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The trillions of cells in the human body can be viewed as elementary but essential 
biological units that achieve different body states, but the low resolution of previous 
cell isolation and measurement approaches limits our understanding of the cell-specific 
molecular profiles. The recent establishment and rapid growth of single-cell sequencing 
technology has facilitated the identification of molecular profiles of heterogeneous cells, 
especially on the transcription level of single cells [single-cell RNA sequencing (scRNA-
seq)]. As a novel method, the robustness of scRNA-seq under changing conditions will 
determine its practical potential in major research programs and clinical applications. 
In this review, we first briefly presented the scRNA-seq-related methods from the point 
of view of experiments and computation. Then, we compared several state-of-the-art 
scRNA-seq analysis frameworks mainly by analyzing their performance robustness on 
independent scRNA-seq datasets for the same complex disease. Finally, we elaborated 
on our hypothesis on consensus scRNA-seq analysis and summarized the potential 
indicative and predictive roles of individual cells in understanding disease heterogeneity 
by single-cell technologies.
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INTRODUCTION

It is known that an adult human body consists of trillion cells of different types and origins, and 
each of them plays its respective role in the body system. These cells can be viewed as basic but 
essential biological units supporting different body states, e.g., health, disease, or the response to 
therapy. Decades ago, the low resolution of cell isolation and measurement technologies limited 
our understanding of the cell-specific molecular profiles and their importance in cellular systems, 
causing humans to always underestimate disease heterogeneity.

In recent years, the establishment and the rapid growth of single-cell sequencing technology 
have led to the efficient and inexpensive identification of molecular profiles of individual cells (Bose 
et al., 2015; Baran-Gale et al., 2018; Svensson et al., 2018). In particular, the transcription of single 
cells (Wu et al., 2014; Ziegenhain et al., 2017) is a novel and fast evolving field. Single-cell RNA 
sequencing (scRNA-seq) attracts increasing attention to the identification and characterization of 
cells on an individual level rather than on a population level (Saliba et al., 2014; McDavid et al., 2016; 
Raj et al., 2018; Torre et al., 2018).

The research field of single cells, e.g., identifying cell types, recognizing cell markers, and tracing 
cell origins, is currently undergoing rapid development. New knowledge on cells can improve our 
understanding of biological systems by changing our perspective from the traditional population level 
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to the individual cellular level. It can further provide novel insights 
into old biological and biomedical questions (Raj et al., 2018). For 
example, with scRNA-seq data rather than bulk transcriptome 
data, we can detect genes with conserved expression levels across 
individual cells (Lin Y. et al., 2017). Single-cell transcriptomics 
could even uncover the diverse transcriptional states of immune 
cells and their coordination during immune responses (Vegh 
and Haniffa, 2018). In addition, simultaneous measurements of 
transcription along with genomic and epigenetic profiling at the 
single-cell level (Clark et al., 2016) is expected to be developed 
soon and will provide groundbreaking biological insights into 
these basic blocks building the biological body (Hemberg 2018).

In this quickly evolving field, many reviews have focused on 
the biotechnological applications of scRNA-seq and in silico 
gene expression analysis. The program goals of the Common 
Fund-supported Single Cell Analysis Program from the National 
Institutes of Health point out the impact of resolving tissue 
heterogeneity at the cellular level (Roy et al., 2018). Different 
scRNA-seq protocols have their strengths and disadvantages under 
respective settings (Saliba et al., 2014; Bacher and Kendziorski, 
2016). The pre-processing approaches of sparse and row-rank 
scRNA-seq data (Zhang L. et al., 2018), normalization methods 
(Vallejos et al., 2017), and batch effect corrections (Dal Molin and 
Di Camillo, 2018; Haghverdi et al., 2018) have all been carried out for 
a wide range of comparisons and evaluations. Finally, the cell type 
clustering algorithms, cell marker identification, and cell trajectory 
reference also have their target-specific evaluation approaches for 
the deconvolution of biological system heterogeneity (Menon 
2018; Papalexi and Satija, 2018). In addition, integrative impacts 
of whole scRNA-seq protocols and analysis methodologies have 
undergone in-depth assessments (Dal Molin et al., 2017; Svensson 
et al., 2017; Todorov and Saeys, 2018).

These current developments and achievements of scRNA-
seq motivated us to investigate the individual cell types, cell 
signatures, cell origins in time and space, and cell communication 
strategies. Meanwhile, as a novel method, its robustness under 
different conditions (e.g., when applied to different datasets) 
will determine its actual practical potential in major research 
programs (e.g., the Precision Medicine Initiative or the Human 
Brain Project) (Poo et al., 2016; Sankar and Parker, 2016) or in 
clinical applications (e.g., diagnosis or prognosis of complex 
diseases) (Zeng et al., 2016). Thus, in this review paper, we 
discussed scRNA-seq from the point of view of experiments 
and computation. Then, on independent scRNA-seq datasets for 
the same complex disease (i.e., diabetes), we compared several 
state-of-the-art scRNA-seq analysis frameworks mainly by the 
robustness of their performances in the identification of cell 
types and markers. Lastly, we elaborated on our hypothesis on 
consensus scRNA-seq analysis and summarized the potential 
indicative and predictive roles of characteristic cells in 
understanding disease heterogeneity by single-cell technologies.

