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Abstract
Joint performance can lead to the synchronization of physiological processes 
among group members during a shared task. Recently, it has been shown that syn-
chronization is indicative of subjective ratings of group processes and task perfor-
mance. However, different methods have been used to quantify synchronization, 
and little is known about the effects of the choice of method and level of analysis 
(individuals, dyads, or triads) on the results. In this study, participants performed 
a decision-making task in groups of three while physiological signals (heart rate 
and electrodermal activity), positive affective behavior, and personality traits were 
measured. First, we investigated the effects of different levels of analysis of physi-
ological synchrony on affective behavior. We computed synchrony measures as 
(a) individual contributions to group synchrony, (b) the average dyadic synchrony 
within a group, and (c) group-level synchrony. Second, we assessed the association 
between physiological synchrony and positive affective behavior. Third, we inves-
tigated the moderating effects of trait anxiety and social phobia on behavior. We 
discovered that the effects of physiological synchrony on positive affective behavior 
were particularly strong at the group level but nonsignificant at the individual and 
dyadic levels. Moreover, we found that heart rate and electrodermal synchronization 
showed opposite effects on group members' display of affective behavior. Finally, 
trait anxiety moderated the relationship between physiological synchrony and affec-
tive behavior, perhaps due to social uncertainty, while social phobia did not have a 
moderating effect. We discuss these results regarding the role of different physiologi-
cal signals and task demands during joint action.
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1  |   INTRODUCTION

Groups are critical units of our social world; they shape our 
identity, and through our membership in them (sometimes even 
via intra- or inter-group conflicts), we cooperate to achieve cul-
tural, economic, and societal goals (Tajfel, 1982). Grouping 
is a universal, age-old phenomenon in social species (Gordon 
et al., 2014; Shamay-Tsoory et al., 2019) and thus is considered 
an innate element of our nature. As social beings, humans' ten-
dencies to group drive unique human cognition and behaviors 
that have specific implications for the brain and biological func-
tioning (Cacioppo et  al.,  2010; Shamay-Tsoory et  al.,  2019). 
One of the main consequences of human grouping is an emer-
gent interpersonal synchrony between group members, not only 
in behaviors and attitudes (Gordon & Berson, 2018) but also 
in physiological processes (Gordon et  al.,  2020). The effects 
of physiological synchrony for prosocial behavior in groups 
are a major focus of the current research. Because groups are 
critical to our existence, it is important to understand what 
determines the success or failure of groups. A recent focus of 
research on groups has been the nesting of individuals in the 
group as a whole or in dyads that form parts of the whole group 
(e.g., Yammarino & Gooty, 2019). As such, group performance 
can be determined by individual-level effects, by the input of 
dyads, and/or by the actual product of the whole group (Drazin 
et  al.,  1999). Understanding the sources of variance, which 
were once treated as error, is now at the heart of theory and 
considered critical for the identification of the building blocks 
of group functioning (Paruchuri et al., 2018).

Despite the importance of multilevel considerations in 
the context of groups, most research has employed a “sin-
gle level” approach as well as a focus on static rather than 
dynamic phenomena (Ballard et al., 2021). In this study, we 
focused on physiological interpersonal synchrony in groups, 
defined as the automatic, spontaneous temporal coordina-
tion of physiological processes between several individuals 
(Mayo & Gordon, 2020; Palumbo et al., 2017). Interpersonal 
synchronization is calculated from dynamic time-series that 
can reflect individual-, dyad-, and team-level processes 
(Gordon et  al.,  2014). Several studies have identified pat-
terns of interpersonal interaction that predict group perfor-
mance (Abney et al., 2015; Fusaroli & Tylén, 2016; Wallot, 
Roepstorff, et al., 2016), even though the role of these pat-
terns can change in the context of particular task demands 
(Richardson et al., 2015; Wallot, Mitkidis, et al., 2016).

