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Abstract

Background: Obesity and depression are complex conditions with stronger comorbid 

relationships among women than men. Inflammation and cardiometabolic dysfunction are likely 

mechanistic candidates for increased depression risk, and their prevalence differs by sex. Whether 

these relationships extend to depressive symptoms is poorly understood. Therefore, we analyzed 

sex in associations between inflammation and metabolic syndrome (MetS) criteria on depressive 

symptomatology. Specifically, we examined whether sex positively moderates the relationship 

between depressive symptoms and inflammation among women, and whether MetS has parallel 

effects among men.

Methods: Depressive symptoms, MetS, and inflammation were assessed in 129 otherwise 

healthy adults. Depressive symptoms were assessed using Beck Depression Inventory (BDI-Ia). 

Monocyte inflammation regulation (BARIC) was quantified using flow cytometry measurement of 

TNF-α suppression by β-agonist. Moderation effects of sex on associations between BARIC, 

MetS criteria, and BDI were estimated using two-way ANOVA and linear regression, adjusting for 

BMI, and by sex subgroup analyses.
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Results: Obese individuals reported more depressive symptoms. Sex did not formally moderate 

this relationship, though BDI scores tended to differ by BMI among women, but not men, in 

subgroup analysis. Poorer inflammation control and higher MetS criteria were correlated with 

somatic depressive symptoms. Sex moderated associations between MetS criteria and somatic 

symptoms; among men, MetS criteria predicted somatic symptoms, not among women. Subgroup 

analysis further indicated that poorer inflammation control tended to be associated with higher 

somatic symptoms in women.

Conclusions: These results indicate that obesity-related inflammation and MetS factors have 

sex-specific effects on depressive symptoms in a non-clinical population. Although 

pathophysiological mechanisms underlying sex differences remain to be elucidated, our findings 

suggest that distinct vulnerabilities to depressive symptoms exist between women and men, and 

highlight the need to consider sex as a key biological variable in obesity-depression relationships. 

Future clinical studies on comorbid obesity and depression should account for sex, which may 

optimize therapeutic strategies.

1. Introduction

Depression is twice as prevalent among obese individuals, with over 40% of obese US adults 

reporting clinically-relevant depressive symptoms1, notably higher than the 7% prevalence 

rate of major depression among adults in general. Although obesity and depression are 

complex conditions, there are significant bidirectional associations between them2. Higher 

body mass index (BMI) is associated with poorer responses to classical antidepressant 

treatment3, and comorbid depression predicts unfavorable outcomes in weight-loss trials4. 

Intriguingly, meta-analyses suggest that these associations may be more pronounced in 

women than men5. Systematic reviews have identified a number of biopsychosocial 

mediators of sex differences in the links between obesity and depression, including sex 

hormones, stress, and social stigma6. While ‘sex’ generally refers to strictly biological 

attributes based on chromosomal, genetic, and hormonal factors, ‘gender’ relies on socially 

influenced identities and behavioral expressions, defined by a combination of variables, 

including biological sex. Because biology and environment reciprocally interact throughout 

the lifespan, sex differences in biological outcomes are not entirely sex-driven. Our primary 

use of the term ‘sex’ throughout this paper is for literal consistency and with 

acknowledgment of this complex interplay. For instance, sexual dimorphisms exist across 

brain structures that regulate the stress response7 and energy homeostasis8, particularly 

within the hypothalamic-pituitary-adrenal and sympathoadrenalmedullary systems, but these 

differences may be reinforced (or attenuated) by gender9. Sex differences are also observed 

in neurological pathways implicated in mental illnesses10 that are more prevalent in women, 

such as compulsive eating and major depression, which are in turn affected by gender role11. 

Despite the higher prevalence of comorbid depression among women than men in the US1, 

and recent National Institutes of Health’s effort in identifying sex as a biological variable 

(SABV), sex and gender differences in pathophysiological processes linking obesity and 

depression remain poorly understood.

Chronic, low-grade inflammation and cardiometabolic dysfunction have been identified as 

common links between obesity and depression12, and each tends to affect women and men 

Kohn et al. Page 2

Int J Obes (Lond). Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differentially. In obese persons, regardless of sex, inflammation manifests as increased 

plasma levels of pro-inflammatory cytokines (e.g., tumor necrosis factor-α [TNF-α]), 

adipokines (e.g., leptin), and C-reactive protein, an independent risk factor for 

cardiovascular disease and mortality13. As the major source of obesity-related 

inflammation14, adipose tissue macrophages accumulate with increased body weight. 

Similar to obesity, depressed patients exhibit elevated cytokine levels in serum and 

cerebrospinal fluid15, which can access the brain and reduce the bioavailability of 

monoamine neurotransmitters, such as serotonin and norepinephrine, involved in mood 

regulation16, or decrease levels of brain-derived neurotrophic factor (BDNF)17, which 

normally promotes neurogenesis and may exert antidepressant-like effects. Cytokine 

administration induces clinically-relevant depression and fatigue symptoms18, and treatment 

with TNF-α antagonist improves depressive symptomatology in patients with high 

inflammation19. Thus, inflammation is a likely candidate for the increased comorbidity with 

depression.