MATERIALS AND METHODS

A recent review has demonstrated the principle and potential of 
scRNA-seq in a wide range of studies, including development, 

physiology, and disease (Potter 2018). It concluded that the data 
noise and cell number are the main limitations in scRNA-seq 
studies, and many research fields would benefit from its continuous 
development. In contrast, this work concentrated on the scRNA-seq-
based study from the two angles of experiments and computation. 
Especially, the robustness of scRNA-seq under changing conditions 
will decide its practical potential, e.g., in precision medicine. Thus, 
different from a previous report (Potter 2018), we further compared 
several state-of-the-art scRNA-seq analysis frameworks and 
included our hypothesis on the performance consensus.

scRNA-seq-Associated Biological 
Experiments
scRNA-seq is becoming a widely used genome-wide technology to 
detect cellular identities and dynamics, e.g., cell subpopulations, 
cell state marker genes and pathways, cell state transitions, and cell 
trajectories (Nguyen et al., 2018). This sustained improvement of 
the sensitivity, flexibility, and efficiency of scRNA-seq will help 
to resolve many biological and biomedical research questions on 
the individual cell level.

On the one hand, the rapid development of experimental 
protocols of scRNA-seq expands the measurement of mRNA 
levels to many associated fields of study (Fuzik et al., 2016; 
Hashimshony et al., 2016; Ilicic et al., 2016; Bagnoli et al., 2018; 
Han et al., 2018; Hayashi et al., 2018; Sasagawa et al., 2018). 
Especially, scRNA-seq applications have provided new insights 
into conventional biological questions, e.g., cellular heterogeneity. 
New cell types have been more widely recognized than previously 
expected (Burns et al., 2015; Usoskin et al., 2015; Rheaume 
et  al., 2018), and gene expression levels corresponding to old 
and new cell types have uncovered many biological functions 
and mechanisms that were overlooked in conventional cell 
population studies (Nelson et al., 2016; Li H. et al., 2017); single-cell 
transcriptomic characteristics can reveal more time-dependent 
features of a biological system (Zeisel et al., 2015; Zeng et al., 2017; 
Lescroart et al., 2018; Liu D. et al., 2018), whereas the pseudo-time 
of single cells would mimic the actual dynamic biological process 
(Kowalczyk et al., 2015; Cacchiarelli et al., 2018). Taking all of 
the above novelties together, we can deepen our understanding 
on the complex mechanisms underlying cell-to-cell variation. 
These complex dynamic responses are controlled by regulatory 
cell-to-cell communication, which is also responsible for cellular 
heterogeneity (Shalek et al., 2014).

Measuring Regulatory Elements in a Single Cell
Cell-specific transcriptional signals might be regulated by the 
high-order structural folding of nucleosomes (Nagano et al., 
2017; Lando et al., 2018), which can be investigated by combining 
scRNA-seq with other single-cell approaches (Stevens et al., 2017; 
Liu T. et al., 2018; Mezger et al., 2018). Of note, current scRNA 
profiling methods usually destroy cells during the analysis 
process, hindering the measurement of temporal gene expression 
changes. However, some information on biological dynamics 
will always be present in the data. For example, the continuum 
of molecular states in a population can reflect the trajectory or 
pseudo-time of a typical cell, so various methods increase their 
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power by reconstructing the trajectory by quantification of a 
group of cells in multiple static snapshots (Weinreb et al., 2018).

Measuring Post-transcriptional Regulations 
in a Single Cell
Understanding nongenetic cellular heterogeneity will help to 
characterize complete biological mechanisms in live cells, but 
little knowledge is available on the heterogeneity of regulatory 
modifications between individual cells. For example, microRNAs 
(miRNAs) are small RNAs that regulate gene expression in a post-
transcriptional manner and might reduce cell-to-cell variability 
on the protein level by repressing mRNA translation or promoting 
mRNA degradation. Although the wet experimental evidence 
for the roles of miRNA in individual cells is limited, great efforts 
have been made to investigate such regulatory modifications in 
single cells (Fan et al., 2015). For instance, single-cell Quartz-
Seq technology was developed to identify different kinds of 
nongenetic cellular heterogeneity in a quantitative manner 
(Sasagawa et al., 2013). Single-cell small RNA sequencing and 
analysis techniques have supplied much evidence that miRNAs 
could be potential molecular biomarkers for indicating the type 
and state of particular cells (Faridani et al., 2016). Moreover, using 
a combination of scRNA-seq data and mathematical modeling, it 
is also possible to detect key miRNAs as cell type-specific post-
transcriptional regulators (Rzepiela et al., 2018).

Measuring Upstream Regulatory Factors in a Single 
Cell
Individual cells within different subpopulations can show 
significant variations when responding to external stresses, but 
the nature of this cellular heterogeneity is not clear, especially the 
remarkable alterations in the transcriptional architecture (Xue et al., 
2013; Edsgard et al., 2016; Gasch et al., 2017). Fortunately, scRNA-
seq provides high resolution to genetics by linking phenotypes to 
cell-specific gene functions, and the genetic screening of single 
cells can even be realized now (Birnbaum 2018; Raj et al., 2018). For 
example, the Perturb-seq was designed to combine scRNA-seq and 
CRISPR-based perturbations to detect individual perturbations 
causing target gene changes, gene signature appearances, genetic 
interaction rewiring, and cell state transitions (Dixit et al., 2016), 
e.g., discovering previously unknown immune circuits (Jaitin et al., 
2016). Next, the allele-sensitive scRNA-seq could recognize clonal 
and dynamic monoallelic expression patterns (Reinius et al., 2016) 
or analyze allele-specific cis-control in genome-wide expressions 
(Deng et al., 2014; Jiang et al., 2017). Besides, focusing on the 
quantitative trait locus (QTL), the computational tool demuxlet 
was implemented to perform expression QTL (eQTL) analysis, 
which can identify natural genetic variation within multiplexed 
droplet scRNA-seq to evaluate cell type-specific gene expression 
changes (Kang et al., 2018). Similarly, some new cell type-specific 
“co-expression QTLs” have even been detected according to the 
genetic variants, significantly altering co-expression relationships 
(van der Wijst et al., 2018).

