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Summary: Pathogen-associated molecular pattern molecules (PAMPs)
are derived from microorganisms and recognized by pattern recogni-
tion receptor (PRR)-bearing cells of the innate immune system as well
as many epithelial cells. In contrast, damage-associated molecular pat-
tern molecules (DAMPs) are cell-derived and initiate and perpetuate
immunity in response to trauma, ischemia, and tissue damage, either
in the absence or presence of pathogenic infection. Most PAMPs and
DAMPs serve as so-called ‘Signal 0s’ that bind specific receptors [Toll-
like receptors, NOD-like receptors, RIG-I-like receptors, AIM2-like
receptors, and the receptor for advanced glycation end products
(RAGE)] to promote autophagy. Autophagy, a conserved lysosomal
degradation pathway, is a cell survival mechanism invoked in response
to environmental and cellular stress. Autophagy is inferred to have
been present in the last common eukaryotic ancestor and only to have
been lost by some obligatory intracellular parasites. As such, autophagy
represents a unifying biology, subserving survival and the earliest host
defense strategies, predating apoptosis, within eukaryotes. Here, we
review recent advances in our understanding of autophagic molecular
mechanisms and functions in emergent immunity.
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Introduction

Danger is everywhere. The host recognizes so-called danger

signals with induction of an innate and then adaptive

immune response (Fig. 1). In the setting of microbial infec-

tion, pathogen-associated molecular patterns (PAMPs), pres-

ent in diverse organisms but absent in the host, provide

exogenous signals that alert the immune system to the pres-

ence of pathogens, thereby promoting immunity (1–3). The

notion that a ‘signal 0’ for innate immunity was necessary,

as postulated by Janeway, distinguished it from later signals

to drive adaptive immunity (2). This led to the first identifi-

cation of so-called pattern recognition receptors (PRRs). In

contrast, cells release damage-associated molecular pattern

molecules (DAMPs) as endogenous danger signals that alert

the innate immune system to unscheduled cell death, to

microbial invasion, and in response to stress (4–7).

Autophagy is a process by which cytoplasmic compo-

nents, including soluble macromolecules (nucleic acids,
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proteins, carbohydrates, and lipids) and organelles (e.g.

mitochondria, peroxisomes, and endoplasmic reticulum)

are degraded by the lysosome (8, 9). It likely evolved as a

cell stress response to starvation and subsequently to limit

damage and maintain cellular homeostasis as a means to

exert protein/organelle quality control (10). Autophagic

dysfunction is linked to several human diseases. For exam-

ple, it can exert tumor suppressing (11, 12) as well as

tumor promoting functions (13, 14), in a context and cell

type-specific manner. Several studies reveal a crucial role

for autophagy in adaptive and innate immunity (15–23),

with the term ‘immunophagy’ (22) referring to all such

processes collectively (Fig. 1). Autophagy degrades microbes

(such as viruses, bacteria, and protozoa) that invade and

gain access to the cytosol (16, 24, 25). This process is

termed ‘xenophagy’ (26). The precise membrane dynamics

and mediators of xenophagy, however, are not fully

understood. In this review, we provide a brief overview of

the process and function of autophagy and focus on the

complex relationship between immunophagy and the initi-

ating signal 0s with specific emphasis on PAMPs and

DAMPs.

Fig. 1. Signal 0s play critical roles in autophagy and immunity. Pathogen-associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) serve as signal 0s, inducing autophagy and immunophagy in the emergent immune response before the later Signal
1 (antigenic peptide and major histocompatability molecules), Signal 2 (costimulatory molecules such as CD80 and CD86), both present on the
surface of DCs recruited by the signal 0s. Signal 3 represents the DC provided IL-6 family cytokine expression such as IL-12 and IL-23 which
promote polarization of emergent T-cell response. Signal 4 represents the integrin expression on DCs, defining the origin of the DCs and driving
specialized molecules on T-cells promoting T-cell traffic to tissues. LPS, lipopolysaccharide; HMGB1, high mobility group box 1; ATP, adenosine-
5′-triphosphate; PRRs, pattern recognition receptors; TLRs, Toll-like receptors; NLRs, NOD-like receptors; RLRs, RIG-I-like receptors; RAGE,
receptor for advanced glycation end products.
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The processes and functions of autophagy: a brief

overview

Lysosomes contain acid hydrolases, enzymes that function to

break up waste materials and cellular debris and regulate cell

death. Nutrient sensor complexes such as mTORC1 and

mTORC2 sit within the lysosomal membrane, able to initi-

ate anabolism and mitosis when the cell is nutritionally

replete. Within the immune system, lysosomes link

exocytosis, endocytosis, and phagocytosis (27). The ubiqu-

itin-proteasome system (UPS) and autophagy are two func-

tionally linked major degradation pathways. Impairment of

the UPS is compensated by upregulation of autophagy (28).

In contrast, impairment of autophagy prevents ubiquitinated

protein delivery to the proteasome for degradation (29).

Some proteins, such as histone deacetylase-6 (HDAC-6)

(30), p53 (31), and p62/SQSTM1 (29), play roles in the

cross-talk between the UPS and autophagy.

In mammals, three primary forms of autophagy have

been described: chaperone-mediated autophagy, microauto-

phagy, and macroautophagy, which differ in their mecha-

nism and function (Fig. 2). Among these, macroautophagy

has been the most extensively studied (8). However, the

precise mechanisms mediating microautophagy in mamma-

lian cells are still unclear (32). Macroautophagy most com-

monly (hereafter referred to as ‘autophagy’) is initiated by

the formation of the phagophore, followed by a series of

steps, including the elongation and expansion of the phago-

phore and the closure and completion of a double-mem-

brane autophagosome, which sequesters cytosolic material.

Autophagosome maturation includes several vesicular fusion

events that originates from early and late endosomes (am-

phisomes) and lysosomes (autolysosomes), followed by

breakdown and degradation of the autophagosome and am-

phisomes through acid hydrolases inside the autolysosome.

Recycling of the resulting macromolecules is mediated

through permeases. Several recent studies suggest that auto-

phagosomes may also fuse with cell membranes, promoting

exocytosis, secretion, or extrusion of autophagic contents

(33–35).