Notably, women generally exhibit higher levels of inflammation and greater autoimmune 

disease burden than men, and recent work suggests that women may be more vulnerable to 

inflammation-induced mood changes20. For instance, experimental endotoxin exposure 

evoked similar increases in interleukin-6 and TNF-α between women and men21, but their 

effects on depressed mood were stronger in women. Sex-specific relationships between 

inflammation and mood disturbances, particularly somatic complaints such as fatigue22, 

have also been reported. Hyper-inflammation and depressive symptoms are often linked to 

neuroendocrine dysregulation23, which modulates immune function during stress. Notably, 

women are reported to experience greater physiological stress reactivity than men24, secrete 

more pro-inflammatory cytokines in response to stressors25, and more readily develop 

glucocorticoid resistance26. Some of these effects may be attributable to endocrine 

modulation of stress-regulatory structures that contain high steroid receptor densities (e.g., 

estrogen receptor), particularly the hippocampus27. However, emerging evidence indicates 

that obesity itself produces distinct immunological changes in women, which may feed back 

upon the brain and further depress mood28. For instance, a meta-analytic review concluded 

that obesity was more strongly associated with C-reactive protein levels in women than 

men29. Adiposity may elicit higher inflammation in women due to differing adipose tissue 

metabolism30 and patterns of fat accumulation31. Despite evidence of heightened mood 

disturbances subsequent to immune activation in women, the role of obesity-associated 

inflammation in mood disturbances among women versus men remains unclear, which may 

represent a missed opportunity for targeted therapies to treat comorbid depression.

Meanwhile, men generally exhibit the metabolic syndrome (MetS) at higher rates32. MetS is 

a cluster of markers of cardiometabolic dysfunction, including dyslipidemia, hypertension, 

and hyperglycemia, that are primarily driven by obesity and bi-directionally associated with 

depression33. Among US adults, lean (BMI <25 kg/m2) men are 34% more likely to have 

MetS34 than lean women, and fewer obese men are “metabolically healthy” than obese 

women (29.2% versus 35.4%). This suggests that obesity-related MetS may be more 

prominent in men than women, leading to a question of sex-specific MetS-related mood 

disturbance. Multiple mechanisms by which MetS is associated with depressed mood have 

been described, including insulin and leptin resistance35. Studies in metabolically healthy 
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obese persons suggest that obesity-depression associations depend upon metabolic profile36. 

To date, the data on sex differences in this association have been equivocal. For example, 

somatic depressive symptoms, such as fatigue, appetite and sleep disturbances, are 

associated with abdominal obesity among both men and women, but only among men were 

symptoms also driven by cardiometabolic dysfunction in an older-aged Dutch cohort37. 

Conversely, a similar survey in Korea reported an effect of MetS on depression among 

women, but not men38. Furthermore, depressed women tend to report higher levels of 

somatic symptoms than depressed men39, suggesting sexual dimorphism in symptom 

manifestation, especially somatic symptoms. Differences in experimental methods, 

populations, or depression instruments may account for the mixed findings, and very few 

studies to our knowledge have sought to determine the independent effects of obesity and 

MetS on depressive symptoms in a sex-specific manner.

To that end, the current study examined the role of sex and obesity in associations between 

cellular inflammation, cardiometabolic dysfunction, and depressive symptoms in adults. As 

outlined above, there is growing evidence to suggest that sex-specific sensitivities to 

inflammation and cardiometabolism, particularly within the context of overweight/obesity, 

may underlie the higher incidence of comorbid depression among women or obscure MetS-

depression associations among men. The following hypotheses were tested: (1) associations 

between obesity and depressive symptomatology would be stronger in women, (2) women 

would be more susceptible to the effects of obesity-associated inflammation on depressive 

symptoms, and (3) men would be more vulnerable to the effects of MetS criteria on 

depressive symptoms.

2. Materials and methods

2.1. Participants

All participants gave informed consent to the protocol, approved by the University of 

California, San Diego Institutional Review Board. One hundred twenty-nine otherwise 

healthy, non-smoking men and women between 18-65 years were recruited from the local 

community for a larger study of the role of obesity on vascular inflammation and immune 

cell activation in stage 1 hypertension (SBP <145 mmHg; to exclude stage 2 hypertension 

with consideration for exaggerated BP in laboratory settings). Initial screening via telephone 

interviews, followed by face-to-face confirmation, established the absence of the following 

exclusion criteria: diabetes, current or recent history (<6 months) of smoking or substance 

abuse, history of cardiovascular disease (e.g., symptomatic coronary or cerebrovascular 

disease, arrhythmia, myocardial infarction, cardiomyopathy, heart failure), history of 

bronchospastic pulmonary disease, inflammatory disorders or health-related factors affecting 

immune function (e.g., vaccinations within 10 d of study visit, active infections/illness, 

immunomodulatory medication, uncontrolled thyroid disease), psychosis, major depressive 

disorder, and stage 2 clinical hypertension indicated by use of anti-hypertensive medication 

or laboratory-assessed BP ≥145/90 mmHg. A power analysis determined that a sample size 

of approximately 130 would be needed to detect small-to-medium (r=0.24) main effects 

(e.g., of BMI, MetS, and BARIC) at 80% power with two-tailed alpha=0.05 on depressive 

symptoms in linear regression models, given previous studies5,40,41. Furthermore, we 
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expected similar power to detect moderation effects by sex in these models, despite known 

challenges regarding sample size inflation required to detect moderation42, as prior meta-

analyses of sex-stratified studies have reported near zero effects of the obesity and obesity-

related risk factors in one of the two sexes5,33.