Measuring Downstream Regulation in a Single Cell
The cell-to-cell regulatory communication plays important roles 
in cellular diversity across diverse biological systems, which is an 

important factor in the evolution of observed cell types. scRNA-
seq provides a powerful tool to analyze particular regulatory 
mechanisms and their downstream influence in a corresponding 
subset of cells (Chu et al., 2016; Korthauer et al., 2016; Enge 
et al., 2017; Severo et al., 2018). For example, the integration of 
transcription factor expression, chromatin profiling, and sequence 
motif analysis can be effective to identify the cell-specific genomic 
regulation underlying cell-specific gene expression (Sebe-Pedros 
et al., 2018). Similarly, the integration of information about 
single-cell transcriptomics and cell-free plasma RNA provides 
the potential to uncover longitudinal cellular dynamics of cells in 
complex biological processes or pathological development (Tsang 
et al., 2017). Next, a two-part method combining a generalized 
linear model and gene set enrichment analysis on single-cell 
data provided evolutionary insights in gene co-expression 
by experimental treatments (Finak et al., 2015). In addition, 
benefitting from time-course data obtained by scRNA-seq, it is 
possible to characterize the fate decision and transcriptional 
control of self-renewal, differentiation, and maturation of 
particular cells (Su et al., 2017), and transient cellular states 
corresponding to asynchronous cellular responses can be 
observed under conditional perturbations (Rizvi et al., 2017).

scRNA-seq-Associated Analytic 
Computations
As seen in the above summary, scRNA-seq technologies are 
swiftly developing. They are greatly beneficial to the investigation 
of transcriptional landscapes at the single-cell level, where they 
are able to profile cell-to-cell variability in cell populations 
and characterize unexpected heterogeneity of transcription in 
originally thought homogeneous cell populations. Although many 
computational methods for analyzing scRNA-seq data have been 
extensively developed, tested, and validated on simulated datasets, 
scRNA-seq protocols are still complex so that bias will easily 
occur in downstream analysis. In fact, computational models 
and tools available for the design and analysis of scRNA-seq 
experiments (Table 1) have their advantages and disadvantages 
in various settings, and many questions have yet to be solved 
in this exciting area (Bacher and Kendziorski, 2016). Similar to 
other high-throughput sequencing technologies, the general 
actions on scRNA-seq data include several key steps before the 
follow-up analysis for single cells (Jia et al., 2017; Li Y. H. et al., 2017; 
McCarthy et al., 2017; Chen W. et al., 2018; Vu et al., 2018), i.e., pre-
procession (e.g., zero imputation) (Li and Li, 2018; Van den Berge 
et al., 2018), quality control (e.g., variation analysis) (Brennecke 
et al., 2013; Ding et al., 2015; Jiang et al., 2016; Eling et al., 2018; 
Lu et al., 2018), normalization (Bacher et al., 2017; Cole et al., 
2017; Haghverdi et al., 2018; Tian et al., 2018), and visualization/
simulation (Zappia et al., 2017). Although scRNA-seq studies 
have provided revolutionary tools to assist researchers to address 
scientific questions previously hard to investigate directly, several 
computational challenges are beginning to arise.

Challenge of Cluster Analysis of Single Cells
The detection of cell types from heterogeneous cells is an 
important step in the development of scRNA-seq data analysis 
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in biological research (Marinov et al., 2014; Lin C. et al., 2017; Jin 
et al., 2018; Kiselev et al., 2019). Different methods use distinct 
characteristics of data and gain varying outcomes in terms of both 
the number of clusters and the cluster assignment of cells (Ntranos 
et al., 2016; Kim et al., 2018; Risso et al., 2018). Many approaches, 
such as SAFE clustering (Yang et al., 2018), DendroSplit (Zhang 
J. et al., 2018), scmap (Kiselev et al., 2018), MetaNeighbor (Crow 
et al., 2018), scVDMC (Zhang H. et al., 2018), CIDR (Lin P. et al., 
2017), SC3 (Kiselev et al., 2017), scLVM (Buettner et al., 2015), 
and RaceID (Grun et al., 2015), have been developed to promote 
the efficiency of clustering single cells. They promote the 
clustering consensus, interpretability, subjectivity, comparability, 
and replicability. However, the biological significance, number 
estimation, and computational speed of such clustering analysis 
still require significant improvements (Duan et al., 2018).

