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Deep learning radiomics-based preoperative
prediction of recurrence in chronic rhinosinusitis

Shaojuan He,1,2,5 Wei Chen,3,5 Xuehai Wang,4 Xinyu Xie,1 Fangying Liu,1 Xinyi Ma,1 Xuezhong Li,1 Anning Li,2,*

and Xin Feng1,6,*

SUMMARY

Chronic rhinosinusitis (CRS) is characterized by poor prognosis and propensity for
recurrence even after surgery. Identification of those CRS patients with high risk
of relapse preoperatively will contribute to personalized treatment recommen-
dations. In this paper, we proposed a multi-task deep learning network for sinus
segmentation and CRS recurrence prediction simultaneously to develop and vali-
date a deep learning radiomics-based nomogram for preoperatively predicting
recurrence in CRS patients who needed surgical treatment. 265 paranasal sinuses
computed tomography (CT) images of CRS from two independent medical cen-
ters were analyzed to build and test models. The sinus segmentation model
achieved good segmentation results. Furthermore, the nomogram combining a
deep learning signature and clinical factors also showed excellent recurrence pre-
diction ability for CRS.Our study not only facilitates a technique for sinus segmen-
tation but also provides a noninvasive method for preoperatively predicting
recurrence in patients with CRS.

INTRODUCTION

Chronic rhinosinusitis (CRS) is a common inflammatory disease of the nose and paranasal sinuses with a

prevalence of 5–12%, which is characterized by significant disease burden, specific computed tomography

(CT) changes, and endoscopic signs. This disease can be divided into CRS without nasal polyps (CRSsNP)

and CRS with polyps (CRSwNP).1 For patients with CRS, continued appropriate medical therapy combined

with surgical treatment if necessary is the first-line treatment.2 However, the prognosis of these patients is

still poor with early recurrence, especially for patients with CRSwNP. Moreover, some long-term follow-up

studies showed revision polypectomy rates were as high as 20%–50%.3–5 Hence, for those patients who had

failed appropriate medical therapy and needed surgical treatment, accurate detection of relapse risk fac-

tors and identification of CRS patients with high risk of recurrence preoperatively would be important in

assisting in optimizing surgical case selection and instructing patients to use medicines and endoscopic

debridement periodically after surgery as prescribed to reduce the recurrence rate of CRS.

Radiomics, an emerging tool, can extract high-throughput features from noninvasive medical imaging such

as CT, positron emission tomography (PET), and magnetic resonance (MR) and construct machine learning

models for diagnostic and prognostic prediction.6 One of the biggest challenges in the radiomics analysis

of CRS patients is the complex anatomy of the sinus region, such as many cavities, which is very unfavorable

for extracting traditional radiomics features and brings great challenges to the modeling construction.

Additionally, sinus segmentation needs to be performed manually by experienced radiologists, which is

an extremely tedious and time-consuming process. Furthermore, the usual radiomics studies directly

extract features from segmentation and will not consider the implicit information during the segmentation

process. Fortunately, deep learning-based radiomics can directly take raw images or rectangular regions

containing tumors as input and automatically learns discriminative features.7 Recently, deep learning-

based methods have made outstanding achievements in various medical imaging segmentation,8,9 and

multi-task learning can solve this problem by performing segmentation and predictive analysis simulta-

neously in an end-to-end model.10,11

To date, deep learning has gained remarkable success in multiple fields, such as lung cancer,12 liver can-

cer,13 brain tumor,14 etc. However, fewer studies have applied deep learning to non-cancer diseases.

Furthermore, although many previous studies have explored the clinical risk factors for the recurrence of
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CRS,15,16 these studies only focused on unilateral factors and could not provide a comprehensive and ac-

curate prognostic assessment for CRS. To our knowledge, few studies have tried to comprehensively assess

the prognosis prediction for CRS recurrence based on combination of clinical information, laboratory tests,

and radiology. Thus, we aimed to develop and validate a comprehensive nomogram combining a multi-

task deep learning-based radiomics signature and clinical factors for preoperatively predicting recurrence

in CRS patients who needed surgical treatment in this study.