Autophagy involves a series of dynamic membrane-

rearrangement reactions mediated by a core set of proteins

– the autophagy-related (ATG) proteins (36) and other

autophagy interaction network components (37). ATG pro-

teins are composed of four functional groups (Fig. 2),

including a protein serine/threonine kinase complex that

responds to upstream signals (Atg1/ULK1, Atg13, and Atg17),

Fig. 2. Means by which autophagy delivers antigen into the autolysosome. Microautophagy refers to the sequestration of cytosolic components
directly by lysosomes through invaginations within their limiting membrane. Chaperone-mediated autophagy involves direct translocation of
unfolded substrate proteins (KFERQ-like motif) across the lysosome membrane through the action of a cytosolic and lysosomal chaperone heat
shock cognate protein of 70 kDa (Hsc70), and the integral membrane receptor lysosome-associated membrane protein type 2A (LAMP-2A). In
the case of macroautophagy, the cargo is sequestered within a unique double membrane cytosolic vesicle, an autophagosome. The
autophagosome itself is formed by expansion of the phagophore. The autophagosome undergoes fusion with a late endosome or lysosome to
form an autolysosome, in which the sequestered material is degraded. Degradation of membrane lipids and proteins by the autolysosome
generates free fatty acids, nucleotides, and amino acids that can be reused by the cell to maintain mitochondrial ATP energy production, protein
synthesis, and thereby promote cell survival. The molecular machinery of macroautophagy was largely discovered in yeast and the centrally
important proteins referred to as autophagy-related (ATG) proteins although some similar proteins in mammals have disparate names (Beclin-
1 = ATG6, LC3 = ATG8 for example).
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a lipid kinase signaling complex that mediates vesicle nucle-

ation (Atg6/Beclin1, Atg14, Vps34/PI3KC3, and Vps15),

and two ubiquitin-like conjugation pathways that mediate

vesicle expansion (the Atg8/LC3 and Atg12 systems). Atg9

is a transmembrane protein and may provide lipids to the

isolation membrane by cycling between distinct subcellular

compartments (38). Beclin 1/Atg6 has an important role in

autophagy and tumorigenesis (11). It interacts with several

cofactors to regulate the class III phosphatidylinositol 3-

kinase (PI3KC3) and promote formation of Beclin 1-PI3KC3

core complexes, thereby inducing autophagy (39, 40).

Autophagy can degrade substrates in a selective manner

such as mitochondria, in a process termed mitophagy.

Mitophagy is now a well-established mechanism necessary

for elimination of dysfunctional mitochondria and regula-

tion of mitochondrial quality by specific mediators such as

Nix/BNIP3L, Parkin, and Atg32 (41). Cells may also remove

damaged mitochondria to prevent the accumulation of reac-

tive oxygen species (ROS). The induced ROS from mito-

chondria or NADPH oxidases have recently been shown to

be important signals linking immunity with autophagy (42–

44).

Autophagy and apoptosis are both tightly regulated

biological processes (Fig. 3) that play a central role in cell

survival and cell death (45). These two pathways are regu-

lated by common factors such as Bcl-2 family members and

various transcription factors (Fig. 3). In addition, expressions

of autophagy gene products are required for clearance of

apoptotic cells and the prevention of tissue inflammation

(46). Compared with apoptosis (‘programed cell death’),

autophagy is primarily a cell survival process (‘programed

cell survival’). In some cases, when apoptosis is compro-

mised, such as in the setting of Bax/Bak deficiency, activa-

tion of autophagy leads to cell death (47), presumably via

self-cannibalization or bioenergetic failure.

PAMPs: the exogenous signal 0s

In 1989, Charles Janeway (1) proposed that the immune

system evolved to protect the host, not against innocuous

foreign antigens but rather against infectious pathogens,

and postulated that receptors on antigen-presenting cells of

the innate immune system recognize so-called signal 0s,

now termed PAMPs. Shortly thereafter, when we (MTL)

asked him about the role of signal 0s in the setting of ster-

ile inflammation, including cancer, he indicated that their

role was indeed a concern but was at that time unclear.

PAMPs are essential functional components of microorgan-

isms that direct the targeted host cell to distinguish ‘self’

from ‘non-self’ (‘stranger hypothesis’) and promote signals

associated with innate immunity (48). Major PAMPs are

microbial nucleic acids, including DNA (e.g. unmethylated

CpG motifs), double-stranded RNA (dsRNA), single-

stranded RNA (ssRNA), and 5′-triphosphate RNA, as well as

lipoproteins, surface glycoproteins, and membrane compo-

nents [peptidoglycans, lipoteichoic acid, lipopolysaccharide

(LPS), and glycosylphosphatidylinositol]. They are recog-

nized by Toll-like receptors (TLRs) and other PRRs, such as

retinoid acid-inducible gene I (RIG-I)-like receptors (RLRs),

AIM2 like receptors (ALRs), and nucleotide-binding oligo-

merization domain (NOD)-like receptors (NLRs) (48–50).

Most of the TLRs are believed to be homodimers, although

heterodimers exist in the cases of TLR1:TLR2 and TLR2:

TLR6. The Toll/interleukin-1 receptor homologous region

(TIR) adapter proteins [myeloid differentiation factor 88

(MyD88), TIR adapter protein (TIRAP)/MyD88 adapter-like

(MAL), translocating chain-associated membrane protein

(TRAM), and TIR-domain-containing adapter-inducing

interferon-b (TRIF)] also appear to associate with one

another and are often illustrated as homodimers or hetero-

dimers (Fig. 4A).

TLR4 recognizes LPS (51), a major cell wall component

of Gram-negative bacteria that activates the innate immune

system. Recognition of LPS requires CD14 in addition to

TLR4. The responsiveness of the TLR4 and CD14 complex

to LPS is enhanced by MD2. While the recognition of extra-

cellular DNA primarily involves TLR9 (52), recognition of

cytosolic DNA appears to involve several sensors (Fig. 4A)

such as DNA-dependent activator of interferon (IFN)-regula-

tory factors (DAI) (53), hematopoietic IFN- inducible

nuclear protein with the 200-amino-acid repeat (HIN-200)

family members [e.g. absent in melanoma 2 (AIM2), p202,

p204 (IFN-inducible IFI16 protein)] (54–56), DNA-depen-

dent RNA polymerase III (Pol-III) (57), and leucine rich

repeat (in FLII) interacting protein 1 (LRRFIP1) (58).

dsRNA is recognized by TLR3 (59), RIG-I (60), melanoma

differentiation-associated gene 5 (MDA5) (61), and labora-

tory of genetics and physiology 2 (LGP2) (62) (Fig. 4A).