Challenge of Identity Analysis of Single Cells
scRNA-seq has brought transcriptome research to a higher 
resolution as the “up or down” expression pattern can be 
examined at the single-cell level (Chen L. et al., 2018; Xie et al., 
2019). The projection of high-dimensional data into a low-
dimensional subspace will be a powerful strategy for mining 
such extensive data (Zeng et al., 2016; Yip et al., 2018; Yu and 
Zeng, 2018). Statistic-based approaches, such as PowsimR (Vieth 

et al., 2017), BPSC (Vu et al., 2016), Linnorm (Yip et al., 2017), 
and Oscope (Leng et al., 2015), have been established to evaluate 
differential expression among individual cells. Especially, latent 
factor-based analysis will be useful to find hidden biological 
signals and corresponding gene components from scRNA-seq 
samples (Buettner et al., 2017; Yu, 2018). However, to guarantee 
the biological meaning of detected cell identities, it is still 
necessary to discriminate the real and dropout zeros in scRNA-
seq data (Miao et al., 2018). It is also essential to identify the 
combination of binary and continuous regulation in individual 
cells (Wu et al., 2018) and to integrate the nonlinear projection 
with prior-known biological knowledge (Li X. et al., 2017).

Challenge of Trajectory Analysis of Single Cells
The single-cell experiments provide a great chance to rebuild 
a sequence of changes in a dynamical process of the biological 
system from individual “snapshots” of cells (Matsumoto et al., 
2017; Gong et al., 2018). The construction of a pseudo-temporal 
path as cell orders would be a useful way to characterize 
dynamical gene expression in a heterogeneous cell population, 
assuming the existence hypothesis of gradual transition of the 
cell transcriptome (Specht and Li, 2017; Herring et al., 2018; 
Shindo et al., 2018; Strauss et al., 2018). For example, based on 
the minimum spanning tree approach, the Tools for Single Cell 

TABLE 1 | List of computational tools for single-cell RNA sequencing (scRNA-seq) analysis.

Category ID Access Code and citation

Pre-procession scater Bioconductor R (McCarthy et al., 2017)
scPipe Bioconductor R (Tian et al., 2018)
GRM http://wanglab.ucsd.edu/star/GRM R (Ding et al., 2015)

Cell clustering SAFEclustering http://yunliweb.its.unc.edu/safe/ R (Yang et al., 2018)
DendroSplit Github Python (Zhang J. et al., 2018)
clusterExperiment Bioconductor R (Risso et al., 2018)
scmap Bioconductor R (Kiselev et al., 2018)
scVDMC Github Matlab (Zhang H. et al., 2018)
CIDR Github R (Lin P. et al., 2017)
scClustBench http://www.maths.usyd.edu.au/u/SMS/bioinformatics/software.html R (Kim et al., 2018)
SNN-Cliq http://bioinfo.uncc.edu/SNNCliq Matlab & Python (Xu and Su, 2015)

Cell marking MAST Github R (Finak et al., 2015)
SC2P Github R (Wu et al., 2018)
DEsingle Bioconductor R (Miao et al., 2018)
powsimR Github R (Vieth et al., 2017)
BPSC Github R (Vu et al., 2016)
Sincell Bioconductor R (Julia et al., 2015)

Cell ordering dynverse Github R (Saelens et al., 2018)
Progra Github R (Gong et al., 2018)
p-Creode Github Python (Herring et al., 2018)

Pipeline SINCERA https://research.cchmc.org/pbge/sincera.html R (Guo et al., 2015)
SCell Github Exe (Diaz et al., 2016)
Falco Github Python (Yang et al., 2017)
ASAP Github R & python (Gardeux et al., 2017)
SIMLR Github R & Matlab (Wang et al., 2017; Wang B. et al., 2018)
SEURAT http://satijalab.org/seurat/ R (Butler et al., 2018)
Monocle Bioconductor R (Trapnell et al., 2014; Qiu et al., 2017a; Qiu et al., 

2017b)
DPT http://www.helmholtz-muenchen.de/icb/dpt R & Matlab (Haghverdi et al., 2016)

B-cell receptor 
reconstruction

VDJPuzzle bitbucket R & Python (Rizzetto et al., 2018)
bracer Github Python (Lindeman et al., 2018)

Network 
inference

SCODE Github R (Matsumoto et al., 2017)
LEAP CRAN R (Specht and Li, 2017)
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Analysis is developed for in silico pseudo-time reconstruction in 
scRNA-seq analysis (Ji and Ji, 2016). As an iterative supervised 
learning algorithm, FateID can recognize the cell fate preference 
by quantifying the lineage-specific probabilistic biases (Herman 
et al., 2018). By unsupervisedly selecting feature genes and 
judging the location and number of branches and loops, SLICER 
is able to infer highly nonlinear trajectories (Welch et al., 2016). 
However, many opportunities still exist to develop these current 
methods, particularly detecting complex trajectory topologies, 
linking pseudo-time and real-world time, determining baseline 
points, estimating transition possibility, and recognizing 
progression trends with tipping point (Zeng et al., 2013).

Challenge of Origin Analysis of Single Cells
The origin and nature of signals leading to pattern formation 
and self-organization is an essential question in developmental 
or stem cell biology. The answer would be recovered from the 
gene expressions of individual cells with spatial locations in a 
particular tissue (Vergara et al., 2017; Chen Q. et al., 2018). On the 
one hand, from the technological point of view, several methods 
have been designed for recording the spatial information of 
cells. The spatial transcriptomic technology and computational 
deconvolution can be combined to detect distinct expression 
profiles corresponding to different tissue components (Berglund 
et al., 2018). One technique that performs RT-LAMP reactions 
on a histological tissue section can preserve the original spatial 
location of the nucleic acid molecules to become an effective 
tissue analysis tool (Ganguli et al., 2018). Another technique is 
based on a panel of zonated landmark genes, where the lobule 
coordinates of mouse liver cells can be inferred according to their 
transcriptome, whereas the zonation profiles of all liver genes 
can also be characterized with high spatial resolution (Halpern 
et al., 2017). On the other hand, from the analytic point of view, 
supervised methods have been shown to be efficient, inferring 
the potential spatial distribution of cells. On the foundation of 
a reference gene expression database, e.g., the gene expression 
atlas for positional gene expression profiles within cells, an 
scRNA-seq-based high-throughput method has been applied to 
identify the spatial origin of cells (Achim et al., 2015). Obviously, 
spatial labeling technologies still need further technological 
developments for more easy and accurate testing, and the spatial 
classification and prediction of cells require more elaborate and 
efficient mathematical and computational models.