2.2. Sample collection and laboratory procedures

Average basal systolic (SBP) and diastolic blood pressures (DBP) were calculated from two 

sets of three consecutive measurements at 5-min intervals, using a Dinamap Compact BP 

monitor (Critikon, Tampa, FL). Sets were separated by 40-60 min. Standard anthropometrics 

(i.e., height, weight, hip and waist circumference) were collected via conventional tape and 

scale. BMI was calculated by weight in kg/(height in m)2 and individuals categorized by 

BMI (lean: <25 kg/m2; overweight: 25≤BMI<30 kg/m2; obese: ≥30 kg/m2). Dual x-ray 

absorptiometry was performed in a subset of men (N=25) and women (N=29) to calculate 

total body fat. Women provided first date of last menstrual period (if applicable), from 

which cycle phase was estimated (i.e., menstrual versus ovulatory), and whether they were 

currently taking hormonal contraceptives (i.e., yes versus no). Blood samples were obtained 

between 0800-1000 hr for all participants after 12h of fasting and collected in EDTA or 

heparin anti-coagulant vacutainers (BD, Franklin Lakes, NJ). Lipid profiles and glucose 

levels were assessed at UCSD Medical Center Clinical Laboratory. EDTA-treated blood 

remained on ice until plasma was separated by centrifugation and stored at −80C for 

measurement of insulin, leptin, and estradiol.

Cellular inflammation regulation assays were performed on whole blood aliquots from 

heparin vacutainers within 1h of collection. Briefly, lipopolysaccharide (LPS; 200 pg/mL) 

(E.coli 0111:B4, catalog #L4391, Sigma-Aldrich, St. Louis, MO) was added to 300 μL of 

heparinized blood and incubated for 30 min at 37°C with 5% CO2 in sterile 96-well 

polypropylene cell culture plates, along with a non-LPS-treated sample. This LPS dose was 

previously determined to elicit significant activation of monocytes, with 30-90% producing 

TNF-α40. To inhibit cytokine excretion, thus allowing for intracellular detection of TNF-α 
(cat. #502906, BioLegend, San Diego, CA), Brefeldin A (10 μg/mL, Sigma-Aldrich) was 

added to each sample for the final 3 h of incubation. Intracellular TNF-α production by 

monocytes was evaluated using multi-color flow cytometry, as previously described40. The 

proportion of CD14+/dimHLA-DR+ (CD14: cat. #301808; HLA-DR: cat. #307606, 

BioLegend, San Diego, CA) cells that were TNF-α+ was determined using FlowJo software 

(v10, TreeStar, Ashland, OR), and gates adjusted for each TNF-α-stained sample using 

fluorescence-minus-one controls.

2.3. Beta-adrenergic receptor-mediated inflammation control (BARIC)

BARIC was determined based on the inhibitory effect of isoproterenol, a non-specific β1/2-

AR agonist, on monocytic intracellular TNF-α production in LPS-stimulated blood as 

described above. In addition to LPS, blood was co-incubated with isoproterenol in 10−8 M 

final concentration and evaluated for intracellular monocyte TNF-α production. Monocyte 

β-AR-mediated responsivity to TNF-α inhibition by isoproterenol (i.e., BARIC) was 

calculated as the arithmetic difference in %TNF-α+ monocytes between LPS-treated and 

LPS+isoproterenol-treated samples. Greater BARIC values indicate greater β-AR 
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responsivity, and thus, better β-AR-mediated inflammation regulation. Smaller BARIC 

values may indicate impairment in cellular pathways that regulate inflammatory responses 

mediated by β-ARs (e.g., diminished receptor sensitivity to agonists), though BARIC itself 

does not directly reflect receptor sensitivity per se. Simply put, BARIC measures 

monocytes’ responsivity to a β-AR agonist during an inflammatory response to LPS. We 

have previously demonstrated that reduced BARIC is associated with hypertension, 

cardiovascular disease risk factors, and higher serum cytokine levels40. Given sex 

differences reported in neuroendocrine pathways7 and stress responses, examination of β-

AR-mediated inflammatory activity of monocytes is particularly relevant and functionally 

meaningful to this investigation.

2.4. Cardiometabolic assessment and sex-hormone assays

Cardiometabolic dysfunction was assessed by the number of MetS criteria satisfied 

(represented by integers 0-5) according to the International Diabetes Foundation consensus 

statement, which include (1) central obesity (≥94 cm in men, ≥80 cm in women), (2) 

hypertension (SBP≥130 or DBP≥85 mmHg), (3) hypertriglyceridemia (≥150 mg/dL), (4) 

hypoalphalipoproteinemia (HDL<50 mg/dL in men, HDL<40 in women), and (5) 

hyperglycemia (fasted glucose≥100 mg/dL). Insulin and leptin concentrations were 

measured using electro-chemiluminescent assay (cat. #K15164C, Meso Scale Diagnostics, 

Rockville, MD), and estradiol using competitive enzyme immunoassay (catalog #KGE014, 

R&D Systems, Minneapolis, MN). Sample luminescent intensities were determined using a 

Sector Imager 2400 (Meso Scale Diagnostics) and a VersaMax ELISA microplate reader 

(Molecular Devices, Sunnyvale, CA). Quantification was based on a four-parameter logistic 

curve generated per manufacturer’s protocol. The intra- and inter-assay CVs were 3.5% and 

8.1% for insulin, 3.1% and 9.5% for leptin, respectively, and the intra-assay CV was 16.1% 

for estradiol.

2.5. Measurement of depressive symptoms

Depressive symptoms were measured via the Beck Depression Inventory (BDI-Ia), a 

comprehensive and clinically robust self-report 21-item questionnaire. Each question was 

scored from 0-3, summed to a BDI total score (BDI-T), and then subcategorized into 

cognitive-affective (BDI-C) and somatic (BDI-S) depression scores based on previous 

findings that the two symptomatically distinct constructs (e.g., BDI-C: guilt, pessimism; 

BDI-S: fatigue, sleep disruption) are reliably captured by BDI-Ia43.