Indeed, despite the importance of groups to social identity 
and action (Gordon et al., 2014), we know very little about the 
underlying physiological indices in groups and group-level in-
terpersonal synchrony processes (see Palumbo et al., 2017's re-
view for an idea of the relatively scant amount of group studies). 
A study by Mønster and colleagues (2016) showed that during 
a shared group task in small groups of three, smiling synchrony 
(measured via electromyography) was positively related to 

group cohesion, while synchrony in sympathetic arousal (mea-
sured via electrodermal activity: EDA) was positively related to 
group tensions. Recently, we showed (Gordon et al., 2020) that 
in triads, physiological synchrony in cardiac interbeat intervals 
(IBIs) emerged during a joint drumming task. In this drumming 
study, physiological synchrony in IBIs uniquely contributed 
to predicting individuals' sense of group cohesion (Gordon 
et al., 2020). It is important to note, that research has shown 
physiological synchrony to emerge not only in cooperation but 
also in competitive and conflictual experiences (Danyluck & 
Page-Gould,  2018, 2019; Levenson & Gottman,  1983). The 
type of physiological measure, the type of synchrony calcu-
lation, context and individual differences may all account for 
these apparently inconsistent effects (Mayo & Gordon, 2020). 
Palumbo and colleagues (2017), in their systemic review, 
showed that very little research has explored the consequences 
of physiological synchrony in groups or teams. In summary, 
further research is needed to elucidate the role of physiological 
synchrony in shared or cooperative experiences in groups.

One important marker of social engagement among group 
members is the display of smiles and positive affect between 
individuals in a shared setting (Gordon & Berson, 2018). This 
specific type of behavioral affective signaling is a key feature 
of early bond relationships (Gordon et al., 2010), as well as 
groups of adults working together toward a joint goal (Mønster 
et  al.,  2016). More positive affective displays among group 
members can indicate group bonding, for example, due to the 
influence of a charismatic leader (Gordon & Berson, 2018). 
Moreover, there is a biobehavioral basis for affective displays 
driven by the neurohormone oxytocin, known for its role in 
human affiliation, social motivation, and bonding (Gordon & 
Berson, 2018; Gordon et al., 2011). The importance of pos-
itive affective displays during social interactions is not lim-
ited to individuals within a bonded relationship or groups. 
For instance, between two strangers, smiling synchrony while 
watching a positive movie was positively related to cardiovas-
cular synchrony and a reported convergence in their positive 
emotions (Golland et al., 2019). In total, positive affective dis-
plays in a social context contribute to social engagement and 
are relevant even for newly formed social systems, yet the re-
lationship between this key social behavior and physiological 
synchrony among group members remains largely unknown.

Beyond the general question of the relationship between 
physiological synchrony and group outcomes during joint ac-
tion, there are two other related important research questions 
regarding the level at which group activity happens and, ac-
cordingly, the level at which it should be analyzed and how in-
dividual differences between group members influence group 
dynamics. In the study by Mønster and colleagues (2016), in 
which groups of 3 participants were asked to build origami 
boats together in a competitive task, effects of physiological 
synchrony were found in subjective but not objective perfor-
mance measures (i.e., the number of boats built). Physiological 



      |  3 of 14GORDON et al.

synchrony was calculated as the average of dyadic synchrony 
between all possible pairs of group members. And yet, it is 
established that behavior in a triad is more complex than the 
average behavior of all three dyadic synchronies constituting 
the group (Riley et al., 2011). As such, a measure that does not 
assess participants' simultaneous interactions beyond the dy-
adic level to include potential higher-level interactions in the 
group cannot fully capture some aspects of group outcomes.