RESULTS

Characteristics of the patients

In this study, we designed a multi-task deep learning network for sinus segmentation and CRS recurrence

prediction simultaneously and developed a comprehensive nomogram by combining a deep learning

signature and clinical factors. The overall study design is shown in Figure 1. Overall, 265 patients were

enrolled in this study, and 92 patients were excluded. Further details can be found in Figure 2. The training

cohort consisted of 200 patients (mean age, 44years G15 [SD]; 137 men) from medical center A. The

external independent testing cohort comprised 65 patients (mean age, 51years G11 [SD]; 47 men) from

medical center B. There were no statistically significant differences in clinical variables (gender, age, smok-

ing, drinking, hypertension, and diabetes) between the recurrence and no-recurrence groups neither in

the training cohort nor in the testing cohort with the exception of asthma (training cohort p < 0.001), allergic

rhinitis (training cohort p < 0.001; testing cohort p = 0.002), and circulating eosinophil (training cohort

p = 0.001; testing cohort p = 0.009), justifying their use as the training and testing cohorts. Table 1 shows

the clinical features of patients in the training cohort and testing cohort.

Development and validation of deep learning signature

As shown in Figure S1, the traditional radiomics model did not obtain satisfactory results with an area under

the curve (AUC) of receiver operating characteristic (ROC) of just 0.496 in the testing cohort (the details of

the traditional radiomics technology can be found at https://github.com/chenypic/deepSinuses). Hence, a

multi-task deep learning network was proposed to perform sinus segmentation and predict CRS recur-

rence simultaneously (see Figure S2). For the training cohort, we performed stratified 5-fold cross

Figure 1. The flowchart of this study
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validation, where each fold had the same proportion of the positive samples for recurrence. The results are

shown in Figure 3A. The mean AUC is 0.755, proving that our model has good performance in the internal

validation cohort. We then retrained the model using all the training cohorts and achieved an AUC of 0.742

(95% confidence interval [CI], 0.619–0.865) in the testing cohort, as shown in Figure 3B, suggesting that the

deep learning signature can be an indicator for the recurrence of CRS. To further verify the consistency of

our model, we calculated the optimal cutoff values. For the cross validation, the overall optimal cutoff value

was 0.431, and the optimal cutoff value of the testing cohort was 0.435. For sinus segmentation, with the

manual segmentation as gold standard, we achieved a mean dice similarity coefficient (DSC) of 0.843 in

the 5-fold cross-validation cohort and 0.833 in the testing cohort. Five qualitative segmentation results

Figure 2. Flow diagram of patient inclusion and exclusion

Table 1. Patients and preoperative clinical features in the training and testing cohorts

Clinical features

Training (n = 200)

p value

Testing (n = 65)

p value

Recurrence

(n = 85)

Non-recurrence

(n = 115)

Recurrence

(n = 14)

Non-recurrence

(n = 51)

Age, mean G SD 44.18 G 13.23 43.71 G 15.64 0.933 50.79 G 8.62 50.49 G 11.78 0.987

Female, No. (%) 27 (31.76) 36 (31.30) 0.945 5 (35.71) 13 (25.29) 0.449

Asthma, No. (%) 32 (37.65) 6 (5.22) <0.001* 4 (28.57) 8 (15.69) 0.271

Allergic rhinitis, No. (%) 29 (34.12) 14 (12.17) <0.001* 11 (78.57) 17 (33.33) 0.002*

Hypertension, No. (%) 10 (11.76) 23 (20.00) 0.121 5 (35.71) 8 (15.69) 0.097

Diabetes Mellitus, No. (%) 4 (4.71) 2 (1.74) 0.224 2 (14.29) 1 (1.96) 0.052

Circulating eosinophil count,

mean (SD), cells/mL

390.9 G 277.73 257.02 G 192.12 0.001* 621.43 G 683.44 244.71 G 189.90 0.009*

Smoking, No. (%) 21 (24.71) 28 (24.35) 0.954 3 (21.43) 11 (21.57) 0.991

Drinking, No. (%) 33 (38.82) 38 (33.04) 0.398 6 (42.86) 12 (23.53) 0.152

Abbreviation: SD: standard deviation. *p < 0.05.
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are shown in Figure 4. The blue contour corresponds to ground truth, while the red contour corresponds to

the segmentation results. It was shown that our proposed method achieved good segmentation results.

