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A rise in fragility as a system approaches a tipping point may be sometimes
estimated using dynamical indicators of resilience (DIORs) that measure
the characteristic slowing down of recovery rates before a tipping point.
A change in DIORs could be interpreted as an early warning signal for an
upcoming critical transition. However, in order to be able to estimate the
DIORs, observational records need to be long enough to capture the response
rate of the system. As we show here, the required length of the time series
depends on the response rates of the system. For instance, the current rate
of anthropogenic climate forcing is fast relative to the response rate of some
parts of the climate system. Therefore, we may expect difficulties estimating
the resilience from modern time series. So far, there have been no systematic
studies of the effects of the response rates of the dynamical systems and
the rates of forcing on the detectability trends in the DIORs prior to critical
transitions. Here, we quantify the performance of the resilience indicators
variance and temporal autocorrelation, in systems with different response
rates and for different rates of forcing. Our results show that the rapid rise
of anthropogenic forcing to the Earth may make it difficult to detect changes
in the resilience of ecosystems and climate elements from time series. These
findings suggest that in order to determine with models whether the use of
the DIORs is appropriate, we need to use realistic models that incorporate
the key processes with the appropriate time constants.
1. Introduction
Complex systems can have a tipping point: a threshold point in the conditions
after which a self-enforcing feedback brings the system to a new stable state
[1–3]. As a result of this feedback, systems with a tipping point have two alterna-
tive stable states over a range of conditions. For example, in the tropics, both
savannahs and forest-tree cover can be found under a range of mean annual pre-
cipitation [4]. In a savannah state, grass fuels fires, thereby maintaining the open
landscape. Once the tree cover becomes sufficiently dense, however, the growth
of grasses and the resulting fires are suppressed, leading to a self-enforcing shift
to a closed canopy state [5–7]. Similar abrupt transitions have been observed in
other complex systems, such as shallow lakes [1], coral reefs [1,8] and climate sys-
tems [9]. These critical transitions can have long-term dire consequences, because
the new state is stabilized by the self-enforcing feedback, making these tran-
sitions difficult to reverse [10]. As a result, a wide range of studies try to
identify indicators that signal an upcoming transition [11–17]. Most of these indi-
cators are based on the phenomenon that close to the tipping point, the system’s
resilience to perturbations decreases [18]; close to the tipping point, a system
recovers more slowly from a perturbation or disturbance than when it is far
from a tipping point. For example, tidal marsh vegetation recovers more
slowly from perturbations when inundation stress increases and the system
moves closer to a tipping point [19].

A way to quantify the resilience of a system is to estimate the return rate to
equilibrium [20,21]. The return rate can be determined using perturbation exper-
iments, but this is often not possible for complex systems such as the climate
system. Instead, every system is permanently subject to natural perturbations
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from the environment. When one monitors the system and its
relevant parameters, the system’s dynamic responses to these
perturbations can be captured andused to estimate the resilience
of the system. The resilience is reflected by an increase in the
dynamical indicators of resilience (DIORs) variance [22] and
temporal autocorrelation [23] of the system state. DIORs have
been applied to time series of various complex systems, such
as the climate [24], oxygen dynamics in the Mediterranean Sea
[25], cyanobacteria populations [26], fresh water lakes [27] and
microbial communities [28].

To estimate the DIORs, one needs observational records
that are long enough to capture the slowest response time
scale of the system [29]. For instance, ‘slow’ parts of the climate
system, like the deep ocean and ice sheets, respond relatively
slowly to changes in the forcing that is on the time scale of
humans [29]. A time series of some decades may still be too
short to characterize the dynamics of such slow systems.

The sampling frequency—the interval between values in
the time series—is also important. Systems need to be
sampled at intervals shorter than the characteristic time
scales of the slowest return rate [30,31]. At one point, how-
ever, it does not help to sample at shorter intervals. For
instance, sampling the temperature of the ocean every milli-
second does not give more information, because the system
does not respond on such short time scales.