To resolve this issue, the method of multidimensional 
recurrence quantification analysis (MdRQA) (Wallot, 
Roepstorff, et al., 2016) was developed. MdRQA allows the 
analysis of joint dynamics of any group size. A reanalysis of 
the EDA data from the Mønster et al. (2016) study revealed 
that group-level joint dynamics reliably predicted boat-
building performance, while the dyadic aggregated measures 
did not. Alternatively, it is plausible that not all participants 
engaged in the group to the same degree; accordingly, indi-
vidual participants' behaviors may then be a function of the 
degree of individual contribution to joint action. Therefore, 
we propose a measure of individual group members' partici-
pation during joint action, namely, averaged individual dyadic 
synchrony, which can also be computed within the frame-
work of MdRQA (for further details, see the Calculation of 
Physiological Synchrony section and Wallot, Roepstorff, 
et al., 2016). Accordingly, in the current study, we aimed to 
test at which level—or levels—physiological group dynamics 
are informative about group members' behavior because the 
failure to detect such relationships in previous research might 
have been due to the measurement of physiological syn-
chrony strictly at the dyadic level, which can obscure existing 
relationships (i.e., Wallot, Mitkidis, et al., 2016).

The second pertinent question, regarding interindividual 
differences, may likewise factor into the relations between 
physiological synchrony and behaviors made by group mem-
bers. Individual variables such as trait anxiety and social pho-
bia have not been investigated to a great extent in joint action 
research (Mein et  al.,  2016). However, it is known that such 
traits strongly influence a person's behavior in a group (Jonas 
et  al.,  2014; Walters & Inderbitzen,  1998). Accordingly, we 
chose to investigate the roles of trait individual-level anxiety 
and social phobia as potential moderators of the relationship 
between physiological synchrony and behavioral displays of 
positive affect as proxies of engagement with the group and its 
members. The overarching aim of the current study was to test 
the association between HR and EDA synchrony among group 
members and positive affective behaviors during a shared group 
task. More specifically, we wanted to investigate whether such 
associations occurred at different group levels and whether such 
associations were moderated by interindividual differences in 
reported levels of trait anxiety and social phobia.

We collected data from 20 three-person groups partici-
pating in a joint decision-making task. The task was video-
taped for later microanalysis of positive affective behaviors, 

and all group members' electrocardiograms (ECG)—to allow 
later derivation of heart rates (HR)—and EDA were recorded 
throughout the task. HR represents the (average) number of 
heart beats per minute and is dually innervated by both the 
sympathetic and the parasympathetic branches of the auto-
nomic nervous system (in a dynamic manner that does not 
allow to determine the exact contribution of either branch). 
EDA represents the level of skin conductance and is thought 
to reflect sympathetic influences, which may be associated 
with a challenge or stress (Dawson et al., 2017).

In terms of relational correlates of HR synchrony in 
groups (such as commitment, cohesion, satisfaction, togeth-
erness, and comprehension)—previous studies have mostly 
reported positive associations (Gordon et  al.,  2020; Järvelä 
et al., 2016; Jun et al., 2019; Mitkidis et al., 2015; Noy et al., 
2015). Only one previous study, to our knowledge, found 
a negative association between HR synchrony and trust in 
groups (Strang et al., 2014). As such, we expected synchrony 
in heart beats per minute (BPM synchrony) to have a positive 
association with group members' positive affective displays.

As for EDA synchrony, previous results regarding the as-
sociations with relational outcomes in groups are far less con-
sistent. Several studies found positive correlations with group 
satisfaction, collaboration, and affective valence (Gashi 
et al., 2018; Jun et al., 2019; Schneider et al., 2020). Others 
reported negative associations with group tensions and inter-
personal liking (Kaplan et  al.,  1963; Mønster et  al.,  2016). 
Since the results are mixed, we follow the direction of previ-
ous results from Mønster et al., 2016, which examined EDA 
synchrony in groups during a cooperative task via the same 
type of data analysis we perform in the current study. Thus, 
we expected EDA synchrony to have a negative association 
with positive affective behaviors made by group members 
(smiling and laughing). Finally, we expected individual-level 
anxiety and social phobia to moderate the associations be-
tween physiological synchrony and individuals' behaviors.