2.6. Statistical analysis

Statistical analyses were conducted using R v3.3.3 in RStudio (v1.0.136, Boston MA). 

Results of statistical tests were considered statistically significant if p < 0.05, and all tests 

were two-tailed. Data were visually inspected for normality and tested using the 

Kolmogorov-Smirnov test. Variables that were not normally distributed were log-

transformed (e.g., BDI scores). To explore sex and obesity differences in depressive 

symptoms, cardiometabolism, and BARIC, two-way analysis of variance (ANOVA) was 

used to determine differences by sex, BMI category, and their interactions based on F-

statistics. Multiple linear regression models were implemented to examine effects on 

depressive symptoms and quantify effect sizes (betas) and t-test regression coefficients. Age 

Kohn et al. Page 6

Int J Obes (Lond). Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and ethnicity (entered categorically as Caucasian, African-American, Asian, or Other) were 

included as covariates in all models. Simple associations among variables were assessed 

using univariate correlations of Pearson’s r across all participants. Goodness-of-fit was 

compared between models that included MetS or BARIC terms and BMI-only models using 

likelihood ratio tests to compute chi-squared statistics. MetS and BARIC were included in 

separate models to minimize case removal due to missing data (NBARIC=113; 88% of total 

cases). Serum estradiol levels were related to menstrual cycle phase (β=59.0, t40=2.79, 

p=0.007) based on self-reported date of last menstrual period. Thus, residual serum estradiol 

levels were calculated by regressing out menstrual cycle phase and hormonal contraceptive 

use, and then entered into women-only models to control for sex hormone effects on 

depressive symptoms. Family-wise error rate was corrected using Hommel’s method in 

subgroup analyses to mitigate Type I error. Model residuals were visually inspected and 

tested for homoscedasticity using the Breusch-Pagan test, and normality was assessed using 

Wilks-Shapiro test. Studentized residuals and variance inflation factors were <3.0 for all 

predictors in each model, and influence (dfbetas) and leverage (hat-value) statistics were 

assessed.

3. Results

3.1. Participant characteristics and sex-based differences

Demographic and anthropometrics.—Participants (N=129) were young to middle-

aged adults (39±12 years), of whom 30% (N=39) were obese, 40% (N=51) were overweight, 

and 30% (N=39) were lean, which closely reflects US overweight and obesity rates (CDC, 

2016). A higher proportion of women than men were obese (38% vs. 22%), but no 

significant sex differences by BMI category (χ2=6.0, p=0.20) or BMI values (men: 

28.4±5.6; women: 28.9±7.7; t119=0.47, p=0.64) were observed. Waist circumference (WC) 

and waist-hip ratio (WHR) were strongly correlated (r=0.67, t121=9.80, p<0.001) and both 

were significantly larger among men (Table 1, p<0.001). Obesity had a stronger effect on 

both WC and WHR in men than women (Table 1, p<0.05), reflecting an android pattern of 

central adiposity.

Cardiometabolism.—Men had significantly higher SBP relative to women, as well as 

higher triglyceride and lower HDL levels (Table 1). Accordingly, men tended to have higher 

MetS burden than women (19/64 versus 10/65; χ2=3.79, p=0.052), though MetS criteria 

incidence did not significantly differ by sex (Table 1). Serum insulin and leptin levels were 

elevated among obese individuals (Table 1). Leptin levels were significantly higher among 

women, even after controlling for BMI (Table 1), and positively associated with MetS 

criteria incidence (β=0.38, t=4.20, p<0.001). Despite similar sex differences in the 

relationship of WC and WHR to obesity in our sample (Table 1), sex-adjusted WC was more 

strongly predictive of cardiometabolic MetS criteria incidence than WHR (βWC=0.49, 

t=5.16, p<0.001 vs. βWC=0.32, t=3.12, p=0.002). Men had less proportional total body fat 

than women (24.5±1.6% versus 36.0±1.3%; t36=5.45, p<0.001). Nevertheless, obesity had a 

stronger effect on leptin in men versus women, such that leptin levels increased at a greater 

rate in relation to increasing BMI in men (F2,122=3.14, p=0.047) (Fig. S1).

Kohn et al. Page 7

Int J Obes (Lond). Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inflammation and depressive mood.—In response to LPS, monocytes from men and 

women expressed similar proportions of TNF-α (55.0±1.8% versus 54.5±1.9%; t110=−0.18, 

p=0.86) and were similarly sensitive to βAR-mediated suppression of TNF-α (Table 1). For 

nearly all participants (95%), depressive symptoms ranged from minimal (BDI-T score ≤13) 

to mild (13< BDI-T ≤19). Six subjects scored in the moderate range (19< BDI-T ≤28), 

though none had a concurrent depression diagnosis. Average BDI-T score was 5.7±6.3, and 

BDI-C and BDI-S subscale scores were 2.9±3.8 and 2.8±3.1, respectively. As anticipated, 

BDI-C and BDI-S scores were intercorrelated (r=0.62, t127=8.79, p<0.001). On average, 

women scored significantly higher on the BDI-S than men, though sex differences were not 

observed on the BDI-C subscale (Table 1).

3.2. Associations between obesity, depressive symptomatology, and sex

In all participants, BMI was positively correlated with both BDI-C (r=0.23, t127=2.60, 

p=0.01) and BDI-S scores (r=0.34, t127=4.14, p<0.001). In agreement with our previous 

findings40,44, obese individuals reported more depressive symptoms than lean or overweight 

individuals (obese vs. lean: βBDI-S = 0.65, p<0.001; βBDI-C=0.54, p=0.013; obese vs. 

overweight: βBDI-S=0.42, p=0.02; βBDI-C=0.35, p=0.08). No significant differences were 

observed between lean and overweight groups (p ≥0.05).