These considerations about the length of the time series
and the sampling interval are about relative rather than absol-
ute time scales. For instance, the resilience of the postural
balance of a person can be determined from a time series
with a total length of just 30 s. The typical response rate for
physiological meaningful postural control processes is of the
order of 3 Hz (0.333 s) [32]. This implies that a time series of
30 s covers many ‘micro-recoveries’ of the system. On the
other hand, the sampling frequency of 1000 Hz (1 ms) of
the equipment is an overkill, as it does not carry meaningful
information on the systems response [33].

While such limitations are straightforward, the problem
of estimating return times as an indicator of resilience
becomes more complicated if the resilience of the system is
a moving target, i.e. changing in time. A particularly impor-
tant example is the situation in which a change in the
conditions is slowly moving the system towards a tipping
point, where the system shifts to the alternative stable state,
such as a lake that is slowly losing resilience due to eutrophi-
cation [1]. The typical way to monitor such changing
resilience is to calculate the DIORs within a sliding moving
window. This method is based on the idea that the DIORs
should be estimated as the data are becoming available [12].

A decrease in the resilience of the system could be inter-
preted as an early warning signal for an upcoming critical
transition at the tipping point [34]. This is, however, possible
only under a limited set of conditions [35,36]. Otherwise, the
probability of false negatives and false positives tends to
become very high. In addition, strong environmental pertur-
bations may obscure the trends in the DIORs [37] and can
force a system to another state far from the tipping point.
For example, when coral reefs shift due to tropical cyclones
[38] or when fires cause rapid shifts in vegetation cover [39].
These limitations have led to the suggestion to abandon the
term ‘early warning signal’ in this context altogether [11].

Nonetheless, there is an obvious demand for early warn-
ing signals for critical transitions. For instance, early warning
for climate tipping points could have considerable social and
economic value for societies [29]. The DIORs have been
shown to increase before abrupt climate transitions in the
past [24]. However, how abrupt were those transitions
really? And how much time would be needed to detect a
loss of resilience? The rates of change in the current anthropo-
genic climate forcing are much faster than in the times for
which we studied the ‘early warning signals’ for past tran-
sitions [40,41]. As the response rates of the oceans and
icecaps are rather slow (in contrast to atmospheric systems)
we may expect difficulties when it comes to assessing return
rates from modern time series.

So far, there have been no systematic studies of the inter-
twined effects of the slowness of the dynamical system and
the rates of ‘forcing’ on our chances to detect trends in the resi-
lience from time series. Therefore, we use model-generated
data of systems that gradually move towards a tipping point,
to quantify how the response rate of the system affects the
strength of the resilience indicators prior to a critical transition.
2. Methods
2.1. Models description
Weused four well-studiedminimal models with alternative stable
states to generate data with different assumptions about the
system’s response rate (see electronic supplementary material,
table S1, for model equations). The first model describes the logis-
tic growth of a resource N that is harvested following a sigmoidal
functional response [42]. It describes the transition from an under-
exploited to an overexploited state as the harvesting pressure
crosses a threshold. The second model describes the nutrient
dynamics of a lake [43]. At low nutrient input rates, the lake
loses nutrients to the sediment or hypolimnion. Once a threshold
in the nutrient input rates is passed, there is a high recycling from
the sediment or hypolimnion as a result of lower oxygen levels
and the lake becomes eutrophic. The third model describes a
population with an Allee effect [10,44]. It describes the extinction
of a population as the harvest, or loss rate, increases. The fourth
model describes the dynamics of tree cover as a function of pre-
cipitation [45]. For a range of precipitation levels, this model can
be in a high, intermediate or low tree cover state.

In all models, we introduced a parameter, ε, to control the
speed of the system’s response. We also assume that each
model is subject to random additive independent disturbances,
so the general form of each model is

dX ¼ 1 ( f(X,c)dtþ sdW),

where f is the deterministic equation that governs the dynamics
of the state variable X as a function of c, the control parameter
which causes the system to switch between stable states. dW is
a white noise process with a scaling factor σ.