2  |   METHOD

2.1  |  Participants

Sixty individuals (16 men) nested in 20 three-person groups 
participated in the study. The average age of the participants 
was 22.96  years (SD  =  2.43  years, Range: 20–33  years). 
Education level was high (Range: 12–17 years) Participants 
were all undergraduate students in the Department of 
Psychology at Bar-Ilan University. Triads were either all 
women or mixed, as we had no a priori hypotheses regard-
ing gender composition, and we did not control for gender or 
gender composition in the current study. Individuals who re-
ported any heart conditions were excluded from participation. 
The current study was the first to use group-level measures 
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such as MdRQA in combination with a desert survival task, 
and so a priori sample size power calculations were not ap-
propriate, as the respective effect sizes were unknown. The 
selected sample size was guided by our intuitions of what 
may constitute a reasonable sample size in this context.

2.2  |  Procedure

The study was approved by the Institutional Review Board of 
the Department of Psychology at Bar-Ilan University and was 
performed strictly according to their ethical approval. Prior to 
data collection, participants were contacted via email by the 
experimenter and asked to arrive at the study well hydrated 
and to avoid caffeinated drinks as well as nicotine for at least 
two hours prior to data collection. The lab visit duration was 
approximately 2 hr. Upon arrival at the lab, the research assis-
tants (RAs) in charge of the study welcomed participants and 
explained the task. Participants were told that they would be 
a part of a joint decision-making task. Participants were con-
nected to electrodes to collect physiological data (ECG and 
EDA data). The RAs explained that the data acquisition would 
be neither invasive nor dangerous or painful. In addition, they 
explained that the entire procedure would be videotaped and 
that the videos would be used for data analysis only by the 
research team. Participants provided informed written consent 
and were then individually connected to MindWare mobile re-
corders (MindWare Technologies, Gahanna, OH). Participants 
were asked to limit the movement of their nondominant arm 
where the electrodes for the collection of EDA data were 
placed (this was done to avoid motion artifacts in EDA data, 
although there are methods to detect and remove such artifacts 
in the preprocessing stages). Before the task began, we per-
formed a 5-min baseline recording of physiological measures 
during which participants were asked to simply sit together and 
relax and not to move or talk. Then, the group task began. The 
collection of the ECG and EDA data from all group members 
was conducted simultaneously and in synchrony with video 
recording during the baseline phase and the task.

2.3  |  Group task

Group members were instructed to complete the desert sur-
vival task (DST), which has been extensively used in re-
search to examine group dynamics (Lafferty & Pond, 1974). 
We chose this task because it enabled us to carefully and con-
tinuously monitor group members' interaction as it occurred 
using different modalities (video, audio, and physiological 
arousal measures) and allowed us to later analyze and iden-
tify individual behaviors and physiological synchrony be-
tween group members (Gordon & Berson, 2018). The group 
members were asked to rank order 15 items (e.g., water, map, 

compass), first individually and later within a group discus-
sion, based on the items' perceived importance for survival in 
a desert. Participants were asked by the experimenter to im-
agine that they had survived an airplane crash and to individu-
ally rank order items regarding their value for survival. Later, 
participants were told that they needed to reach a consensus 
among group members on the ranking of the items. The DST 
facilitates group discussion and face-to-face interaction. In 
addition, the shared discussions and need to reach an agree-
ment also tend to increase member interdependence, as these 
aspects increase the importance of belonging to group.

2.4  |  Physiological measures

2.4.1  |  Physiological data collection

An electrocardiogram (ECG) was obtained for every partici-
pant using a modified lead II configuration. The impedance 
cardiogram, which provides respiratory data for the analy-
sis of IBI, was obtained using the standard tetrapolar elec-
trode system (Sherwood et al., 1990). Electrodermal activity 
(measured in microsiemens [μS]) was collected via two dis-
posable Ag-AgCl electrodes, both placed on the palm of the 
participant's nondominant hand. EDA values were output-
ted from the MindWare EDA analysis software as the mean 
skin conductance level recorded at 2  Hz. All recorders for 
the physiological signals are transmitted synchronously and 
wirelessly to a laptop computer in the control room adjacent 
to the lab room, with a sampling rate of 500 Hz.