Women reported significantly more somatic, but not cognitive, depressive symptoms than 

men (βsex=0.32, p=0.02) (Table 1). Although the effects of obesity on depressive symptoms 

were not formally moderated by sex (i.e., BMI × sex interaction) (Table 1), separate analyses 

by sex subgroups indicated that depressive symptoms tended to differ by BMI in women for 

both somatic (F2,58=3.63, padj=0.06) and cognitive-affective symptoms (F2,58=3.51, 

padj=0.073), but not men (padj≥0.10) (Fig. 1). More specifically, obese women reported more 

depressive symptoms than lean women (BDI-S: β=0.59, t=2.48, padj=0.048; BDI-C: β=0.68, 

t=2.65, padj=0.032). Symptoms did not differ between obese and overweight or overweight 

and lean women (padj≥0.10).

3.3. Sex-specific effects of cardiometabolic dysfunction on somatic depressive 
symptoms

Obese and overweight individuals had significantly higher incidence of MetS factors than 

lean individuals (obese versus lean: β=1.79, t=7.00, p<0.001; overweight vs. lean: β=0.96, 

t=4.03, p<0.001). Across all participants, MetS factors were positively correlated with 

somatic depressive symptomatology (r=0.23, t127=2.72, p=0.007), but not cognitive-affective 

symptoms (r=0.10, t127=1.08, p=0.28). Adjusting for BMI and sex, MetS factors were 

associated with BDI-S scores across the study sample (βMetS=0.15, p=0.041, Table 2) and 

explained an additional 4.7% of the variance in BDI-S (χ2=9.10, p=0.011). Stepwise 

addition of serum leptin and insulin levels into the model did not explain additional variance 

or improve model fit (χ2=0.31, p≥0.10). MetS factor incidence was also negatively 

correlated with BARIC values (r=−0.20, t111=−2.18, p=0.032) and age (r=0.25, t129=2.91, 

p=0.004), and was significantly higher in overweight/obese individuals (Table 1).

Regression models also showed that sex significantly moderated the association between 

MetS factor incidence and somatic symptoms (F1,119=5.49, p=0.021, Table 2). Analysis 
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within each sex subgroup indicated that higher MetS factor incidence was linearly associated 

with increased somatic symptoms in men (βMetS=0.20, padj=0.027), but not in women 

(padj≥0.10) (Fig. 2A). Estradiol levels were not related to BDI-S in women (padj≥0.10).

3.4. Sex-specific effects of β-adrenergic receptor mediated inflammation control on 
somatic depressive symptoms

BARIC values were negatively correlated with somatic symptoms (r=−0.22, t110=−2.36, 

p=0.02), but not cognitive-affective symptoms (r=−0.11, t110=−1.18, p=0.24), across all 

participants. BARIC was significantly lower among older individuals (βage=−0.15, t111=

−2.23, p=0.028) and tended to differ by BMI category (F2,110=2.84, p=0.06). Post hoc 

comparisons indicated that BARIC was significantly lower among obese individuals (β=

−4.88, t110=−2.32, padj=0.045) and somewhat lower among overweight compared to lean 

individuals (β=−3.49, t110=−1.72, padj=0.088), indicating poorer inflammation control in 

obesity.

BARIC values did not significantly differ between men and women (Table 1), adjusting for 

age, ethnicity, and BMI. However, beyond the effects of obesity, lower BARIC values tended 

to be associated with higher somatic depressive symptoms in all participants (βBARIC=−0.14, 

p=0.057) and explained an additional 2.1% of the variance in somatic symptoms (χ2=3.96, 

p=0.046). Sex did not significantly moderate the association between BARIC and somatic 

symptoms (F1,102=0.76, p=0.39), though analysis within each sex indicated that BARIC 

values tended to be associated with increased BDI-S scores in women (βBARIC=−0.20, t=
−2.18, padj=0.069), but not in men (padj≥0.10) (Fig. 2B, Table 2). Estradiol levels were not 

related to depressive symptoms in the women-only model (padj≥0.10).

4. Discussion

Mounting evidence indicates that obesity and depression are linked by inflammation and 

cardiometabolic dysfunction. Men and women may be differentially susceptible to these 

conditions, and thus it is critical to examine sex differences in their effects on depressive 

symptomatology. In this investigation, we found that obesity was more strongly associated 

with depressive symptomatology in women than men, which is consistent with the 

literature5,6. As hypothesized, we also found that sex moderated the depressive symptom-

cardiometabolic dysfunction relationship such that higher MetS risk factor incidence was 

linearly associated with somatic symptom scores among men, but not among women. In 

addition, poorer inflammation control tended to be associated with increased somatic 

symptoms among women, but not among men. These sexual dimorphisms in obesity-related 

biological factors that contribute to depressive mood may offer insight into potentially 

differing pathophysiological processes underlying obesity-depression comorbidity between 

men and women.

Subgroup analysis indicated that BMI-depressive symptom associations tended to occur in 

women, but not in men, which generally aligns with the literature45. It is well-recognized 

that harsher social attitudes toward obesity and stronger weight biases exist toward women6, 

which may intensify feelings of guilt and worthlessness (i.e. cognitive-affective symptoms), 

and that depressed women may report somatic symptoms (e.g., fatigue and sleep 
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disturbance) with greater frequency and intensity than depressed men46. Somatic, or 

“atypical,” symptoms of depression predict future MetS47 across sexes, which aligns with 

our cross-sectional findings, though prior studies investigating sex effects have been 

inconclusive. Of note, the MetS-somatic symptom relationship observed here controlled for 

obesity, highlighting the role of cardiometabolic pathophysiology beyond adiposity in 

depressive symptomatology.