2.2. Generation of the time series
In order to test whether resilience indicators signal an upcoming
transition in slow systems, we ran the model for different values
of ε: ranging from 0.1 to 1 with a step of 0.1. We started from equi-
librium and slowly increased the control parameter to make sure
that the system crosses the tipping point. We ran the model for an
additional 2000 time steps with a constant value of the driver
to make sure that the system has enough time to reach the new
equilibrium. For each value of ε, we simulated 100 replicates.

In the main text, we focus on the results from the overhar-
vesting model, but we analysed the effect of the time scale ε
also for three other minimal models with alternative stable
states (see the electronic supplementary material for details).
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Figure 1. Example time series for a system that responds (a) slowly (ε = 0.1) and (b) quickly (ε = 1). The green lines indicate the threshold value, and the grey
area indicates the part of the time series that is selected for standardizing. Time series are generated using the overharvesting model (see electronic supplementary
material, table S1).
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We used only the points in the simulated time series that corre-
spond to the period before the transition. It is important to
exclude points that are part of the transition, because due to
increased serial correlation and increased variance, including
these points would bias the estimate of the resilience indicators
[12]. In systems with a low response rate, however, it is difficult
to determine the exact onset of the transition, because the decline
in the system state is more gradual than in a fast-responding
system (figure 1). We defined the transition as the first point
where the state variable was smaller than a specific threshold
(see electronic supplementary material, table S1) for 10 consecu-
tive time points. The threshold value is based on model runs
without external perturbations in a quickly responding system
(ε = 1). In these model runs the system shifts exactly at the tip-
ping point and the moment the transition starts is clearly
visible, so one can choose a threshold value for the state variable
that is reached before the onset of the transition.

The response rate of the system alters not only the detectability
of the resilience indicators but in practice also the length of the
time series prior to the regime shift: a lower response rate increases
the length of the time series prior to the regime shift, because the
shift is delayed. As we focus on the slowness of the system, we
standardized the generated time series and selected the 2500
data points prior to the transition. Standardizing the time series
removed the statistical effects of differences in time series length
of the different response rates of the system. In addition, we com-
pared the performance of the resilience indicators for different
levels of time-correlation in the noise process for the overharvest-
ing model (see electronic supplementary material). In these
scenarios, the system becomes slow to respond to changes in the
forcing and the noise process, because ε scales both the determi-
nistic equation and the noise process. When only the rate of
change of the deterministic part of the model increases, however,
this does not necessarily mean that the system also responds more
slowly to perturbations. Therefore, we also tested for the overhar-
vesting model how the resilience indicators perform when only
the rate of change of the deterministic equations increases (see
electronic supplementary material).

To show that a decrease of the response rate of the system is
similar to an increase in the rate of change of the driver for dis-
cerning a change in DIORs, we performed simulations with the
overharvesting model in which we kept ε constant (ε = 1), but
changed the rate at which we changed the control parameter.
In each of these simulations, we increased the value of the control
parameter linearly from 1.6 to 2.8 by a fixed rate (0.0024, 0.0012,
0.0006, 0.003) per time step. We include the statistical effect that
the time series will likely be shorter when the driver changes
rapidly. We take a fixed sampling interval, so if the environ-
mental change is rapid, the system shifts earlier and we have
fewer observations prior to the shift (figure 1).

All the simulated time series were produced with the software
package GRIND for MATLAB (accessed at http://sparcs-center.
org/grind), which used an Euler–Maruyama method to solve
the stochastic equation. The estimation of the resilience indicators
was performed in R v. 3.4.3 (http://www.r-project.org/) using an
adapted version of the R package earlywarnings [12].