2.4.2  |  Preprocessing

For preprocessing of physiological data acquired, we used 
standard procedures outlined in the MindWare technolo-
gies manuals for their analysis applications (https://suppo​
rt.mindw​arete​ch.com/train​ing/guide​s/).

ECG
Each participant's ECG signal was visually examined and ana-
lyzed in the MindWare Technologies HRV application software 
(v3.1.4). Visual inspection and manual editing of the data were 
completed by trained graduate students to ensure the proper 
removal of artifacts and ectopic beats (Nabil & Reguig, 2015; 
Peltola, 2012). The signal was amplified by a gain of 1,000 and 
filtered with a Hamming windowing function. IBIs were ex-
tracted from the ECG recording. As IBI data usually differ in 
terms of number of data points between participants due to dif-
ferences in the frequency of heart beats, they were transformed 
to BPM signals to obtain time series of equal rate for each par-
ticipant. BPM series were oversampled to retain the full vari-
ability of the dynamics of the IBIs to increase the sensitivity of 

https://support.mindwaretech.com/training/guides/
https://support.mindwaretech.com/training/guides/
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recurrence analysis (Wallot et al., 2013). The resulting physi-
ological time series used for the following analyses are for ep-
ochs of 500 milliseconds.

EDA
Each participant's EDA signal was again examined visually 
and analyzed in the MindWare Technologies EDA application 
software (v3.1.4). When unusual peaks or sudden, unreason-
able drops in the data were found, linear spline interpolation 
was used to replace the corrupted portions of the signal, lim-
ited to a maximum of 5% of each individual's data. We used 
a rolling filter set for a block size of 500 milliseconds. In the 
cases in which the editor identified an unusual peak or a drop 
for more than 5% of the data or in the case of a complete loss or 
flat line of the data, the participant's EDA signal was not used 
in the final analysis. The outputted physiological time series 
for following analyses were for epochs of 500 milliseconds.

2.4.3  |  Calculation of physiological synchrony

We used MdRQA (Wallot, Roepstorff, et al., 2016) to calcu-
late the different synchrony measures for the EDA and BPM 
data. MdRQA was particularly suited for the analysis of the 
coupling of physiological time series in the present study 
for two reasons. First, recurrence-based analyses are ex-
tremely robust to outliers, heterogeneous variance over time, 
and nonstationarity (Marwan et  al.,  2007), which are com-
mon features of extended physiological recordings. Second, 
MdRQA provides a coherent analysis framework analyzing 
multivariate signals of different dimensionality, particularly 
the simultaneous coupling of more than two time series 
(Wallot, Roepstorff, et al., 2016).

The basic concept of MdRQA is the repetition of the same 
or similar values between time series. This is achieved by 
calculating the distances between all coordinate pairs of data 
points in a multidimensional time series. Then, recurrences 
are determined by thresholding this distance matrix, where 
distances below the threshold are treated as recurrent, and 
distances exceeding the threshold are treated as nonrecurrent. 
This yields a square matrix Rij with thresholded values, coded 
as 1 or 0, of the ith and jth values of the time series:

where R is the thresholded distance matrix; ∑ is the thresh-
old parameter; Θ ( ⋅ ) is the Heaviside step function (where 
Θ (x) = 0 , if x < 0, and Θ (x) = 1 otherwise); X is a variable 
containing the time-series data; ‖…‖ is a distance norm, typ-
ically the Euclidean norm; N is the number of data points of 
X; and r is some threshold value. In MdRQA, X is not a unidi-
mensional time series but a multidimensional coordinate vector.