Following PAMP recognition, activated TLRs and other

PRRs localized to the cell surface, the cytoplasm, and/or

intracellular vesicles provide signals to the host indicating the

presence of a microbial infection and trigger proinflammatory

and anti-microbial responses by activating a multitude of

intracellular signaling pathways, including adapter mole-

cules, kinases, and transcription factors such as nuclear fac-
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tor-jB (NF-jB), activator protein-1 (AP-1), and IFN regula-

tory factors (IRFs) (Fig. 4A). PAMP-induced signal transduc-

tion pathways ultimately result in the activation of gene

expression and the synthesis of a broad range of molecules,

including cytokines, chemokines, cell adhesion molecules,

and immunoreceptors that direct the adaptive immune

response to invading pathogens by sensing microorganisms.

DAMPs: the endogenous signal 0s

In 1994, Polly Matzinger (4) proposed that the immune

system is more concerned with ‘danger’ or ‘damage’ than

with the distinction between self and non-self. The model

starts with the idea that the immune system defines danger

as anything that causes tissue stress or destruction (63, 64).

In this model, antigen-presenting cells are activated by

PAMPs and DAMPs from stressed or damaged tissues or

microbes (65). Matzinger’s ‘danger model’ suggests why

potent immune responses are initially elicited in the setting

of sterile inflammation.

DAMPs are cell-derived molecules that can initiate and

perpetuate immunity in response to trauma, ischemia,

cancer, and other settings of tissue damage in the absence

of overt pathogenic infection (Fig. 4A). DAMPs are localized

within the nucleus and cytoplasm (HMGB1), cytoplasm

alone (S100 proteins), exosomes [heat shock proteins

(HSPs)], the extracellular matrix (hyaluronic acid), and in
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plasma components such as complement (C3a, C4a, and

C5a). Examples of non-protein DAMPs include ATP, uric

acid, heparin sulfate, RNA, and DNA. DAMPs can also be

mimicked by release of intracellular mitochondria, consist-

ing of formyl peptides and mitochondrial DNA (with CpG

DNA repeats), to activate human polymorphonuclear neu-

trophils through activation of TLR9 (66), which reveals an

important link between trauma and inflammation. Following

interaction between DAMPs and DAMP receptors [e.g. TLRs

and the receptor for advanced glycation end products

(RAGE)], activation of mitogen-activated protein kinases

(MAPKs), NF-jB, and PI3K/AKT signaling pathways ensues

thus mediating a potent response to cell survival and cell

death (Fig. 4A). Increased serum levels of these DAMPs are

associated with inflammatory diseases, including sepsis,

arthritis, atherosclerosis, systemic lupus erythematosus,

Crohn’s disease, and cancer.