2.3. Resilience indicators
We calculated two different DIORs: the autocorrelation at the first
lag and the standard deviation of the data. To filter out long trends
that may cause autocorrelation, we subtracted a Gaussian kernel
smoothing function with a predefined bandwidth from the data
[12]. The remaining residuals were used for the estimation of the
resilience indicators. We estimated the DIORs on the data points
within a sliding window of half the size of the time series. We
tested for evidence of a trend in the indicators by estimating the
nonparametric Kendall rank-correlation tau statistic of the esti-
mates of the DIORs. A strong positive correlation between time
and the DIORs indicates a strong trend, which we would expect
to occur when approaching a tipping a point [12].

2.4. Significance testing
To test whether the trends in the indicators are significant, we cal-
culated the chance that the estimates of the indicators are due to
chance alone. We produced the surrogate time series with the
same power spectrum and variance as the original time series,
but with random phases [46]. For each parameter setting, we gen-
erated 100 surrogate time series based on the first replicate of the
generated datasets. For each of these surrogate records, we esti-
mated the trend of the resilience indicators (as Kendall’s tau) in
the same way as the original records. The 97.5th percentiles of
the distributions of tau values of each set of surrogate records
were considered the lower bound of the confidence interval
( p = 0.025, single-tailed).
3. Results
In all models, we find consistent patterns in the trend of the
resilience indicators (DIORs) for the different time scales of
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Figure 2. Strength of the trends in autocorrelation for the overharvesting model in the original time series ( purple) and null models (orange). The violin plots
indicate the distribution of Kendall tau values for the 100 replicates for each level of ε. The size of the generated datasets is standardized to 2500 points (see
Methods). The percentages represent the fraction of trends in the original time series that are significantly higher than the null models ( p = 0.025, single-tailed).
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the system’s response (ε). Higher ε’s produce stronger posi-
tive trends for both autocorrelation and standard deviation
(figure 2 and electronic supplementary material, figures S1
and S2). As the speed of the system’s response becomes
slower, the number of time series that do not show a signifi-
cant increase in the resilience indicators increases (electronic
supplementary material, table S2). Note that we keep the
lengths of the datasets fixed. These results indicate that criti-
cal transitions are indeed harder to detect when the response
rate of the system is low.

When the noise process is not scaled with the system’s
response (ε), the timing of the shift becomes less predictable,
but on average the system shifts earlier (electronic sup-
plementary material, figure S3). An earlier transition
decreases the predictability of the transition, because the
time series before the transition is shorter, and the system
shifts further away from the tipping point, where the resili-
ence of the system is higher. When the noise is weaker, the
perturbations bring the system less far away from the equili-
brium, and the system shifts on average closer to the tipping
point, and the variation in the moment if shifting is smaller.
In addition, the pattern in the DIORs is similar to the time
series in which the noise process is scaled with ε (electronic
supplementary material, figure S4).