To further verify the performance of our proposedmulti-task deep learning network, we also presented sin-

gle-task methods for segmentation and recurrence prediction of CRS in the testing cohort. Our experi-

mental results showed that the single-task segmentation model achieved a DSC of 0.837, which is slightly

higher than 0.833 of the multi-task model, but without a statistically significant difference (p = 0.477). For

recurrence prediction, the single-task classification model never achieved results with an AUC greater than

0.6 in multiple experiments, which may be due to the severe overfitting problem. In conclusion, the result

indicated that the proposed multi-task deep learning network significantly improved the predicted accu-

racy of CRS without the loss of segmentation accuracy.

Development and validation of the combination nomogram

In univariate analysis, clinical parameters in Table 1 were explored, and asthma, allergic rhinitis (AR), and

circulating eosinophil showed significant differences between the recurrence group and non-recurrence

group in the training cohort (p < 0.05), which were then used to conduct a clinical model with an AUC of

0.767 (95% CI: 0.699–0.835) in the training cohort and 0.766 (95% CI: 0.642–0.881) in the testing cohort.

Subsequently, we enrolled the deep learning radiomic score (DLR-score), asthma, AR, and circulating

eosinophil as factors in a multivariable logistic regression analysis to build the personalized prediction

model. According to multivariate logistic analysis, a clinical-radiomic model was built by integrating the

three independent clinical factors and DLR-score.

Performance of the combination nomogram

The fusion model showed the best evaluation performance in both the two cohorts, with an AUC of 0.790

(95% CI: 0.727–0.854) in the training cohort and 0.842 (95% CI: 0.740–0.943) in the testing cohort (Figures 5A

and 5B), and was visualized into a nomogram for clinicians (Figure 5C).

Furthermore, the calibration curves of the nomogram (Figures 6A and 6B) indicated that the predicted

values generated by the nomogram were in good agreement with the actual results. Finally, we used a

decision curve analysis (DCA) curve to assess whether this nomogram would help with clinical treatment

strategies. The DCA curves (Figures 6C and 6D) demonstrated that the nomogram had a good net benefit

in predicting the recurrence of CRS. Patients with CRS can benefit more from using the nomogram when

the threshold probability lies across a wide range of 0.1–1. The clinical benefit of the nomogram was signif-

icantly better than that of the clinical model.

As shown in Table 2, the clinical model achieved slightly better predictive performance than the DLRmodel

in the testing cohort (Clinical model AUC = 0.766, 95% CI [0.642, 0.881]; DLR model AUC = 0.742, 95% CI

[0.619, 0.865]) with less false-negative rate (FNR). When combining DLR-score with clinical factors, the

signature achieves an improved performance than either of them alone with an AUC of 0.842 (95% CI

Figure 3. The ROC curves of the deep learning signature

(A) The ROCs of the 5-fold cross validation.

(B) The ROC of the testing cohort.
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[0.740, 0.943]). Additionally, with the cutoff value of the training cohort, the nomogram also obtained the

highest accuracy of 0.813 and the best specificity of 0.848. Furthermore, the significant difference from De-

long test suggested significant improvement in predictive performances between the combination nomo-

gram and the clinical model (p = 0.029), while it indicated no significant difference between the nomogram

and DLR model (p = 0.130). The receiver operating characteristic (ROC) curves of the combination nomo-

gram, clinical model, and DLR model for the overall group in the testing cohort are shown in Figure 7.

DISCUSSION

Chronic rhinosinusitis, a multifactorial heterogeneous disorder, is characterized by great quality of life

(QoL) impairment, propensity for recurrence, and the pain of revision polypectomy.1,17 According to the

European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS2020), rhinosinusitis is one of the top

10 most costly health conditions for United States (US) employer. The highest direct costs and QoL impair-

ment were associated with patients who had recurrent CRS after surgery. Exploring favorable methods to

accurately identify those CRS patients who have failed appropriatemedical therapy with high risk of relapse

preoperatively will contribute to personalized treatment recommendations to reduce the recurrence rate.

In this study, we designed a multi-task deep learning network to detect relevant mass lesions of the nasal

cavity and nasal sinuses, extractedmulti-scale features to generate deep risk scores, and finally constructed

a comprehensive nomogram which showed excellent prediction ability in CRS recurrence.