The biological mechanisms linking MetS and depression are complex. Neuroendocrine 

regulators of energy metabolism, specifically leptin and insulin, have been associated with 

atypical depression48. Here, neither was associated with somatic symptoms, though obesity-

leptin associations were stronger among men than women, despite higher leptin levels 

among women at any given BMI. Our findings somewhat differ from a prior study that 

reported both stronger obesity-leptin relationships and greater leptin levels among women49. 

Leptin had previously been shown to predict depression onset among men50 and may exert 

these effects via leptin receptors within corticolimbic neuronal pathways or by modulating 

the hypothalamic-pituitary-adrenal axis. Multiple studies have reported longitudinal 

associations between insulin resistance or type 2 diabetes and depression51, and vice versa in 

both sexes, but have focused on clinical populations rather than depressive symptoms in 

non-clinical populations. Nevertheless, the moderating effect of sex on the MetS-depressive 

symptom association suggests distinct pathophysiological differences between women and 

men, warranting further mechanistic investigations and consideration of sex in future studies 

of the MetS-depression link.

We observed that impaired monocyte inflammation control by β-agonist was correlated with 

somatic depressive symptomatology and obesity. An emerging literature indicates that 

inflammation plays a key role in the development of neuropsychiatric comorbidities in 

obesity12. Specifically, monocytes have been implicated in relation to pro-inflammatory 

signals originating from the periphery and disrupting neuronal homeostasis. For instance, in 

diet-induced obesity, monocytes are recruited into adipose tissue and adopt an M1 

macrophage phenotype characterized by heightened TNF-α secretion52. TNF-α then 

communicates with the brain in part by stimulating the hypothalamic-pituitary-adrenal axis, 

decreasing central serotonin levels, and activating microglial cells, all of which have been 

implicated in depression. In addition, transmigration of peripheral, pro-inflammatory 

monocytes into the brain has been associated with depressive behavior in rodent models53. 

Monocyte migration is driven by adrenergic signals from the sympathetic nervous system, 

which tends to be hyperactive in depression54. Sympathetic activity was not assessed in this 

study, though the observed trend between reduced monocyte sensitivity to β-agonist and 

higher depressive symptoms likely reflect a compensatory downregulation of β-AR 

signaling secondary to autonomic imbalance. Interestingly, gene transcriptional data suggest 

that chronic stress alters β-AR-mediated signaling pathways in monocytes and increases 

pro-inflammatory monocyte subsets55. Further studies are needed to examine whether such 

alterations lead to functional differences in inflammation regulation and immunity, and 

whether they are associated with depressive symptoms.

Although sex did not moderate inflammation-depressive symptom associations, subgroup 

analyses revealed that reduced BARIC among women, but not men, tended to be associated 
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with increased somatic symptomatology. An emerging literature suggests female-specific 

sensitivity to immune activation on mood and cognitive disturbances21. Our findings support 

this hypothesis and provide initial evidence that women may be more vulnerable to somatic 

symptoms in the context of obesity-associated inflammation. While animal studies suggest 

that estrogens may be protective against inflammation56, we did not find that somatic 

symptoms were related to estradiol levels in blood plasma. However, clinical investigations 

into the protective effects of sex hormones in inflammation-mood relationships are 

warranted. It has been hypothesized that female-specific vulnerabilities to the cognitive-

behavioral effects of inflammation reflect an evolutionary trade-off: women of reproductive 

age may have benefitted from enhanced healing and pathogen exposure avoidance afforded 

by depressed mood during infection, at the expense of increased depressive disorders in 

contemporary, pro-inflammatory contexts57. Together with the trend toward stronger effects 

of obesity on depressive symptoms among women, this hypothesis highlights a potentially 

multifaceted inflammation-depression relationship in women.

Treating depression in obese individuals poses unique challenges, such as poorer 

antidepressant responses and more severe symptomatology3. Thus, pharmacological 

interventions have begun to target inflammatory and cardiometabolic pathways as 

therapeutic adjuvants to psychotherapy or conventional pharmacotherapy. Unlike cognitive-

behavioral therapy or selective serotonin reuptake inhibitor treatment, such interventions 

would require detection of cardiometabolic dysfunction or inflammation to prescribe the 

appropriate adjuvant, with consideration of patient sex, as our findings support. A review of 

randomized controlled trials, investigating depression interventions for adults with 

diabetes58, found that pharmacological antidepressant treatment improved both depressive 

symptoms and glycemic control, whereas psychological treatment alone did not affect 

glycemic outcomes. Recent work suggests that MetS may be a stronger predictor of 

depression prognosis than obesity or diet59. Our results indicate that this may be particularly 

pertinent to obese men. Therefore, targeting cardiometabolic pathways in obese persons with 

depression may optimize treatment outcomes. To that end, insulin sensitization using a 

peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist significantly improved 

depressive symptoms in patients with comorbid insulin resistance60. Integrative behavioral 

approaches to treat comorbid depression are also being explored, which involve coordinated 

strategies that address cognitive, behavioral, and weight management goals. Meta-analyses 

indicate that adherence to a Mediterranean diet is associated with decreased risk for MetS 

and incident depression61, and thus may be a particularly effective intervention for depressed 

individuals who satisfy MetS criteria. Lastly, recent studies suggest that gut microbial 

composition is altered in both obesity and depression, and that treatment with probiotic or 

prebiotic compounds produces anti-obesogenic and anti-inflammatory effects, leading to 

improvements in depressive-like behavior in rodent models62.