When the noise process is time-correlated, the pattern in
DIORs is similar for systems with noise processes that are
and are not time-correlated (electronic supplementary
material, figure S5). When the standard deviation of the
noise process is higher, however, the system shifts earlier in
a time-correlated environment than in an environment with-
out time-correlation (electronic supplementary material,
figure S6), decreasing the predictability of the transition.
The response rate of the system should be measured rela-
tive to the rate of change in the environmental driver.
Therefore, we expect a similar effect of an increase in the
rate of change in the environment as a decrease in the
response rate of the system. To show this, we generated data-
sets in which the response rate of the system is the same
(ε = 1), but the rate of change of the driver changes. We
included here the statistical effect of a faster change on the
length of the datasets, assuming that a system is usually
sampled at a fixed rate. It is clear that in this scenario the
indicators are indeed much harder to detect when the rate
of change of the driver increases (figure 3). Also if this statisti-
cal effect is excluded by fixing the number of points in the
period where the resilience decreases, we still find that
DIORs are harder to detect when the rate of the driver is
high (electronic supplementary material, figure S7).
4. Discussion
The idea that we can use DIORs to detect changes in resilience
is based on the assumption that the state of a system is in some
kind of equilibrium state [11]. This requires, among other
things, that the environmental drivers change slowly com-
pared to the response rate of the system. Clearly, this
assumption does not always hold. Some ecosystems respond
relatively slowly to changes in the environment [47,48]. Criti-
cal slowing down may be difficult to observe in such systems
because the response rate of the system is slow to begin with.
In this study,we studied the intertwined effects of the response
rate of the system and the rate of forcing on our chances to
detect critical slowing down from time series. Our analysis
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shows that the statistical power at slow systems is weaker;
therefore, we needmore data to detect the resilience indicators
in slow systems. Our analysis confirms the suspicion that the
rapid rise of anthropogenic forcing to the Earth system may
make it difficult to detect changes in the resilience of ecosys-
tems and climate elements from natural time series. In our
slowest models, there was still a shift visible. In more extreme
cases the tipping point may unfold so slowly that it is hard to
distinguish the shift. Such a system may seem to be in equili-
brium, but in fact it is unstable and moving on a long
transient trajectory to the alternative equilibrium. For instance,
fragmented forests in England did not reach their new equili-
brium after 1000 years [49]. In ecology, there are systems that
have a slow time scale because their key species, like corals
and trees, have long lifespans [47], and there are systems
that have a delayed response because of an extinction debt
that results from habitat destruction [50,51], even if the gener-
ation times of the key species are short. For example, plant
species diversity in seminatural grasslands in Sweden is sig-
nificantly related to past habitat connectivity with a time lag
of 10–100 years [52], and changes in patterns of certain climatic
variables in the early Holocene were so rapid that changes in
the climatic limits for certain species exceeded their rates of
dispersal and establishment. As a result, some species reached
their climatic limits after thousands of years [53,54].

For a system that responds slowly, the period tomonitor the
systemmight be too short to detect critical slowing down. Long
observational records are needed to determine the slowest
response rate of slow systems [29]. For some systems these
long records are available. For example, observational records
of hundreds to thousands of years have been used to analyse
long-term trends in annual growth rates of trees in response
to climatic change [55,56]. For other systems, such as the Atlan-
tic Thermohaline Circulation, these records may need to be
longer than those that are currently available [29]. Because
the climate varies continuously on all time scales, the response
rate of the system also depends on the time scale of climatic
change onwhich one focuses [53]. To come back to the example
of trees, monthly and annual changes in the climate induce
changes in the response rate that can be recorded in tree
rings, but to observe decadal to century-scale changes in the cli-
mate, long records of pollendata are needed to observe changes
in abundance [53]. Since the response rate of a system should be
considered relative to the speedof environmental change rather
than absolute [53], the effect of the slowness of the systemon the
DIORs is system and situation specific. In order to assess the
specific limitations in more detail, it would be important to
use realistic models that incorporate the key processes in any
system with the appropriate time constants.

Although the slowness of ecosystems and climate elements
may be a problem when it comes to assessing their resilience
when limited time is available, there is potentially a bright
side to slowness when it comes to our options for managing
such change. When the response is slow enough, it may be
that even though the theoretical tipping point is already
passed, the system responds sufficiently slowly to allow ‘catch-
ing it in free fall’ and reversing the change [47]. Again, all
considerations of time scales are relative. Even extremely
rapid quantum jumps in atoms can be caught using real-time
monitoring and reversed during their completion [57].

The difference between this example of quantum jumps
and the challenge for societies to respond to critical tran-
sitions in climate elements or ecosystems is two-fold and
contradicting. On the one hand, change unfolds much more
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slowly, giving us more time. On the other hand, the social
response may be slowed down by a complex set of mechan-
isms [58,59]. For instance, it can be hard to recognize the
urgency of a problem if the change is not yet obvious and
there are other, more urgent problems on the public
agenda. There is also a danger that the change goes so
slowly that it is invisible to society because people get used
to slowly deteriorating environmental conditions. This so-
called shifting baseline syndrome [60] will become especially
important if the changes span several human generations.
Most importantly, it requires time to reach consensus on
action, especially if evidence is weak and urgency is unclear
[59]. The latter point is relevant for our line of enquiry as indi-
cators of resilience will be less reliable for slow systems.
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