In recent decades, there are advanced understandings of the recurrence of CRS: Lou et al. demonstrated

that a large number of tissue eosinophils played an important role in polyp recurrence.18 Meng et al. sug-

gested that the ratio of Lund-Mackay scores for the ethmoid sinus and maxillary sinus was an indicator for

the recurrence of CRSwNP.19 Beyond these, asthma and AR were also reported to be the risk factors for the

relapse of CRS.16,17 Additionally, with the development of artificial intelligence (AI), Wu et al. established an

evaluation platform 2.0 (AICEP 2.0) for CRS to obtain the proportion of inflammatory cells of nasal polyps

Figure 4. Five qualitative segmentation results in the cross-validation cohort

The blue contour corresponds to ground truth, while red contour corresponds to the automatic segmentation results. Note: The different-layer CT images

listed in the same column belong to the same patient.
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and found eosinophil-dominant phenotypes with the highest recurrence rate of 75% based on whole-slide

imaging.20 However, these described methods are either invasive or unilateral.

In the present study, we pioneerly explored available factors from radiology, laboratories, and physical exam-

ination in clinics toenhance theprognosisprediction forCRSpatientswhoneededsurgical treatment. For sinus

segmentation,weapplied3DU-Netas thebackbonenetwork,which achievedagoodsegmentation resultwith

ameanDSCof 0.843 in the5-fold cross-validation cohort and0.833 in the testingcohort,whichcould contribute

to free radiologists from the time-consuming manual segmentation. Recently, an enhanced gradient level

set algorithmproposedby Laoet al. showedagoodsegmentation effect for sinusitis lesions anddemonstrated

that the radiomicsmodel can effectively predict theprognosis of endoscopic treatment of sinusitis.21 Addition-

ally, some studies have developed convolutional neural network (CNN) algorithm to perform automatic, volu-

metric segmentation of the paranasal sinuses or classification of osteomeatal complex inflammation on CT,

which further confirmed the potential of deep learning-based algorithm on the disease of CRS.22–24 However,

given the shortcomings of CNNs that they cannot effectively model global and long-range semantic interac-

tions due to the locality of convolution operations, we tried to develop a 3D U-Net algorithm to automatically

segment nasal cavity and nasal sinuses structures, which also achieved promising performance. Another CT

segmentation studyby Pallanch and his colleagues demonstrated that volumetric CT scoring, which calculated

the total volume percentage of mucosal thickening and air by using the Analyze software, was an objective

outcome measure for the improvement of CRS after medical treatment, but whether the volumetric scoring

can be used for predicting recurrence of CRS after surgery was not explored.25

In our research, we developed a multi-task deep learning structure that performed segmentation and CRS

recurrence prediction simultaneously in an end-to-end model. Impressively, the processed deep radiomic

signature also obtained satisfactory risk-evaluation ability for the recurrence of CRS with an AUC of 0.742 in

the external testing cohort, which was better than the AUC of just 0.496 obtained by traditional radiomics

technology (see Figure S1). The reasonable interpretation of this result is that the features extracted

through the traditional radiomics method require prudent engineering and considerable domain expertise

to design feature extractors, and it is difficult to cover the comprehensive features of the images.26

Different from traditional radiomics technology, deep learning is making major advances in solving these

Figure 5. The ROC curves and nomogram of the clinical-radiomic model

(A) The ROC curves of the clinical-radiomic model in the training cohort and (B) the testing cohort.

(C) The developed nomogram to predict recurrence in CRS.
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problems by learning from data using a general-purpose learning procedure and does well in discovering

intricate signatures in high-dimensional data.27 However, deep learning methods are often restrained by

overfitting problems due to small datasets. Fortunately, multi-task learning can solve this problem to a

certain extent. Furthermore, compared with single-task models, the correlation and heterogeneity be-

tween the segmentation and prognosis prediction can also be modeled by the multi-task learning, which

were confirmed by our results.

Nomograms fusing clinical risk factors have been widely used to predict medical outcomes and prognosis.