There are a handful of limitations in the current study. Firstly, the cross-sectional nature of 

the design limits causal interpretation of the associations among obesity, depression, 

cardiometabolic dysfunction, and inflammation. Second, we did not recruit individuals with 

clinical depression or cardiometabolic disease, but rather a medically healthy population of 

adults with a wide range of depressive symptoms and obesity/adiposity. Therefore, our 

findings cannot be directly extrapolated into populations with comorbid clinical depression. 
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However, our findings do translate to subclinical mood disturbances that are likely a 

significant barrier to adopting healthy behavior in combating obesity, which bears 

meaningful public health implications. Subclinical symptomatology often results in 

significant functional difficulties, exerts a negative impact on quality of life, and poses an 

increased risk for later development of major depression and other psychiatric conditions63. 

Another limitation is that sex-specific manifestations of depressed mood may not be 

captured by the BDI, though a recent review of sex differences in obesity-depression 

associations reported that stronger associations among women were not likely due to 

depression measurement methods45. We also acknowledge the possibility that, while 

sufficient to detect main effects, the study’s sample size may have limited statistical power 

to detect moderation (i.e., interaction) effects of sex. Our sex-stratified findings, while 

adjusted for multiple comparisons, should therefore be interpreted as differences in 

significance within men versus women, rather than significant differences between the sexes. 

Finally, somatic complaints in otherwise healthy populations may reflect impairments 

concurrent with undetected or otherwise undiagnosed medical illnesses, rather than 

depression per se. Importantly, however, participants in the present study were thoroughly 

screened and excluded if they had a history of cardiovascular disease, were stage 2 

hypertensive, or had abnormal blood cell profiles.

In conclusion, results from the present study indicate that obesity-related inflammation and 

cardiometabolic dysregulation may have sex-specific effects on somatic depressive 

symptoms in a non-clinical population. Although the pathophysiological mechanisms 

underlying sex differences in these associations remain to be elucidated, our findings 

highlight the continued need to consider sex as a key biological variable in these 

relationships. Future clinical studies on comorbid obesity and depression should therefore 

take sex into account, which will potentially optimize therapeutic strategies to treat these 

conditions.
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Figure 1. Somatic and cognitive depressive symptoms according to BMI category and sex.
Subject-wise data are shown overlaid onto box-and-whisker plots grouped by BMI category 

and sex. Subgroup analysis by sex (ANOVA) indicated that depressive symptoms tended to 

be elevated with increasing BMI in women (left panel, somatic: F2,58=3.63, padj=0.06; right 

panel, cognitive-affective: F2,58=3.51, padj=0.073), but not in men (padj≥0.10). In particular, 

linear regression revealed that obese women reported more depressive symptoms than lean 

women (BDI-S: β=0.59, t=2.48, padj=0.048; BDI-C: β=0.68, t=2.65, padj=0.032). BDI 

scores were log-transformed for normality. Points were jittered to minimize overplotting. P-

values adjusted for multiple comparisons using Hommel’s family-wise error rate correction. 

Abbreviations: BMI=body mass index; BDI-S=Beck Depression Inventory somatic subscale 

score; BDI-C=Beck Depression Inventory cognitive/affective subscale score.
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Figure 2. Somatic depressive symptoms according to sex, MetS risk factor incidence, and 
inflammation control.
(A) BDI somatic subscale scores grouped by sex, presenting with MetS risk factors. (B) BDI 

somatic subscale scores grouped by sex, according to BARIC, split by tertile for 

visualization purposes. Beta values shown derive from multivariate linear regression 

performed on log-transformed BDI-S scores, covarying for age, ethnicity, and BMI category. 

Data are presented as mean ± s.e.m. P-values adjusted (padj) using Hommel’s family-wise 

error rate correction. Abbreviations: BMI=body mass index; BDI=Beck Depression 

Inventory; MetS=Metabolic syndrome; BDI-S=Beck Depression Inventory somatic subscale 

score; BARIC=Beta-adrenergic receptor-mediated inflammation control; n.s.=not significant 

at padj<0.05.
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Table 1.

Sex- and obesity category-based differences in anthropometric, cardiometabolic, depressive, and immune 

characteristics of 129 study participants.

Men Women

Lean
N = 16

Overweight
N = 34

Obese
N = 14

Lean
N = 23

Overweight
N = 17

Obese
N = 25 Fsex FBMI Fsex × BMI

Age (yrs) 35.9 ± 3.6 43.3 ± 2.0 40.4 ± 2.2 32.1 ± 2.1 41.1 ± 3.2 38.6 ± 2.4 1.01 5.67 0.17

Waist (cm) 81.2 ± 1.7 97.4 ± 1.5 121.3 ± 3.5 78.9 ± 2.1 90.4 ± 2.5 107.9 ± 2.2 14.1
a

97.6
c,d

3.41

Waist-hip ratio 0.85 ± 0.01 0.94 ± 0.01 1.01 ± 0.01 0.86 ± 0.02 0.87 ± 0.02 0.88 ± 0.01 13.7
a

7.29
c,d

5.01

Insulin (pg/mL) 167 ± 23 297 ± 32 785 ± 146 171 ± 19 219 ± 32 516 ± 88 1.35 31.8
c,d