The chromatin-associated protein HMGB1 is considered to

be one of the prototypical DAMPs. Release of HMGB1 extra-

cellularly is a common denominator in the response to both

cell or tissue injury including organ harvest and associated

ischemia/reperfusion insults, and microbial invasion (67–

69). The redox/thiol-reducing protein HMGB1 mediates the

response to infection, inflammation, migration, prolifera-

tion, and differentiation (70–72). It is specifically recog-

nized by several cell surface receptors including RAGE,

TLR4, TLR2, triggering receptor expressed on myeloid cells-

1 (TREM-1), and CD24 (Fig. 5). CD24 serves as a negative

signaling molecule to limit DAMP- but not PAMP-mediated

inflammation (73). The HMGB1 protein induces migration

and activation of human dendritic cells (DCs), eosinophil,

natural killer (NK)-DC cross-talk, and T-cell activation (70,

71). HMGB1 causes TLR4-dependent activation of NADPH

oxidase as well as increased ROS production (74). Interest-

ingly, a cysteine at position 106 (Cys106) within HMGB1 is

required for binding to TLR4 and activation of cytokine

release in macrophages (75). The oxidation of HMGB1

Cys106 alone is sufficient to block the immunogenic activity

of HMGB1 for DCs (76). These findings suggest that redox

regulates HMGB1 function in the setting of emergent immu-

nity and inflammation (Fig. 5). In addition, HMGB1 is an

essential component of DNA-containing immune complexes

that stimulate cytokine production through a TLR9-MyD88

pathway involving RAGE (77). In contrast, HMGB1-containing

Fig. 3. Overview of the major signal transduction pathways that regulate autophagy and apoptosis. Common molecular regulators include
gene products that affect both autophagy and apoptosis and the pathways that they influence. The process of apoptotic cell death is mediated by
two central pathways: an extrinsic pathway involving cell surface receptors (the death receptor pathway), and an intrinsic pathway using
mitochondria and the endoplasmic reticulum (the mitochondrial pathway). A third pathway is mediated by cytolytic T and NK cells delivering
perforin/granzymes to promote apoptosis. CD95 (also called Fas or APO-1) induces apoptosis by forming a death-inducing signaling complex
(DISC) at the receptor that contains FADD, caspase-8, and the caspase-8 regulator. Autophagy can degrade active caspase-8. The FLICE inhibitory
protein (FLIP), a caspase-like molecule without proteolytic activity, protects cells from CD95-induced apoptosis. FLIP can suppress autophagy. The
intrinsic mitochondrial pathway is activated by diverse apoptotic signals such as DNA damage, growth factor deprivation, and oxidative stress.
Cytoplasmic translocation of mitochondrial proteins [such as cytochrome c (cyt c) and Smac/DIABLO] lead to activation of the caspase cascade
and initiate apoptosis. A pivotal event in the mitochondrial pathway is mitochondrial outer membrane permeabilization (MOMP), which is
mainly regulated by Bcl-2 family members. Some of the Bcl-2 family members (e.g. Bcl-2, and Bcl-XL) are anti-apoptotic, whereas others (e.g.
Bax, tBid, Bad, Bim, PUMA, and Noxa) are pro-apoptotic. Mitophagy is a well established mechanism necessary for elimination of dysfunctional
mitochondria and regulation of mitochondrial quality in yeast or mammalian cells associated with cytosolic mediators such as NIX, Atg32, optic
atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), unc-51-like kinase 1 (ULK1), Parkin, Pink1, voltage-dependent anion channel 1 (VDAC1),
p62/Sequestosome 1 (SQSTM1), mitofusin 1, and mitofusin 2. Beclin 1, the mammalian ortholog of yeast Atg6, plays a central role in
autophagy. It interacts with several cofactors (e.g. Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP3R, PINK, and
Survivin) to regulate the formation of Beclin 1-PI3KC3 complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound
to and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1.
Interestingly, caspase-mediated cleavage of Beclin 1 promotes cross-talk between apoptosis and autophagy. Although apoptosis-associated cleavage
of Beclin 1 and Atg5 inactivates autophagy, the cleavage of Atg4D by caspase-3 generates a fragment with increased autophagic activity. In the
presence of growth factors, growth factor receptor signaling activates PI3KC1 at the plasma membrane. PI3KC1 activates the downstream target
AKT, leading to activation of mammalian target of rapamycin (mTOR) by inhibiting the tuberous sclerosis complex 1/2 (TSC1–TSC2), which
results in inhibition of autophagy. Overexpression of the phosphatase and tensin homolog (PTEN) gene, by an inducible promoter, antagonizes
PI3KC1 to induce autophagy. RAS has a dual effect on autophagy. When it activates PI3KC1, autophagy is inhibited, but when it selectively
activates the RAF1–mitogen-activated protein kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) cascade, autophagy is stimulated.
AMPK monitors the energy status of the cell by sensing the AMP:ATP ratio. Several upstream kinases, including liver kinase B1 (LKB1, which is
activated by energy depletion), calcium/calmodulin kinase kinase-b (CaMKKb, which is activated by cytosolic Ca2+ levels), and TGFb activated
kinase-1 (TAK-1, which is also involved in IKK activation), can activate AMPK by phosphorylation. Activated AMPK promotes inhibition of mTOR
kinase, which induces autophagy. NF-jB and p53 play a double role in regulating autophagy in a transcription dependent and/or independent
fashion. In contrast, E2F1 and FOXO3 positively regulate autophagy in a transcription dependent fashion. Nuclear HMGB1 inhibits the p53-
dependent transactivation from the Bax promoter. Accumulation of cytosolic HMGB1 sustains autophagy by liberating the Beclin 1 and PI3KC3
complexes. RAGE-induced autophagy is associated with decreased phosphorylation of mTOR and increased Beclin1-PI3KC3 interactions.
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Fig. 4. The role of TLRs, RLRs, and NLRs in PAMP and DAMP recognition. (A) Signaling pathways triggered by pathogen-associated molecular
pattern (PAMPs) and damage-associated molecular pattern molecules (DAMPs). Lipopolysaccharide (LPS) activates both the myeloid differentiation
factor 88 (MyD88)-dependent and TIR-domain-containing adapter-inducing interferon-b (TRIF)-dependent Toll-like receptor 4 (TLR4) pathways.
The MyD88-dependent pathway is responsible for NF-jB and mitogen-activated protein kinase (MAPK) activation, which controls induction of
proinflammatory cytokines. The TRIF-dependent pathway activates IRF3 by TANK-binding kinase 1 (TBK1)/IKKe, which is required for the
induction of IFN-inducible genes. TLR1-TLR2 and TLR2-TLR6 recognize bacterial triacylated lipopeptide or diacyl lipopeptide, respectively, and
recruit TIR adapter protein (TIRAP) and MyD88 at the plasma membrane to activate the MyD88-dependent pathway. TLR5 recognizes flagellin
and activates the MyD88-dependent pathway. TLR3, TLR7, TLR8, and TLR9 reside in the endosome and recognize dsRNA, ssRNA, CpG DNA, or
mitochondrial DNA (Mit DNA), respectively. They recruit TRIF or MyD88 to activate the IRF3 or IRF7 pathway. All immunogenic nucleic acids
bind indicated cytosolic DNA sensors or RNA sensors, including retinoid acid-inducible gene I (RIG-I)-like receptors (RLRs), which are required
for subsequent recognition by specific pattern recognition receptors to activate innate immune responses. DAMPs such as HMGB1, S100 proteins
(S100s), and heat shock proteins (HSPs) recognize the receptor for advanced glycation end products (RAGE), TLR4, or triggering receptor
expressed on myeloid cells-1 (TREM-1) and activate the MyD88-MAPK-NF-jB pathway. HMGB1 and RAGE activate the TLR9-MyD88 dependent
pathway, which contributes to autoimmune pathogenesis. CD24 is a negative receptor to inhibit the DAMP-induced TLR4 pathway. ATP binding
of the P2X7 receptor and uric acid, as well as asbestos and alum, increase activation of caspase-1 by the NALP3 inflammasome and other
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to promote secretion of IL-1b and IL-18. PAMP and DAMP-mediated
signaling and induction of an innate immune response usually results in resolution of infection, but may also cause chronic inflammation or
autoimmunity by altering various cell death and survival mechanisms. (B) Mitochondria in mammalian cells are removed by autophagy via the
NIX adapter during developmental elimination of mitochondria, or via PTEN-induced putative kinase 1 (Pink1) and Parkin-mediated
ubiquitination (Ub) of voltage-dependent anion channel 1 (VDAC1), recognized by the adapter p62 for removal of stressed (e.g. depolarized or
damaged) mitochondria. (C) Intracellular bacteria exposed to the cytosol are modified by ubiquitin (Ub) and recognized by the autophagic
adapters p62 or nuclear dot protein 52 (NDP52)/TBK1 for sequestration into autophagosomes and subsequent elimination.
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nucleosomes from apoptotic cells induce anti-double-

stranded DNA (dsDNA) and anti-histone IgG responses in a

TLR2-dependent manner (78). Indeed, HMGB family mem-

bers function as universal sentinels for nucleic acids in

innate immune signaling (79).

PAMPs and autophagy

A diverse array of pathogens interact with components of

the autophagic pathway including Brucellus abortus (80, 81),

Coxiella burnetii (82), Porphyromonas gingivalis (83), Salmonella enter-

ica (84), Chlamydia trachomatis (85), Listeria monocytogenes (86),

Group A Streptococcus (87, 88), Mycobacterium tuberculosis (89),

Leishmania Mexicana (90), Shigella flexneri (91), poliovirus (92),

herpes simplex virus (93, 94), sindbis virus (95), dengue

virus (96), and coronavirus (97). As such, autophagy is

likely the most ancient of the immune mechanisms, predat-

ing integration of mitochondria, generation of reactive oxy-

gen species, and all innate and adaptive immune responses

(15–20, 24, 98, 99). Autophagy is not only a surveillance

system to detect cytosolic microbes but also a mechanism

for immune cells such as macrophages to capture, docu-

ment, and digest microbes. Several of these components

engage lipid rafts (96, 100). Recent studies have uncovered

key ubiquitin-binding adapters, such as p62 (101–103),

nuclear dot protein 52 kDa (NDP52) (104), neighbor of

BRCA1 gene 1 (NBR1) (104, 105), and NIX (34, 106), in

targeting bacteria (e.g. Salmonella, Shigella, Streptococci, Listeria,

and Sindbis virus) or mitochondria to autophagosomes by

binding to LC3 (Fig. 4B,C). Other molecular species such as

diacylglycerol serve as lipid signals that can also target bacte-

ria to the autophagosome by activation of protein kinase C

(107). In addition, the mammalian Atg8/LC3 family has

many confirmed or likely interactions with other proteins

(37), suggesting that these novel partners may be involved

in xenophagy or other forms of selective autophagy.