Currently, our study incorporated multi-scale prognostic features based on deep learning and clinical fac-

tors to construct a nomogram. In agreement with previous studies, AR, asthma, and higher levels of circu-

lating eosinophils were independently related to the recurrence of CRS with the exception of asthma in the

external cohort because of the small sample sizes. When DLR-score was included in the proposed clinic-

radiomic nomogram, the AUC in the testing cohort was significantly increased from 0.766 to 0.842 (p =

0.029), which showed favorable performance and improved risk-evaluation accuracy. In addition, the

DCA showed that more patients will benefit from the clinic-radiomic nomogram rather than the clinical

model, suggesting that the DLR-score adds incremental value to the clinical usefulness of clinical predic-

tors. Thus, the pleasant preoperative prediction power of the proposed noninvasive method made it a po-

tential preoperative evaluation tool in clinical practice.

Table 2. The results of different models in the testing cohort

AUC Accuracy Sensitivity Specificity FPR FNR

DLR model 0.742 (0.619–0.865) 0.719 0.677 0.758 0.242 0.322

Traditional radiomics model 0.496 (0.360–0.648) 0.446 0.903 0.029 0.971 0.097

Clinical model 0.766 (0.642–0.881) 0.750 0.806 0.697 0.303 0.193

Nomogram 0.842 (0.740–0.943) 0.813 0.774 0.848 0.152 0.226

Abbreviations: FPR = False-Positive Rate; FNR = False-Negative Rate; DLR = deep learning radiomic.

Figure 6. Calibration curves and DCA curves of the combined nomogram

(A) Calibration curves of nomogram in the training cohort and (B) the testing cohort.

(C) DCA curves of nomogram in the training cohort and (D) the testing cohort.
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It is well known that asthma, AR, and higher levels of circulating eosinophils are the risk factors of CRS relapse

in accordance with our findings.28–31 For the precise mechanism, previous research demonstrated that type 2

immune response may be involved in the pathogenic process, for which upregulation of type 2 cytokines and

immunoglobulin E (IgE)-mediated release of immunemediators have been observed.32 Additionally, since the

infiltration of eosinophils can remodel the nasal mucosa tissue33 and promote the formation of CRS nasal

polyps,34 eosinophils are recognized as pivotal biomarkers for monitoring disease severity and postsurgical

recurrence in patients with CRSwNP.35–37 The combination of these independent clinical risk indicators and

radiomics features leads us to the best estimation of the reaction to treatment. Consistent with this study, To-

kunaga et al. also found that asthma, higher levels of circulating eosinophils, and signatures of CT images can

be predictors for the recurrence of CRS.38 While they demonstrated that shadows of sinuses in CT scans

(ethmoid R maxillary) were associated with refractoriness of the disease by using Cox proportional hazards

models, our study further used deep learning to extract radiomic features, which were difficult to be quantified

or recognized by the human eye, including size, shape, and complex patterns at the macroscopic scale.

In conclusion, we proposed a multi-task deep learning network for sinus segmentation and CRS recurrence

prediction simultaneously. The predicted DLR-score was then combined with clinical factors to construct a

nomogram, which showed excellent predictive ability for the recurrence of CRS. The result demonstrated

that our model could noninvasively predict the prognosis of CRS patients who needed surgical treatment

preoperatively and provide valuable information for individualized treatment and optimizing manage-

ment, which also offers a promising practice for image segmentation and prognostic prediction in non-can-

cer diseases and broadens the application of DLR to some extent.

Limitations of the study

Despite satisfied sinus segmentation performance and promising recurrence prediction model, our study

has several limitations. Despite the potential of deep learning-based methods in CT images, they still have

limited capability in handling images heterogeneity of different CT scanners, which may generate under-

lying bias during the analysis. Furthermore, the small and imbalanced testing cohort that only 14 of 65 pa-

tients relapsed (21.538%) may limit the strength of our obtained conclusions to a certain extent. Addition-

ally, for the generality of this nomogram, we recruited CRS patients including both CRSwNP and CRSsNP,

but the prognoses of these two subtypes are different; further studies are needed to confirm the accuracy

of the nomogram in the specific CRS subtype. Finally, the deep learning signature was abstract; even

though it can perform automatic segmentation and discover intricate signatures which achieved promising

prediction performance that traditional radiomics model cannot attain, it was difficult to provide direct