Challenge of Integrative Analysis of Single Cells
Understanding the genetic and cellular processes and programs 
driving the differentiation of diverse cell types and organ 
formation is a major challenge in developmental biology (Kelsey 
et al., 2017, Velten et al., 2017, Duren et al., 2018, Liu L. et al., 2018). 
Frameworks and software are required to perform dimension 
reduction, clustering, and visualization on scRNA-seq data to 
improve biological interpretability (Gardeux et al., 2017; Wang 
et al., 2017). Numerous methods have been implemented for 
analyzing scRNA-seq data in a whole life-cycle manner (Guo 
et al., 2015; Diaz et al., 2016; Leng et al., 2016; Yang et al., 2017). 
SparseDC solves a unified optimization problem so that it can 
carry out three tasks simultaneously, e.g., identifying cell types, 

tracing expression changes across conditions, and identifying 
marker genes for these changes (Barron et al., 2018). BigSCale 
implements a scalable analytical framework to handle millions 
of cells, so it can overcome large data challenges by the directed 
down-sampling strategy on index cell transcriptomes (Iacono 
et al., 2018). In addition to these usual analytic routines for 
conventional targets, more diverse integration models are 
required for data-driven, model-driven, hypothesis-driven, and 
combinatory bioinformatics mining in single-cell data.

Understanding Disease Heterogeneity by 
scRNA-seq Analysis
For questions in the biological and biomedical fields, human 
cancers are especially considered complex ecosystems where the 
basic elements (cells) exist in different disease states characterized 
by phenotypes and genotypes. As is well known, conventional 
methods have their limits when measuring and quantifying the 
diverse tumor (cell) composition in patients, e.g., traditional bulk 
expression profiles have to average the cells within each tumor. 
Nowadays, scRNA-seq provides a powerful technique to detect 
critical cell differences and deconvolve such cellular heterogeneity 
in disease tissues. Therefore, one important benefit obtained from 
scRNA-seq is the possibility to decipher tumor architecture (Cloney 
2017), so that it might overcome intratumoral heterogeneity, which 
hampers the success of precision medicine and is therefore a huge 
challenge in cancer treatment (Patel et al., 2014; Kim et al., 2016; 
Zong, 2017). Actually, in the context of cancer, mRNA can be used 
to identify malignant cells and diverse tumor-tissue compositions; 
such tumor compositions could indicate the cancer-associated 
cells and types determining tumor characteristics (Young et al., 
2018). Thus, scRNA-seq-based methods could be widely applied 
in clinical decision support (Tirosh et al., 2016a; Filbin et al., 2018; 
Krieg et al., 2018; Pellegrino et al., 2018).

 i) Tumor mechanism investigation. One general framework can be 
used to decipher differences between multiple classes of human 
tumors by decoupling cancer cell genotypes, phenotypes, and 
the composition of tumor microenvironment (Venteicher et al., 
2017). One single-cell analysis method has provided some 
insights into the cellular architecture of oligodendrogliomas 
and their function in development regulation, which 
potentially is compatible with the cancer stem cell model and 
its consideration in disease management (Tirosh et al., 2016b).

 ii) Tumor subtype recognition. To deconvolve the cellular 
composition of a solid tumor from bulk gene expression 
data using reference gene expression profiles from tumor-
derived scRNA-seq data, many cell types or subtypes must be 
identified accurately (Schelker et al., 2017). For example, one 
scRNA-seq study of triple-negative breast cancer identified 
the individual subpopulations with respective gene expression 
phenotypes and corresponding genotype driver candidates, 
whose associated signature genes can predict long-term 
outcomes (Karaayvaz et al., 2018).

 iii) Tumor immune therapy. Single-cell analyses have suggested 
distinct patterns in the tumor microenvironment, e.g., the 
breast cancer transcriptome has shown a wide range of 
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intratumoral heterogeneity that is reshaped by both immune 
and tumor cells in a closely communicated microenvironment 
at a single-cell resolution (Chung et al., 2017). An unbiased 
scRNA-seq analysis has detected human dendritic cells and 
several monocyte subtypes in the human blood to permit 
more accurate immune monitoring in health and disease 
(Villani et al., 2017). In a more special field, the single-cell 
transcriptional information in B-cell lineages might have 
broad applications involved in vaccine design, antibody 
development, and cancer treatment (Rizzetto et al., 2018; 
Upadhyay et al., 2018).

 iv) Tumor virus-environment recognition. Indeed, the interaction 
between a host and a pathogen is a highly dynamical process, 
so the potential association between a pathogen and cancer 
is worthy of profound investigation. An scRNA-seq-based 
method, scDual-Seq, has been proposed to capture host 
and pathogen transcriptomes simultaneously (Avital et al., 
2017). In different mouse models, the hypothetical virus-
host interaction events have been found to play some key 
regulatory role in virus phenotypes involved in complex 
diseases by tracking viral RNA at single-cell resolution within 
the immune system (Douam et al., 2017).