To capture the proper dynamics of (multivariate) time se-
ries using MdRQA, one needs to estimate a delay parameter 
d, an embedding parameter m, and the threshold parameter r. 
We used multivariate parameter estimation methods (Wallot 
& Mønster, 2018), where tau is estimated as the first local 
minimum of the average mutual information function of the 
time series, m is estimated as the first local minimum of the 
multidimensional false-nearest-neighbor function, and r is 
chosen to yield an average percentage of recurrence points of 
approximately 5%–10% (Wallot & Leonardi, 2018). In prac-
tice, these functions sometimes level off instead of showing 
a clear local minimum, and then a point of minimal or no 
change is chosen instead. The parameters used for the present 
analysis were d = 3, m = 5, and r = .55 with Euclidean nor-
malization. Notably, all time series were z-transformed be-
fore being subjected to MdRQA because we were interested 
in the similarities or differences between time series based 
on their sequential properties, not in differences based on the 
variance or level (Shockley, 2005).

For a thorough introduction to multivariate recurrence-
based analysis in general, see Wallot and Leonardi (Wallot & 
Leonardi, 2018), and for a specific introduction to MdRQA, 
see Wallot et al. (Wallot, Roepstorff, et  al.,  2016). Using 
MdRQA, we calculated three kinds of synchrony measures: 
(1) averaged individual dyadic synchrony, (2) averaged group-
level dyadic synchrony, and (3) group-level triadic synchrony. 
Notably, however, the calculation of recurrence measures this 
way involves the use of information from lags across the whole 
time series. While this approach yields a proper measure of 
synchrony in that all time series enter the analysis aligned at 
lag0, groups of time series that show more consistent dynam-
ics are quantified as displaying higher levels of synchrony.

The averaged group-level dyadic synchrony (2nd syn-
chrony measure) is the most common kind of measure used to 
aggregate synchrony measures for groups with n > 2 (Fusaroli 
& Tylén, 2016; Gordon et  al.,  2020; Mønster et  al.,  2016; 
Müller & Lindenberger,  2011). Synchrony measures are 
computed for each dyad within a group and are averaged at 
the group level so that each group's synchrony is effectively 
the average synchrony of all dyads within the group. MdRQA 
is conducted for each of the three possible dyads within a 
group, and the MdRQA outcome variables are averaged for 
each group. In addition to the averaged group-level dyadic 
synchrony, MdRQA specifically allows the computation of 
group-level triadic—or even higher-level—synchrony (3rd 
synchrony measure), where all three component signals for 
BPM or EDA are entered into the analysis simultaneously.

Moreover, we introduced a new calculation of synchrony 
within a group aimed at capturing specific individual par-
ticipation in synchronous activity within a group, which we 
call the averaged individual dyadic synchrony (1st synchrony 
measure). We first proceeded with the 2nd synchrony mea-
sure by calculating all synchrony measures for all possible 

(1)Ri,j = Θ

(
r −

‖‖‖Xi − Xj
‖‖‖
)

, i, j = 1,…, N,
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dyads in a group. However, instead of averaging at the group 
level, we averaged synchrony measures at the dyadic level. 
Therefore, for a group of three with members A, B, and C, 
the first member was assigned the average dyadic synchrony 
he or she showed with each of the other two members. For a 
group of three people, this measure is calculated as follows 
(Equation 2):

Here, A, B, and C are data from three participants, and 
synch() is some measure of synchrony between two time se-
ries, such as a recurrence measure. Then, each participant 
was assigned his or her individual synchronization value, in-
dicating the strength of this participant's coupling with the 
other members in the group.