LPS, a prototypical PAMP, directly induces autophagy in

macrophages by activating the p38 MAPK and PI3KC3 path-

ways (108). The major signaling target of PAMPs during

infection is the transcription factor NF-jB. The relationship

between NF-jB and its regulation of autophagy is an area of

great interest, emerging as a negative regulator of autophagy

induced by tumor necrosis factor (109). NF-jB p65 also

directly regulates Beclin 1 expression (110). Other studies

suggest that inhibitor of NF-jB kinase (IKK), a kinase

upstream of NF-jB, is directly involved in the induction of

autophagy (Fig. 3) and shows no strict NF-jB correlation

with control of autophagy (111, 112). Moreover, TGFb-

activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB 2

Fig. 5. Cellular changes and HMGB1 release observed with autophagy, apoptosis, and necrosis. The prototypical DAMP, high mobility group
box 1 protein (HMGB1), is released with sustained autophagy, late apoptosis, and necrosis. Reducible HMGB1 binds to the receptor for advanced
glycation end products (RAGE), inducing Beclin 1-dependent autophagy, and binds both RAGE and Toll-like receptor 2 (TLR2), TLR4, and TLR9,
activating NF-jB and promoting inflammation. In contrast, oxidized HMGB1 increases caspase 3 dependent apoptosis and tolerance by binding
CD24 or other unknown receptors.
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and TAB 3), two upstream activators of IKK, inhibit

autophagy by binding Beclin 1 (113). Autophagy is

required for the activation of NF-jB in mouse embryonic

fibroblasts (114). Interestingly, LPS results in the activation

of nuclear factor erythroid 2-related factor 2 (Nrf2), which

controls autophagic degradation by p62 (115). p62 accu-

mulation, in turn, results in hyperactivation of Nrf2 (116).

This raises the intriguing question of whether the p62-Nrf2

pathway is an important means to activate autophagy during

infection.

Selective viral autophagy plays a crucial role in antiviral

host defense (117). Autophagy is essential for delivering

cytoplasmic viral RNA to the endosomal pathway, extin-

guishing infection (118). The precise mechanisms underly-

ing type I IFN production in autophagy are unknown but

have been postulated to involve Atg5-Atg12 conjugation

(119). ROS accumulates in mitochondria in Atg5�/� cells

without autophagy, amplifying RLR signaling pathways

(44). Atg5 also participates in immunity and intracellular

killing of pathogens via autophagosome-independent pro-

cesses, promoting immunity-related GTPase (IRG) traffick-

ing (120). Autophagy is an anti-microbial effector of IRG.

Murine IRG, Irgm1, promotes autophagy and sustains CD4+

T-cell viability (121). The human IRG (IRGM) can eliminate

mycobacteria through induction of autophagy (122),

requiring IRGM expression in mitochondria (123). More-

over, IRGM is a common target of RNA viruses-mediated

autophagy, which regulates viral particle production (124).

Recent study suggests that Rubicon, as part of a Beclin-1-

Vps34-containing autophagy complex, positively regulates

NADPH oxidase (NOX2) assembly for superoxide genera-

tion in TLR2 signaling, and negatively regulates CARD9/

Bcl10-MALT-1 complex and cytokine production in Dectin-

1 and RIG-I signaling (125, 126), suggesting a direct

impact of autophagy protein on pathogen-specific host

defense.

Although autophagy serves as a potent cellular strategy to

clear pathogens, several viruses have evolved to exploit auto-

phagic signaling to promote their replication, including

dengue virus (96), hepatitis C virus (127), and poliovirus

(128), among others. The interaction between human

immunodeficiency virus (HIV) and autophagy are indeed

quite complicated. HIV-1 infects CD4+ T cells as well as

macrophages. Autophagy promotes HIV-1 proliferation

within macrophages (129, 130). HIV-1 is also targeted for

elimination by autophagy, countered by the virus assembly

proteins Nef (129) and Env (130). Autophagy is inhibited

in HIV-1-infected CD4+ cells (130). HIV-1-infected cells

inhibit autophagy in non-infected macrophages/monocytic

cells through induction of Akt and STAT3 signaling (131).

Further studies are required to better understand the contri-

bution of autophagy to HIV pathogenesis.

Autophagy also plays a role in viral antigen processing

and presentation, mediating major histocompatibility com-

plex (MHC) class I or II presentation (132–134). This

requires both TLR and Atg5 signaling in DCs (134–137). In

contrast, Atg5, Atg7, and Atg16L1 are all required for

NOD2-induced autophagy and antigen presentation (138).

Stimulation of the B-cell receptor (BCR) by DNA-containing

antigens results in the translocation of both the BCR and

TLR9 to autophagosomes (139). It is not clear whether

autophagy mediates TLR9 signaling following translocation

of CpG DNA from the endoplasmic reticulum (ER)/Golgi

apparatus into the lysosome or endolysosome (140, 141).

However, Atg9a, but not Atg7, controls dsDNA-driven

dynamic translocation of stimulator of IFN genes (STING)

from the ER to the Golgi (142).

Recent evidence suggests that autophagy is likely to play a

prominent role in the pathogenesis of Crohn’s inflammatory

bowel disease (CD) (143). Genome-wide association studies

have identified CD-associated susceptibility genes, such as

Atg16L1, NOD2, and IRGM (144), which function to regu-

late autophagy. Mice engineered with deficiencies in the

Atg16L1 gene displayed gut inflammatory phenotypes not

previously associated with autophagy (145, 146). A causal

relationship clearly exists linking environmental factors,

ATG16L1 genetic susceptibility, and the development of CD

(147), suggesting that the interaction between host defects

in autophagy and environmental stressors such as infection

may be crucial for the pathogenesis of certain inflammatory

diseases. NOD2 variants have also been linked with CD

(138). In mammalian cells, NOD1 and NOD2 signal to

induce autophagy and functionally interact with Atg16L1

(138, 148). ATG16L1 genetic variation also modulates

NOD2-induced pro-inflammatory cytokine responses (149).

Autophagy is involved in other inflammatory disorders

including cystic fibrosis (150), obesity (151), and sepsis

(152).