Of course, the translational usage of scRNA-seq is not limited 
to the field of tumor biology or complex human diseases; it is 
expected to have great potential and to enjoy a wide range of 
applications in biological and biomedical fields, such as infant 
development, health and wellness, and disease monitoring.

Design of Hypothesis and Theory Study 
on scRNA-seq Analysis Robustness
As is well known, scRNA-seq analysis is used to compare the 
expression levels of multiple genes at single-cell resolution 
(Tang et al., 2009). Different from the conventional population-
based biological technologies for gene expression measurement 
(e.g., bulk gene expression), scRNA-seq is able to distinguish 
the expression differences between individual cells rather than 
tissues. With the continuous development of such technology, 
the testing cost is decreasing, whereas the number of cells that can 
simultaneously be tested is increasing exponentially. Some recent 
reviews have summarized these technological developments 
and protocol improvements in scRNA-seq analyses (Svensson 
et al., 2017; Ziegenhain et al., 2017; Svensson et al., 2018). An 
inspiring observation is that the number of tested cells and the 
number of detected genes can vary significantly depending 
on the corresponding experimental platforms. For example, 
SMART-seq2 is able to detect about 10,000 genes and achieve 
the highest accuracy, but the number of cells analyzed by this 
method is only 100 to 1,000 (Picelli et al., 2013; Picelli et al., 
2014). In contrast, Drop-seq is able to test more than 10,000 cells 
simultaneously, but the number of genes detected is usually less 
than 5,000 (Macosko et al., 2015). Recently, several commercial 
platforms, such as 10X Genomics Chromium, Fluidigm C1, and 
Wafergen ICELL8, were available for scRNA-seq analysis with 
the capability to measure hundreds to millions of cells through a 
simple and fast workflow.

Researchers are usually required to select the suitable 
experimental protocol to design the follow-up scRNA-seq analysis 
based on corresponding biological questions:

i) If one aims to discover new cell types with distinct expression 
patterns, more cells should be tested because it is impossible 
to find rare cell types from only a few hundred cells by chance.

ii) If one aims to analyze the changes in gene expression between 
different cell types or developmental stages or to analyze the 
gene interactions to find some key regulatory genes, more 
genes have to be measured with high accuracy.

iii) If one aims to analyze particular cell types by isolating a subset 
of cells for sequencing, fluorescence-activated cell sorting or a 
similar technology needs to be used to select the cells with cell 
type-specific cell surface markers.

To evaluate and investigate the robustness of different scRNA-
seq analysis methods, we have carried out two comparisons on 
multiple scRNA-seq datasets.

The aim of the first comparison is to discuss the experimental 
factors for scRNA-seq analysis. As is well known, the accuracy 
of RNA-seq data analysis is dependent on the experimental 
methods, especially the sequencing depth and dropout rate. To 
test these experimental factors before further evaluation, we 
compared four datasets on two different experimental platforms: 
GSE81608 (Xin et al., 2016) and GSE83139 (Wang et al., 2016) 
on an Illumina HiSeq 2500 and GSE86469 (Lawlor et al., 2017) 
and GSE81547 (Enge et al., 2017) on an Illumina NextSeq 500. 
All of these datasets come from the single-cell studies of human 
pancreatic islet cells so that their computational results will be 
comparable, and the number of clusters for each method was fixed 
to be the same as the number of biological classes corresponding 
to each dataset, as shown in Table 2.

The aim of the second comparison is to discuss the analytic 
approaches for scRNA-seq analysis. The performance of 
dissimilar methods on different real datasets of the same complex 
disease is important to evaluate, because performance robustness 
will be strictly required for biomedical studies and applications. 
Thus, we have employed several widely used methods in a few 
public scRNA-seq datasets from complex disease studies, which 
are listed in Table 3. According to the above summary, we 
actually evaluated the performances on cell cluster, cell identity, 
and cell trajectory. These methods’ parameter settings are listed 
in the supplementary files (Supp 1).

 i) For cell clustering analysis, traditional methods, such as 
hierarchical clustering, k-means, and scRNA-seq-induced 
SIMLR (Wang et al., 2017; Wang B. et al., 2018), SNN-Cliq 
(Xu and Su, 2015), and SEURAT (Butler et al., 2018) have 
been evaluated and compared.

 ii) For cell pseudo-time analysis, the Monocle (Trapnell et  al., 
2014; Qiu et al., 2017a; Qiu et al., 2017b) and diffusion 
pseudo-time (DPT) (Haghverdi et al., 2016) have been tested 
and compared.

Of note, to quantitatively measure and compare the analysis 
accuracy of cell clusters from different methods, the conventional 
adjusted rand index (ARI) is applied. Given a dataset of n cells, 
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the experimentally determined cell types are X1, X2, …, Xr and the 
calculated clusters are Y1, Y2, …, Ys. The number of cells that belong 
to cell type Xi is denoted as ai, the number of cells  that  belong 
to cluster Yj is denoted as bj, and the number of cells that belong to 
both Xi and Yj is denoted as nij, which means nij = |Xi ∩ Yj|. Then, the 
ARI is calculated as follows:

 

ARI
ij

n
i

a
j

b n

i
a

ij i j

i

=
( ) − ( ) ⋅ ( )



 ( )

( ) +

Σ Σ Σ

Σ

2 2 2 2

2
1
2

ΣΣ Σ Σj
b

i
a

j
b nj i j

2 2 2 2( )



 − ( ) ⋅ ( )



 ( )

.