Like all recurrence-based analyses, MdRQA yields multi-
ple outcome measures that capture different information about 
the coupling dynamics of time series. However, for data with 
a strong stochastic component, such as EDA recordings and 
BPM, these different measures are usually highly correlated 
and do not offer differential information about the time se-
ries under consideration. Hence, we chose to average the out-
come measures into a single synchrony score. For such data, 
vertical line measures are more appropriate to capture the 
time-series dynamics (Marwan et al., 2007). Accordingly, in 
addition to the standard measure of the percentage of recur-
rent points (%Rec), we computed the vertical line measures 
of the percentage of laminarity (%Lam), average vertical line 
length (AVL), and maximum vertical line length (MVL)—
all of which capture aspects of coupling strength, with high 
values indicating strong coupling and low values indicating 
weaker coupling. These four measures were z-transformed 
and then averaged into a single synchrony measure for the 
EDA data and for the BPM data. Note that the MdRQA out-
come variables reflect synchrony in terms of absolute val-
ues, where high values imply high synchrony, be it positive 
or negative, in-phase or anti-phase-type patterns, while low 
synchrony values imply low synchrony, that is independence 
or near-independence of time series.

Tables 1 and 2 present the intercorrelations among these 
measures for individual-, dyadic- and group-level computa-
tions. These measures were highly correlated, justifying their 
averaging into a single synchrony score. This is also corrob-
orated by the consistently high McDonald's ω values, all of 
which were >.92, indicating high internal consistency (Dunn 
et al., 2014). Each of the three different calculations of group 
synchrony was used as predictors of the effect of physiologi-
cal synchrony on affective behavior.

2.5  |  Behavioral microanalysis and 
calculation of positive affective behavior

All group interactions were videotaped with two video cam-
eras in angles that allowed us to capture all group members' 
faces. Videos were later microanalyzed by trained psychol-
ogy students on a specialized computerized system (Noldus; 
The Vaggenigen, Netherlands), consistent with previous re-
search on group interactions (Gordon & Berson, 2018). After 

(2)

Aindi−synch =
synch (A, B)+synch (A, C)

2

Bindi−synch =
synch (B, A)+synch (B, C)

2

Cindi−synch =
synch (C, A)+synch (C, B)

2

T A B L E  1   Correlations and consistency of the recurrence 
measures for BPM data

%Rec %Lam AVL MVL ω

Averaged individual dyadic synchrony

%Rec –

%Lam .75 –

AVL .90 .85 –

MVL .60 .60 .72 – ωBPM = .94

Averaged group-level dyadic synchrony

%Rec –

%Lam .70 –

AVL .88 .81 –

MVL .56 .54 .69 – ωBPM = .93

Group-level synchrony

%Rec –

%Lam .74 –

AVL .87 .85 –

MVL .52 .52 .70 – ωBPM = .95

T A B L E  2   Correlations and consistency of the recurrence 
measures for EDA data

%Rec %Lam AVL MVL ω

Averaged individual dyadic synchrony

%Rec –

%Lam .92 –

AVL .95 .89 –

MVL .97 .90 .97 – ωEDA = .95

Averaged group-level dyadic synchrony

%Rec –

%Lam .42 –

AVL .69 .66 –

MVL .90 .54 .79 – ωEDA = .94

Group-level synchrony

%Rec –

%Lam .37 –

AVL .61 .69 –

MVL .86 .40 .66 – ωEDA = .93
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at least 85% interrater reliability was reached for all coders 
in 3 videos of the 20 collected, coders began performing 
microanalysis independently. Coders annotated each time a 
group member started displaying positive affect (smiling or 
laughing) and when these behaviors stopped. Consequently, 
we determined the durations of all points at which group 
members displayed positive affect.

2.6  |  The state trait anxiety inventory

The state trait anxiety inventory (STAI) (Speilberger et al., 
1970) is a well-validated 40-item scale consisting of two 
scales (20 items each) to measure individual differences in 
trait anxiety levels as well as state or current anxiety levels. 
Higher scores on the STAI subscales denote a higher level 
of reported anxiety by participants. In the current study, 
we used the trait anxiety level to assess the more stable 
context-independent effects of individuals' anxiety on group 
interactions.