DAMPs and autophagy

HMGB1 is one of the best characterized DAMPs, expressed

largely in the nucleus as a chromatin-associated protein.

HMGB1 release from the nucleus and from the cell is

dependent on different types of stress (Fig. 5). In response

to exogenous bacterial products (such as endotoxin or
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CpG-DNA) (67, 153) or endogenous inflammatory stimuli

(e.g. TNF, IFN-c, or hydrogen peroxide) (67, 154) or

apoptotic cells (155), innate immune cells actively release

HMGB1. In addition, HMGB1 can be passively released from

necrotic cells (68) or cells infected by viruses (156), trig-

gering an inflammatory response (Fig. 5). HMGB1 can also

be released from chemotherapy drug-induced apoptosis at

later stages of tumor development (157).

There is a complex reciprocal relationship between auto-

phagy and HMGB1. Autophagy, not apoptosis, is a major

regulator of HMGB1 localization and release by ROS in the

early events following cell stress (158, 159). Notably, both

endogenous and exogenous HMGB1 are important regula-

tors of autophagy (158–161). Endogenous HMGB1 com-

petes with Bcl-2 for interaction with Beclin 1 and orients

Beclin 1 toward autophagosomes (159). Interaction between

HMGB1 and Beclin1 relies upon the autophagic complex

ULK1-mAtg13-FIP200 (162). In addition, HMGB1 may be

involved in the regulation of Bcl-2 phosphorylation by the

extracellular signal-regulated kinase (ERK)/MAPK pathway

(159). The intramolecular disulfide bridge (C23/45) of

HMGB1 is required for binding to Beclin 1 and sustaining

autophagy (Fig. 6). Reducible HMGB1 binds to RAGE,

induces Beclin 1-dependent autophagy (Fig. 5), and pro-

motes resistance to chemotherapeutic agents or ionizing

radiation (158). In contrast, oxidized HMGB1 increases the

cytotoxicity of these agents and induces apoptosis via the

mitochondrial pathway (158). There is a direct molecular

interaction between HMGB1 and p53 in colorectal cancer to

regulate apoptosis and autophagy (163). Loss of p53

increases cytosolic HMGB1 leading to increased binding to

Beclin 1, thereby promoting autophagy, and decreasing

apoptosis. In contrast, loss of HMGB1 increases cytosolic

p53 and apoptosis and decreases autophagy. HDACs regulate

HMGB1 nuclear versus cytosolic localization within mono-

cytic cells (164). HMGB1 within the nucleus enhances DNA

repair and chromatin modification following DNA damage

(165). It is unknown whether HMGB1 mediates the HDAC-

autophagy pathway in DNA-damage repair (166), but this

represents a distinct possibility. In addition, HMGB1 and the

downstream mediator heat shock protein b-1 (HSPB1/

HSP27) modulates mitochondrial respiration and morphol-

ogy by sustaining autophagy/mitophagy (167), as we have

shown, suggesting that HMGB1 is essential for mitochon-

drial quality control. HMGB1 forms highly inflammatory

complexes with ssDNA, LPS, IL-1b, and nucleosomes (168),

which interact with TLR9, TLR4, IL-1R, and TLR2 receptors,

respectively. Thus HMGB1 may mediate PAMP-induced

autophagy, as a ‘universal’ factor important in host defense

and immune homeostasis.

In addition to HMGB1, other DAMPs such as ATP, S100,

and host-DNA induce autophagy in several cellular systems

(139, 169–171). ATP-induced autophagy is associated with

the rapid killing of intracellular mycobacteria within human

monocytes/macrophages (169), thus supporting the notion

that autophagy plays a key role in the control of mycobacte-

rial infections. Moreover, ATP-induced autophagy is depen-

dent on the mobilization of extracellular calcium and the

P2X7 receptor (171) (Fig. 4A). Recent study suggests chemo-

therapy-induced autophagy causes the release of ATP from

tumor cells, thereby stimulating anti-tumor immune

responses including recruitment of dendritic cells and CD4+

and CD8+ T cells (172). However, autophagy can also limit

T cell-mediated cytotoxicity (173). Thus, the process of

autophagy plays dual roles in regulation of effective chemo-

therapy and the host-derived anti-cancer immune responses

(174).

S100 proteins or calgranulins are a group of more than

20 related calcium-binding proteins. S100A8, S100A9, and

S100A12 are all expressed by phagocytes and secreted at

sites of inflammation. S100A8/A9 induced autophagy plays

a key role in the removal of damaged mitochondria in the

setting of apoptosis (170). Although there is no direct

evidence that uric acid, the NALP3 inflammasome inducer,

is involved in autophagy, a close link exists between auto-

phagy and inflammasome activation (42, 146, 175).

TLRs, NLRs, RLRs, and autophagy

Crosstalk between autophagy and TLRs results in the activa-

tion of innate immune responses (176). TLRs promoting

autophagy include the TLR2/TLR1 heterodimer (177), TLR3

(178), TLR4 (108, 178–180), TLR5 (180), TLR6 (180),

TLR7/8 (178), and TLR9 (139, 180) in various cell types

including macrophages, DCs, and neutrophils. Direct stimu-

lation of TLR7, however, does not lead to induction of

autophagy in plasmacytoid DCs (118). Conventional DCs

demonstrate high levels of basal autophagy, and afford very

little or no induction of autophagy on stimulation with

other types of immunological agonists or TLR signals (146,

181). LPS stimulation increases the number of autophago-

somes in primary human monocytes, although it fails to

induce autophagy in primary mouse macrophages (108,

146). In addition, agonists of mouse TLR7 induce auto-

phagy in RAW264.7 myeloid cell lines and weakly in mur-

ine primary bone marrow macrophages (178). These
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studies suggest that induction of autophagy following TLR

stimulation is a cell-type-specific response.