 

RESULTS AND DISCUSSION

Experimental Factors for scRNA-seq 
Analysis
The experimental processes of the four datasets presented in 
Table 2 are briefly summarized below.

 1) For GSE81608 (Xin et al., 2016), islets were handpicked and 
enzymatically digested; during RNA in situ hybridization, the 
cells were permeabilized and hybridized with combinations 
of mRNA probes and a multiplex fluorescent kit was used to 
amplify the mRNA signal. Sequencing was performed on an 
Illumina HiSeq2500 in rapid mode by multiplexed single-
read run with 50 cycles.

 2) For GSE83139 (Wang et al., 2016), human islets require 
careful sample acquisition and preparation; the SMART-seq 

method was used for first-strand cDNA synthesis and 
polymerase chain reaction (PCR) amplification. All of the 
libraries were sequenced on the Illumina HiSeq 2500 with 
100 bp single-end reads.

 3) For GSE86469 (Lawlor et al., 2017), islets are systematically 
acquired, processed, and dissociated; then, single-cell 
processing is carried out on the C1 single-cell Autoprep 
system. All of the sequencing was performed on an Illumina 
NextSeq500 using the 75-cycle high-output chip.

 4) For GSE81547 (Enge et al., 2017), the experimental models 
and human pancreas or islet samples were conducted in 
accordance with guidelines; during flow cytometry, isolated 
human islets were dissociated into single cells by enzymatic 
digestion using Accumax (Invitrogen). Next, single-cell RNA-
seq libraries were generated as described in the literature, and 
barcoded libraries were pooled and subjected to 75 bp paired-
end sequencing on the Illumina NextSeq instrument.

Of course, the whole experimental process should be consistent; 
however, the scRNA-seq wet experiments in different studies 
were conducted with different parameters and under different 
circumstances, which are worthy of future evaluation. Although 
sequencing platforms are only one part of the scRNA-seq 
experiment, we tried to include them for the comparison study in 
this work. In Table 2, we see that there is no obvious performance 
difference between two experiment platforms; however, the 
accuracy (i.e., ARI) seems to increase when the number of 
detected genes becomes large for almost all of the tested methods, 
which is consistent with a previous conclusion (Potter, 2018) and 
implies that the influence of sequencing depth is very important 

TABLE 2 | Clustering performances of four datasets with different experiment methods represented as adjusted rand index (ARI).

GSE81547 GSE83139 GSE81608 GSE86469

Experiment platforms NextSeq 500 HiSeq 2500 HiSeq 2500 NextSeq 500
Number of cells 2,282 635 1,600 617
Number of detected genes per cell on 
average

3,281 5,638 5,706 8,339

Number of potential cell types* 6 8 4 7
Hierarchical clustering 0.34 0.25 0.46 0.63
k-means 0.34 0.27 0.44 0.48
tSNE+k-means 0.37 0.34 0.54 0.72
SIMLR 0.34 0.32 0.51 0.61
SNN-Cliq 0.10 0.31 0.05 0.61
SEURAT 0.31 0.31 0.45 0.89

*GSE81547 includes alpha cells, beta cells, delta cells, acinar cells, mesenchyme cells, and ductal cells. GSE83139 includes alpha cells, beta cells, delta cells, PP cells, acinar cells, 
mesenchyme cells, ductal cells, and dropped cells. GSE81608 includes alpha cells, beta cells, delta cells, and PP cells. GSE86469 includes alpha cells, beta cells, delta cells, PP 
cells, acinar cells, stellate cells, and ductal cells.

TABLE 3 | Summary of evaluation datasets on human complex diseases.

Data ID Purpose Platform #scRNA-Seq #Class

GSE69405 scRNA-seq identifies subclonal heterogeneity in anticancer drug 
responses of lung adenocarcinoma cells

HiSeq 2500 176 3

GSE73121 scRNA-seq in optimizing a combinatorial therapeutic strategy in 
metastatic renal cell carcinoma

HiSeq 2500 118 3

GSE81608 scRNA-seq on human islet cells revealing type 2 diabetes genes HiSeq 2500 1600 4
GSE83139 scRNA-seq of the human endocrine pancreas HiSeq 2500 635 8
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in the experimental protocol for follow-up data analysis. Of note, 
the parameter setting for each compared method in this work is 
outlined in the supplementary files (Supp 1).

Analytic Approaches for scRNA-seq 
Analysis
First, it can be seen that the datasets after dimension reduction 
by t-distributed stochastic neighbor embedding (tSNE) (Maaten 
and Hintton, 2008) exhibit better performances in conventional 
k-means clustering than the initial dataset, which is due to the 
noise reduction of scRNA-seq data. Dimension reduction can 
be used in the visualization of such phenomena, which reduces 
one dataset from high-dimensional data space to two- or three-
dimensional data space. Figure 1A illustrates the performances 
of principal component analysis (PCA) and tSNE on multiple 
datasets. It is clear that tSNE, a nonlinear method, can usually 
achieve better visualization effects than PCA, a linear method. 
This is because tSNE can group the cell points from one class 
cluster together and keep the cell points from different classes 
separated from each other. The quantitative measurement of the 
influence of PCA and tSNE by the Davies-Bouldin index also 
supported this conclusion, as shown in the supplementary files 
(Supp 2). Of note, due to the large computational complexity of 
nonlinear methods, the general strategy for large data analysis 
includes two steps. The first is to reduce the dimension to 20 to 50 
by PCA, and the second is to reduce such moderate dimension to 
2 to 3 by tSNE. This strategy is expected to achieve a good balance 
between computational performance and resource consumption.