Figure 7. ROC curves of the deep learning radiomic (DLR) model, clinical model, and combination nomogram in

the testing cohort
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reference information for the prediction of prognostic outcomes. Larger amounts of data and multicenter

tests are needed for further demonstrating and optimizing our proposed model to establish an AI chronic

rhinosinusitis prognosis prediction platform, which will obtain fast and accurate prediction of CRS recur-

rence by AI when clinicians or patients import digital CT into this platform.
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Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Xin Feng (Email: drfengxin@sdu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Paranasal sinuses CT data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at github and is publicly available as of the date of publication. DOI

is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Patients

This retrospective study was performed at two medical institutions Qilu Hospital of Shandong University

(center A) and Weihai Municipal Hospital (center B), and approved by the Medical Ethics Committee of

the two centers. We systematically reviewedmedical records and paranasal sinuses computed tomography

(CT) images of consecutive patients (n =265) who satisfied the diagnostic criteria for CRS established by the

European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS2012)40 and required endoscopic sinus

surgery (ESS) because of failed medical treatment. ESS was performed in compliance with uniform stan-

dards by four surgeons with more than 10-years’ experience at two centers between January 2016 and

December 2020 and the extent of surgery was defined relative to the extent of the disease by each sinus

based on paranasal sinuses CT images.

The inclusion criteria: (a) patients diagnosed of CRS, (b) patients with medication alone fail to control the

disease, (c) patients who needed surgical treatment.

The exclusion criteria: (a) patients who did not receive a CT scan of the paranasal sinuses within a week

before surgery, (b) patients with odontogenic sinusitis, cystic fibrosis, fungal sinusitis, immunodeficiency

diseases, or tumors, (c) patients without follow-up data, (d) patients without complete clinical data.

Baseline clinical features including gender, age, asthma, allergic rhinitis (AR), blood absolute eosinophil

counts, smoking, drinking, hypertension, and diabetes were obtained frommedical records of each center.

The pre-operation CT images of the paranasal sinuses were used to extract the radiomic features. Patients

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw paranasal sinuses CT data This paper N/A

Code for model and network training and analysis This paper https://github.com/chenypic/deepSinuses

Software and algorithms

Python (version 3.7.6) Python Software Foundation https://www.python.org/

R (version 4.1.0) R software http://www.R-project.org

3D U-Net (Çiçek et al., 2016)39 https://doi.org/10.1007/978-3-319-46723-8_49
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from center A were used as the training cohort (n = 200) and patients from medical center B were used as

the testing cohort (n = 65). All postoperative patients were instructed to use daily nasal saline irrigation,

antibiotics, topical corticosteroids (budesonide spray 400 mg once daily for 12 weeks), and endoscopic

debridement periodically after surgery. Patients were consistently followed-up after ESS based on endo-

scopic examinations. We defined recurrence as endoscopic signs (nasal polyps, mucopurulent secretions,

and / or inflamed mucosa), bothersome symptoms (nasal blockage, rhinorrhea / postnasal drip, smell

impairment, facial pain / headache, and / or sleep disturbance / fatigue) that persisted for at least 1 month

and the need for a systemic medical treatment (long-term antibiotics or systemic steroids) in that month, or

both of endoscopic signs and symptoms.40 Finally, according to a minimum of 1-year follow-up, patients

were divided into a recurrence group (the symptoms and endoscopic signs relapsed) and a non-recurrence

group (the symptoms were controlled and without endoscopic signs).

CT images acquisition and ROI segmentation

In center A, all preoperative axial CT scans were performed using a 64 detector row CT scanner (Discovery

CT750 HD, GE), a 256 detector row CT scanner (Brilliance iCT, Philips) or a dual-source spiral CT scanner

(SOMATOM Force, Siemens). The scanning parameters were routinely set as follows: tube voltage, 80–

140 kVp; tube current, automatic tube current modulation (maximum, 450 mAs); pitch factor, 1.0; slice

thickness, 1 mm; and slice interval, 1 mm. The patients from center B underwent preoperative axial CT

scan using a dual-source spiral CT scanner (SOMATOM Force, Siemens), a 256 detector row CT scanner

(Brilliance, Philips), a 256 detector row CT scanner (Revolution CT, GE) or a 64 detector row CT scanner

(Revolution Frontier, GE). The scanning parameters were the same as center A. All the CT images were re-

constructed with a standard kernel at a slice thickness of 1 mm and an increment of 1 mm.