TLR-induced autophagy appears to depend on both

MyD88 and TRIF (178, 180) (Fig. 6). Moreover, TLR signaling

enhances the interaction of MyD88 and TRIF with Beclin 1

and reduces the binding of Beclin 1 to Bcl-2 (180). Interest-

ingly, tumor necrosis factor receptor (TNFR)-associated fac-

tor 6 (TRAF6)-mediated ubiquitination of Beclin1 amplifies

Fig. 6. Signaling pathways triggered by LPS and HMGB1 in autophagy/immunophagy. The inflammatory response, including the recruitment
and migration of immune cells to the site of infection and release of cytokines, is mediated by lipopolysaccharide (LPS). LPS bound to LPS-
binding protein (LBP) is presented to CD14. CD14 maneuvers the LPS-LBP complex to TLR4, and LPS, in combination with accessory molecule
MD2, activates TLR4 signaling. LPS induces activation of the tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-p38 MAPK
pathway and induces the expression of TNF-a and Beclin 1 by NF-jB. NF-jB inhibits TNF-a-induced autophagy. Multiple means to promote ROS
production converge on the mitochondria or alternatively, NADPH oxidases such as NOX2 and NOX4. These in turn results in activation of
autophagy through Atg4 activation, ultimately reducing the binding of Beclin 1 to Bcl-2. TRIF-dependent and/or MyD88-dependent TLR4
pathway is required for LPS-induced autophagy in macrophages. Moreover, TRAF6-mediated ubiquitination of Beclin1 amplifies TLR4-induced
autophagy. HMGB1 links sterile injury and infection-induced immunity. Stimuli that enhance reactive oxygen species promote cytosolic
translocation of HMGB1 and thereby enhance autophagic flux. HMGB1 directly interacts with Beclin1, displacing Bcl-2 requiring the cysteines at
positions C23 and C45 within HMGB1. The HMGB1/RAGE interaction activates parallel signaling pathways, including ERK1/2 and NF- jB
activation. Mitogen-activated protein kinases (MAPKs), such as JNK1 and ERK1/2, also phosphorylate Bcl-2 driving subsequent dissociation of the
Beclin 1-Bcl-2 complex. Notably, DAPK phosphorylates Beclin 1, promoting the dissociation of Beclin 1 from Bcl-2 like proteins, which in turn
induces autophagy. Activation of phagocytic NADPH oxidase (NOX2) by HMGB1 requires TLR4 expression; the activation of other NADPH
oxidases and interaction with TLRs is less clear. Thus PAMPs (LPS) and DAMPs (HMGB1) drive autophagy/immunophagy, regulating immune,
stromal, and tumor cell functions.
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TLR4-induced autophagy (182) (Fig. 6). In contrast, the de-

ubiquitinating enzyme A20 reduces ubiquitination of Beclin

1 and limits the induction of autophagy (182). A similar

process may be linked to p62 recognition of microbial tar-

gets (91), as TRAF6 binds to p62. In addition, phosphoryla-

tion by death-associated protein kinase (DAPK) of Beclin 1

on Thr 119 in the BH3 domain promotes autophagy (183).

Other protein modifications have been identified in Beclin

1-PI3KC3 complex formation (40). Beclin 1 may play a crit-

ical role in TLR-mediated autophagy by post-translational

modification.

Autophagy may also participate in the regulation of TLR-

mediated inflammation. The most direct way in which auto-

phagy influences inflammation is the breakdown of invading

microorganisms such as the Bacille Calmette-Guerin (89,

184) or the centrally important adapter protein myeloid dif-

ferentiation factor 88 (MyD88) (185). Phagocytosis is one

of the basic tools of innate immunity. TLR signaling in mac-

rophages links the autophagic pathway to phagocytosis

(179). LC3-associated phagocytosis (LAP) is required for the

clearance of dead cells (186). Phagocytosis of cells dying

through autophagy evokes a pro-inflammatory response in

macrophages (186, 187). Vitamin K3 reduces pancreatic

inflammation in acute pancreatitis through inhibition of the

autophagic pathway (188). Possible links between these two

forms of cellular ‘eating’ represent a new dimension in host

defense and inflammation, potentially accessible with novel

therapeutics.

In mammalian cells, NLR family members such as NOD1

and NOD2 induce autophagy to control bacterial infection

and promote antigen presentation (138, 148). In Drosophila,

the NLR-type PRR PGRP-LE is crucial for the induction of

autophagy of L. monocytogenes (189). Four NLR family mem-

bers have been described as components of inflammasomes:

NALP1, NALP3, NLRC4, and NAIP5 (175). Blockade of

autophagy by genetic ablation of the autophagy regulators

Atg16L1 or Atg7 enables LPS-dependent inflammasome acti-

vation including the processing of pro-IL-1b into IL-1b

(146). Various inflammasome stimuli trigger autophagy in

macrophages by activating nucleotide exchange (the replace-

ment of GDP by GTP) on RalB (190). Moreover, mito-

phagy/autophagy blockade leads to the accumulation of

damaged, ROS-generating mitochondria, and this in turn

activates the NLRP3 inflammasome (42). Conversely, auto-

phagic proteins regulate NALP3-dependent inflammation by

preserving mitochondrial integrity (191). These findings

suggest that autophagy contributes to homeostatic regulation

of the inflammasome through the clearance of dysfunctional

mitochondria and ROS production. In addition, NLR mem-

bers may negatively regulate maturation of the autophago-

some through interact with Beclin1 (192). Interestingly,

autophagy not only inhibits IL-1b release by targeting pro-

IL-1b for p62-mediated lysosomal degradation (193, 194)

but also promotes IL-1b release by unconventional secretory

pathway (195), suggesting a dual roles of autophagy in reg-

ulation of IL-1b signaling including inflammasome activa-

tion.

The RLR family members recognize RNA viruses within

the cytosol and induce the expression of potent antiviral fac-

tors, such as type I IFN and proinflammatory cytokines.

RLRs are negatively regulated by Atg5-Atg12 (119) and can

activate autophagy (196). Further analysis reveals that ROS

play a key role in autophagy-mediated RLR signaling (44).

In addition, the pathogen receptor CD46 (197) and the T-

cell receptor CD40 on myeloid and other cells (198) can

activate autophagy with microorganism recognition.

RAGE, AIM2/AIM2-like receptors, and DAI as DNA

receptors and autophagy

RAGE induces cellular inflammation signaling events upon

binding of a variety of ligands, such as glycated proteins,

amyloid-b, HMGB1, and S100 proteins (199). Moreover,

RAGE can directly bind to dsDNA and dsRNA in vitro (200),

suggesting that RAGE may act as both a DNA and RNA

receptor (Fig. 4A). In addition, interaction between RAGE

and TLR9 contributes to autoimmune pathogenesis (77),

whereas interaction between RAGE and TLR2 limits inflam-

mation (201). RAGE is linked functionally to outcome in

several infectious diseases including cancer, diabetes, and

Alzheimer’s disease (199, 202). Blockade of RAGE sup-

presses inflammation, tumor growth, and metastasis in vari-

ous tumor models (203, 204).