Second, in the cell clustering analysis, the analyzed genes are 
selected that exhibit expression in at least three cells, so that most 
genes have actually been used. For hierarchical clustering, k-means, 
tSNE+k-means, and SIMLR, the number of clusters for each 
method was fixed to be the same as the number of biological classes 
corresponding to each dataset, as shown in Table 3. For SNN-Cliq 
and SEURAT, the parameters were adjusted to guarantee that the 
number of final clusters was the same as the number of biological 
classes in those datasets, as shown in Table 3. In other words, the 
number of clusters for every method is the same for one dataset to 
make different methods fairly comparable to ARI. As seen in Figure 
1B, it is obvious the performances of tSNE+k-means, SIMLR, and 
SEURAT were better than those of others with higher ARI values 
in most scRNA-seq datasets. In addition, although tSNE+k-means, 
SIMLR, and SEURAT have similar performances with regard to 
ARI, they usually accurately detected different true classes (Figure 
1C). This means different methods would have different analysis 
preferences due to different underlying mathematical or biological 
frameworks and explanations of scRNA information.

Third, scRNA-seq data follow a time series and the expression 
of cells may change continuously. For this kind of dataset, some 
statistical methods can be used to order the cells one by one along a 
trajectory, which is called pseudo-time or pseudo-trajectory. This 
mathematical model has been widely applied in developmental 
biology to reconstruct the differentiation processes and find 
the key time point of differentiation (Cannoodt et al., 2016). In 
addition, cell pseudo-time analysis can also be used in studies 
of cancer and diabetes to reconstruct the occurrence and 

transformation processes of complex diseases. Thus, the Monocle 
and DPT have been carried out for pseudo-time analysis on 
multiple scRNA-seq datasets; these two computational methods 
are dependent on entirely different principles. In this cell pseudo-
time analysis, the most expression-variable genes are selected 
as feature genes for downstream analysis. As shown in Figure 
1D, the feature genes exhibit great differences between datasets 
with different biological backgrounds; however, the two datasets 
on similar biological phenotypes still have much overlap (i.e., 
the feature genes from two datasets related to tumor cells with 
treatments or those from two datasets associated with diabetes). 
Of note, using human pancreas scRNA-seq datasets in another 
platform (i.e., GSE86469 and GSE81547; Table 2) as controls, the 
top 50 selected feature genes from the total four datasets indeed 
had more overlapping genes, as listed in the supplementary files 
(Supp 3). In Figure 1E, it is seen that both Monocle and DPT 
are able to reconstruct the pseudo-time with branches, and DPT 
seems to obtain more accurate results as the cells of the same cell 
type tend to group together. Meanwhile, the pseudo-time and 
branch point seem to be clearer in the analyses of Monocle. Of 
note, the performance of pseudo-time analysis will be strongly 
influenced by the selected feature genes. In this comparison, 
the most expression-variable genes were used, but usually it 
would be much better to select the feature genes based on the 
prior biological knowledge in each case study. Furthermore, the 
consistency of pseudo-time results from different methods is 
considered and evaluated. As shown in Figure 2, the correlations 
between the first principal components of the pseudo-time 
results from Monocle and DPT have been calculated. Then, the 
estimation similarities of cell orders in particular cell classes 
from different methods are compared. It is obvious that the cell 
order correlations have huge variances in a wide range among 
different prior-known cell classes. In addition, two other pseudo-
time methods, Wanderlust (Bendall et al., 2014) and SCUBA 
(Marco et al., 2014), were also applied to reconstruct the pseudo-
time trajectory of single cells without branch, as discussed in the 
supplementary files (Supp 4). The observations and conclusions 
were similar. Thus, in the pseudo-time analysis, consensus 
performance of dissimilar methods is weak currently.

CONCLUSION

scRNA-seq has opened a new way to study complex biological 
phenomena on the single-cell level, which will be especially 
helpful in the research of complex diseases. However, to 
enhance its performance in actual applications, e.g., in the clinic, 
several improvements are still required. For cell clustering and 
identification, gene networks rather than separate genes would be 
more important and reliable to characterize cell states (e.g., network 
biomarkers for disease subtypes) (Zeng et al., 2014; Zeng et al., 
2016). For the cell order, the start or end point of pseudo-time is 
still a manual judgment, and the auto-determination of these time 
points will render these methods more flexible and applicable (e.g., 
temporal driving for disease causality) (Yu et al., 2017; Wang et al., 
2018; Setty et al., 2019). The branch point of pseudo-time also 
requires more models on critical transitions (e.g., tipping point for 
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FIGURE 1 | Summary of performance comparison.
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disease transition) (Zeng et al., 2013; Li et al., 2014). Particularly, 
the assembling method with good consensus on different datasets 
is expected to provide more robust integrative scRNA-seq methods 
for biological and biomedical studies (e.g., pattern fusion for disease 
heterogeneity) (Shi et al., 2017; Guo et al., 2018).
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