, USA).

4.6. Isolation of Anti-MSTN Inhibitors from CSE

To isolate the compound(s) having MSTN-inhibitory capacity, the solvent partitioning
method was used as illustrated in the following diagram (Figure 9). Dry CSE was mixed
with chloroform and water (v/v = 1:1). The mixture solution (chloroform and water) was
added to the separating funnel and vigorously shaken 3 to 4 times. The funnel was allowed
to stand for 1 h without disturbance. Once the layers were separated, the layers were
carefully collected. This extraction procedure was repeated two more times, and water
fractions were pooled and concentrated using a rotary evaporator. The chloroform layer
was also concentrated and subjected to solvent partitioning with 90% ethanol and hexane
(v/v = 1:1). The hexane layer and 90% ethanol layer were separated and concentrated by the
same procedure as above. The 90% ethanol layer was subjected to solvent partitioning with
chloroform and 60% ethanol (v/v = 1:1), and the layers were separated and concentrated.
The water, hexane, 60% ethanol, and chloroform layers were examined for their MSTN-
inhibitory activities.
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The chloroform layer, which showed MSTN-inhibitory capacity, was subjected to
solid-phase extraction chromatography with a C18 Sep-Pak cartridge (Waters, Milford, MA,
USA). The active layer was loaded into the cartridge and eluted with water and methanol
at ratios of 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100. The factions were examined for
their MSTN-inhibitory capacities. The 100% methanol fraction, which showed the highest
MSTN-inhibitory capacity, was subjected to reverse-phase HPLC (Pursuit XRs 5 and 10 µm,
10 × 250 mm, Semipreparative C18, 3.5 mL/min, and UV detection at 202 and 280 nm).
Elution was performed with an isocratic gradient of 80% methanol for 10 min, then 100%
methanol for 20 min, and the fractions were examined for their MSTN-inhibitory capacities.
For the structural analysis of the separation of compound 1 and compound 2, they were
subjected to a 2nd reverse-phase HPLC (Cosmosil, 10 µm, 10 × 250 mm, Semipreparative
C18, 75% CH3CN, 3 mL/min, and UV detection at 210 and 280 nm).

4.7. Identification of MSTN Antagonists

Two distinctive peaks with MSTN-inhibitory capacity were identified using the
reverse-phase HPLC separation. To identify the molecular structures of the compounds,
LC-MS and NMR experiments were carried out. Liquid chromatography-mass spectrome-
try (LC-MS) was operated with an LTQ XL linear ion trap (Thermo Scientific, Rockford,
IL, USA) equipped with an electrospray ionization (ESI) source that was coupled to a
rapid separation LC (RSLC; Ultimate 3000, Thermo Scientific) system (ESI-LC-MS). NMR
experiments were operated on the Bruker AVANCE HD 800-MHz NMR spectrometer
(Bruker, Berlin, Germany) at the Korea Basic Science Institute (KBSI) in Ochang, Korea.
NMR spectra were recorded in CD3OD as an internal standard (δH 3.31/δC 49.0).
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