We have shown that RAGE positively regulates autophagy

(Fig. 6). RAGE sustains autophagy and limits apoptosis, pro-

moting pancreatic tumor cell survival (205–207). RAGE-

sustained autophagy is associated with decreased

phosphorylation of the mammalian target of rapamycin

(mTOR) and increased Beclin 1-PI3KC3 interaction and

ATG12-ATG5 conjugation (205–207). In addition, knock-

down of RAGE but not TLR4 diminishes HMGB1-induced

autophagy in cancer cells (158). In contrast, TLR4 is

required for PAMPs such as LPS to induce autophagy in

macrophages (108), suggesting that the induction of auto-

phagy by DAMPs or PAMPs may have alternative receptor-

dependent pathways. Another RAGE ligand, the heterodimer

S100A8/A9, also induces autophagy (170), although it is
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not clear whether RAGE mediates this process directly. RAGE

is an important inflammatory mediator that modulates

crosstalk between pro-survival pathways: IL-6/pSTAT3 and

autophagy in pancreatic ductal adenocarcinoma tumor cells

and contributes to early pancreatic intraepithelial neoplasia

formation (205). RAGE also functions as a phosphatidylser-

ine receptor and assists in the clearance of apoptotic cells by

phagocytosis in macrophages (208). Further studies are

required to explore the structural basis and protein modifi-

cation(s) necessary for RAGE-mediated autophagy and

phagocytosis in immunity.

Cytosolic DNA derived from vaccinia virus can be sensed

by AIM2 in a complex with Asc and caspase-1, leading to

the processing of pro-IL-1b to IL-1b (54). The AIM2-like

receptors (ALR) including the recently identified IFI16 form

a newly defined family activating a unique inflammasome.

Their roles in regulation of autophagy are currently unde-

fined. In certain cultured cell lines, AT-rich dsDNA can also

be sensed by the protein DAI, which drives IFN-b produc-

tion through activation of the protein kinase TBK-1 (53).

The DNA sensor LRRFIP1 mediates the production of type I

IFN via a b-catenin-dependent pathway (58). Cytosolic

DNA-dependent RNA polymerase III (Pol-III) is the DNA

sensor linking DNA release by pathogenic bacteria and

viruses in the host cell cytosol to IFN-b production and

innate immunity (57) (Fig. 4A). It is unknown whether

these cytosolic DNA sensors, including p202 and p204

(IFI16), evoke a robust innate immune response in an auto-

phagy-dependent pathway.

HMGB1/RAGE-mediated autophagy and energy

metabolism

Autophagy functions in protein and organelle quality control

under basal conditions and can be activated in response to

stress. The breakdown products derived from autophagy

have a dual role, providing substrates for both biosynthesis

and energy generation (209). ATP is produced by cellular

respiration (either glycolysis or oxidative phosphorylation/

OXPHOS) in mitochondria. Mitophagy is important in

maintaining mitochondrial homeostasis (41). Suppression of

HMGB1 expression in fibroblasts and cancer cells signifi-

cantly inhibits both OXPHOS and glycolysis, and ATP pro-

duction is decreased in HMGB1-deficient cells (167). We

demonstrated that HMGB1 modulates the expression of

HSPB1. As a cytoskeleton regulator, HSPB1 is critical for

dynamic intracellular trafficking during autophagy and mito-

phagy. Phosphorylation of HSPB1 (both Ser15 and Ser86) is

required for HMGB1-dependent mitochondrial homeostasis.

Loss of either HMGB1 or HSPB1 results in a phenotypically

similar deficiency in mitophagy typified by mitochondrial

fragmentation with decreased aerobic respiration and ATP

production. In addition, the Pink1-Parkin pathway is

required for HMGB1/HSPB1 mediated mitophagy. Recent

findings indicate that mitochondrial STAT3 sustains the

altered glycolytic and OXPHOS activities characteristic of

cancer cells (210). We found that RAGE-mediated auto-

phagy is required for IL-6-induced mitochondrial localiza-

tion and function of STAT3 (205). Knockdown of RAGE by

shRNA in murine and human pancreatic tumor cell lines

significantly decreases IL-6/STAT3-mediated mitochondrial

respiratory chain complex I activity and ATP production.

These findings reveal a novel pathway coupling autophagy

and cellular energy metabolism. Further studies involved

with assessment of adaptive immune responses induced by

chemotherapy (174) or immunotherapy with IL-2 (211) or

cytolytic cells (212) suggest that there will be a complex

interplay between innate factors such as DAMPs and PAMPs

and autophagy.

Conclusion

Multiple positive feedback loops between DAMPs and PAMPs

and their overlapping receptors temporally and spatially

drive immune regulatory functions (Fig. 6). Interestingly,

these exogenous and endogenous signal 0s all induce and

increase autophagic flux in an ROS-dependent fashion. Inter-

actions between immune and dying tumor cells likely deter-

mine the balance between immunity and tolerance to tumor

cells. As a defense mechanism, autophagy limits damage,

sustains cell viability, removes intracellular pathogens, and

participates in antigen presentation. The organization of the

cellular networks linking autophagy to other biologic pro-

cesses are quite complicated (37). For example, mTOR-

(213), Beclin 1- (214), and Atg5/Atg7-independent (215)

alternative autophagy-activating pathways have been discov-

ered. Although the role of autophagy in host defense

responses has been extensively investigated in vitro, it is now

important to more broadly assess its role in vivo. Moreover,

the relationship between autophagy and other membrane

trafficking systems including phagocytosis, endocytosis, and

exocytosis and their relation to host defense remains largely

unknown and needs more intensive study. Whether auto-

phagy is required for generation of immunological memory

following inflammation initiated by signal 0s and the subse-

quent recruitment and maturation of inflammatory/immune
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cells is unknown. Whether autophagy serves as a necessary

feedback loop to allow emergence of innate and adaptive

immune function and the recall response are similarly

unclear. This knowledge is important in an era developing

and applying autophagy-inhibiting drugs. In addition,

DAMPs such as HMGB1 may have either a pro-tumor or

anti-tumor immune effect, depending on the tumor type,

established immune suppressor and effector cells, the state

of oxidation extracellularly, and the overall nature of the

tumor microenvironment. More studies are needed to con-

firm whether HMGB1, as a DNA binding protein, couples

with cytosolic DNA sensors as well as RAGE to regulate

autophagy and innate immunity in response to pathogen-

derived DNA, mitochondrial DNA, or nuclear DNA damage.

Clearly this evolutionarily ancient system of autophagy is

connected to many emergent innate and adaptive immune

responses, largely through the response to stress, DAMPs,

and ROS.
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