1.47

Leptin (ng/L) 1.5 ± 0.3 6.6 ± 1.4 26.0 ± 7.1 10.2 ± 1.9 22.1 ± 3.4 50.2 ± 5.8 87.0
b

43.2
c,d

3.14

Glucose (mg/dL) 83.3 ± 1.7 85.9 ± 2.7 87.8 ± 4.5 74.1 ± 2.0 87.2 ± 6.4 81.1 ± 2.0 2.84 2.28 1.32

HOMA-IR 0.9 ± 0.1 1.6 ± 0.2 4.1 ± 0.9 0.8 ± 0.1 1.1 ± 0.2 2.6 ± 0.5 1.19 25.8
c,d

0.90

TG (mg/dL) 98.6 ± 10.8 165 ± 35.3 117 ± 12.8 75.4 ± 10.2 88.4 ± 14.1 120 ± 13.0 8.46
a

9.63
d

1.98

LDL (mg/dL) 104 ± 7.8 108 ± 4.9 127 ± 10.7 87.6 ± 6.4 115 ± 7.9 115 ± 4.8 0.38 5.15 1.61

HDL (mg/dL) 58.9 ± 4.1 52.4 ± 3.3 43.3 ± 2.1 69.9 ± 4.1 57.9 ± 2.7 54.0 ± 3.1 6.99
b

8.42
c

0.53

Systolic BP (mmHg) 120 ± 3.3 121 ± 2.4 130 ± 2.4 103 ± 2.2 117 ± 3.6 120 ± 3.5 12.2
a

6.68 1.73

Diastolic BP 
(mmHg) 72.1 ± 2.4 71.0 ± 1.4 76.4 ± 2.1 63.4 ± 1.6 70.6 ± 2.2 72.4 ± 2.3 3.79 3.74 2.04

Estradiol - - - 161 ± 17 118 ± 18 138 ± 10 - 1.10 -

BDI-T 3.8 ± 1.4 4.6 ± 0.7 7.3 ± 2.0 4.1 ± 1.0 5.2 ± 1.4 9.5 ± 1.6 3.01 5.13 0.16

BDI-S 1.4 ± 0.7 2.2 ± 0.4 3.2 ± 0.8 2.4 ± 0.6 2.3 ± 0.5 4.9 ± 0.8 5.59
b

6.13
c

0.56

BDI-C 2.4 ± 0.8 2.4 ± 0.5 4.1 ± 1.4 1.7 ± 0.5 2.9 ± 1.0 4.6 ± 0.9 0.64 3.30 0.56

MetS criteria met 0.75 ± 0.3 1.8 ± 0.2 2.8 ± 0.3 0.63 ± 0.1 1.3 ± 0.2 2.3 ± 0.3 0.92 24.1
c,d

0.54

BARIC 32.0 ± 2.1 28.9 ± 1.6 26.6 ± 2.3 34.4 ± 2.1 31.6 ± 2.2 29.8 ± 2.0 2.12 1.16 0.12

Values presented as mean ± s.e.m. Bold values signify ANOVA F-ratio at p <0.05. Superscripts denote post-hoc t-test of predictor coefficient 
significance at p <0.05:

a
Men > women.

b
Women > men.

c
Obese significantly different than lean.

d
Overweight significantly different than lean. Age and ethnicity included as covariates in all models.

Abbreviations: BMI=body mass index; TG=triglycerides; LDL=low density lipoprotein; HDL=high density lipoprotein; BP=blood pressure; BDI-
T=Beck Depression Inventory total score; BDI-S=Beck Depression Inventory somatic subscale score; BDI-C=Beck Depression Inventory 
cognitive/affective subscale score; MetS=Metabolic syndrome; BARIC=Beta-adrenergic receptor-mediated inflammation control.
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Table 2.

Contribution of sex, MetS factor incidence, and β-adrenergic inflammation control (BARIC) to somatic 

depressive symptoms (BDI somatic subscale score).

Dependent Variable Sex Predictors β SE t

BDI Somatic Subscale Score All participants BMI (overweight) 0.20 0.18 1.15

BMI (obese) 0.63 0.22 2.87**

Sex 0.65 0.21 3.11**

MetS 0.15 0.07 2.07*

Sex × MetS −0.24 0.10 −2.34*

Women BMI (overweight) 0.16 0.26 0.63

BMI (obese) 0.80 0.30 2.69**

MetS −0.11 0.10 −1.16

Men BMI (overweight) 0.14 0.24 0.58

BMI (obese) 0.24 0.33 0.71

MetS 0.20 0.08 2.55*

BDI Somatic Subscale Score All participants BMI (overweight) 0.14 0.18 0.81

BMI (obese) 0.61 0.19 3.24**

Sex 0.36 0.14 2.56*

BARIC −0.07 0.11 −0.63

Sex × BARIC −0.12 0.14 −0.87

Women BMI (overweight) 0.04 0.25 0.17

BMI (obese) 0.55 0.24 2.32*

BARIC −0.20 0.09
−2.18

#

Men BMI (overweight) 0.26 0.26 1.02

BMI (obese) 0.67 0.31
2.16

#

BARIC −0.05 0.11 −0.44

Significance of predictors within each linear regression model at

**
p < 0.01,

*
p < 0.05,

#
p < 0.10 is shown in the table.

P-values in sex subgroup models were adjusted for family-wise error rate correction using Hommel’s method. Age and ethnicity were included as 
covariates in all models. Analyses performed using log-transformed BDI scores. Abbreviations: BMI=body mass index; BDI=Beck Depression 
Inventory; MetS=Metabolic syndrome; BARIC=Beta-adrenergic receptor-mediated inflammation control.
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