The images were imported into the 3D-Slicer software (version 4.11.2; https://www.slicer.org) in DICOM

format from the PACS system and the horizontal axial plain was selected to perform the nose and paranasal

sinuses region manual segmentation in each CT slice by two radiologists (S. H. and N. L., with 5 and 9 years

CT experience) who were blinded to the clinical outcome.41 The edge of ROI was 1-2 mm away from the

edge of the lesion to avoid air, bone, and other regions.

Deep learning radiomic score construction and validation

Due to the complexity of the organizational structure of the paranasal sinus region, we proposed a multi-

task deep learning structure that can simultaneously perform the segmentation and recurrence prediction

of the sinus region in an end-to-endmodel to fully exploit the shared global information between these two

tasks. Taking the manual segmentation results of radiologists as the gold standard, we first utilized a 3D

U-Net as the backbone network for multi-task learning because of its excellent performance in 3D medical

image segmentation. The 3D U-Net architecture consisted of three parts: (i) encoding path, (ii) decoding

path, and (iii) skip connections between them. In the bottleneck layer of 3D U-Net, the hidden layer features

were extracted through a multilayer perceptron, and the classification probability was generated through

softmax function. Finally, we got the deep learning radiomic score (DLR-score). During the training process,

a multi-task learning loss function was designed to balance the two tasks by combining segmentation and

classification loss functions with uncertain weights. Further details can be found at https://github.com/

chenypic/deepSinuses. In order to further investigate the performance of our proposed multi-task model,

we designed two single-task networks for sinus segmentation and recurrence prediction in the testing

cohort respectively. Specifically, we dropped the classification module for sinus segmentation, so the

model was similar to 3D U-net. For recurrence prediction, we dropped the decoder module.

Evaluation of images

As previously noted, the Dice similarity coefficient (DSC) was used to measure the degree of similarity be-

tween the automatic andmanual (ground truth) segmentations to evaluate the segmentation performance.

DSCðA;BÞ =
2jAXBj
jAj+ jBj

where A and B denote the automatic segmentation and the ground truth. A score (x) of 0% x < 0.7 would be

considered ‘‘poor’’ performance, 0.7 % x < 0.8 ‘‘fair’’ performance, 0.8 % x < 0.9 ‘‘good’’ performance,

and x R 0.9 ‘‘excellent’’ performance.42
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Radiomic nomogram development

Univariate analysis was first used to identify statistically clinical characteristics (P < 0.05). Then multivariable

analysis was applied to combine the clinical features and the DLR-score with multivariable logistic regres-

sion model. Finally, a combination nomogram was generated based on the proposed multivariate model.

We assessed and compared the performance of the models in terms of discrimination ability, calibration

ability, and clinical usefulness. The area under the curves (AUCs) of receiver operating characteristic

(ROC) were used to quantify the discriminative efficacy for recurrence prediction. Multiple comparisons

of the curves were also performed. Calibration curves were plotted to analyze the calibration performance

and displayed to show the agreement between the predicted and observed risks of recurrence of the

nomogram.43 The decision curve analysis (DCA) was conducted to estimate the clinical utility of the models

by quantifying the net benefits at different threshold probabilities.44

QUANTIFICATION AND STATISTICAL ANALYSIS

All clinical characteristics were statistically analyzed using the Mann–Whitney U test or chi-square test un-

der R software (version 4.1.0; http://www.R-project.org) or Python (version 3.7.6; https://www.python.org/).

A P-value of <0.05 was considered statistically significant. The univariate and multivariate logistic regres-

sion analyses were conducted using the ‘‘glm’’ function. The ‘‘rms’’ package was used for nomogram con-

struction and calibration plotting.45 The ROC curves plotting and area under curve calculation were per-

formed using the ‘‘pROC’’ package. ROC curves were compared using the Delong test.46 The DCA was

conducted with the ‘‘rmda’’ package.47 The DSC was used to evaluate the performance of segmentation.

ADDITIONAL RESOURCES

This study was conducted with the approval of the Medical Ethics Committee of Qilu Hospital of Shandong

University (reference number: KYLL-202206-006) and Weihai Municipal Hospital (reference number:

2022037).
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