2.7  |  Missing data

Some data were missing from the 60 participants who per-
formed the DST in groups of 3. Table  3 summarizes the 
missing data points by variable. The reasons for missing data 
were as follows: (1) technical issues with the video recording 
in one group, (2) a large % of motion artifacts for EDA for 
10 participants that could not be corrected and an issue with 
EDA recording in one group, and (3) incomplete self-report 
measures for 6 participants.

2.8  |  Inferential statistics

Inferential statistics were performed using multilevel mod-
eling with the “lme4” package in R, version 1.1-23 (Bates 
et al., 2015). Effect size measures were estimated using the 
“effectsize” package in R, version 0.4.1 The dependent vari-
able was entered into the models at the individual level (the 
percentage of time a group member was displaying positive 

affect—smiling or laughing—during the interaction), while 
predictor variables were entered into the models either at 
the individual level (i.e., the individual synchrony index) or 
at the group level (i.e., averaged dyadic synchrony for each 
group and group-level synchrony). STAI and Social Phobia 
Inventory [SPIN] values were treated as moderators in the 
models and entered at the individual level and Random in-
tercepts were added for groups. The model equations are re-
ported with the results below.

3  |   RESULTS

3.1  |  Group-level analyses

3.2  |  Research questions and modeling 
approach

To test for the effects of physiological synchrony, captured 
by measures of BPM and skin conductance, on participants' 
smiling and laughing behaviors during the interaction, we ran 
multilevel models using recurrence measures of both BPM 
and EDA as predictors and smiling and laughing behaviors 
during the joint task as the dependent variable, with the group 
added as a random factor.

Moreover, as we were interested in determining the level 
at which joint physiological activity was related to positive 
affective behaviors (smiling and laughing), we ran three 
models with different compositions of predictors. The “indi-
vidual” model used dyadic recurrence measures averaged at 
the individual level, thus capturing the participation of each 
individual group member in the physiological synchrony dy-
namics (Equation 3):

where i is the index for individuals, j is the index for groups, 
BPM is the dyadic BPM synchrony dynamics averaged at the 
individual level, and EDA is the dyadic skin conductance syn-
chrony dynamics averaged at the individual level.

The “dyadic” model used dyadic recurrence measures av-
eraged at the group level, thus composing the group dynam-
ics as the average dyadic physiological dynamics. Finally, the 
“group” model used group-level recurrence measures to cap-
ture the physiological synchrony dynamics of all three group 
members simultaneously (Equation 4):

where, again, i is the index for individuals, and j is the index 
for groups. For the “dyadic” model, BPM is the average dyadic 

(3)
yij = �00+�10BPMi+�20EDAi+�30BPMiEDAi

+u0j+eij, u0j ∼N
(
0, �2

)

(4)
yij = �00+�01BPMj+�02EDAj+�03BPMjEDAj

+u0j+eij, u0j ∼N
(
0, �2

)

T A B L E  3   Overview of missing data

Variable
# of Observations 
missing

% 
missing

BPM 0 out of 60 0.0%

EDA 13 out of 60 21.6%

Smiling behavior 3 out of 60 5.0%

SPIN 6 out of 60 10.0%

STAI 6 out of 60 10.0%
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heart rate dynamics at the group level, and EDA is the aver-
age dyadic skin conductance dynamics at the group level. For 
the “group” model, BPM is the group-level BPM synchrony 
dynamics, and EDA is the group-level skin conductance syn-
chrony dynamics.

3.2.1  |  Effects of BPM and EDA on the 
display of positive affective behaviors as a 
function of group level

As can be seen in Tables 4–6, neither the individual model 
(Table 4) nor the “dyadic” model (Table 5) predictors yielded 
significant effects on the behavioral measure. However, the 
“group-level” model did (Table  6). Specifically, the dura-
tion of group members' positive affective behaviors during 
the interaction was positively related to BPM synchrony dy-
namics and negatively related to skin conductance synchrony 

dynamics. There were, however, no significant interactions 
between the predictor variables within any of the three 
models.

3.3  |  Trait anxiety and social phobia as 
person-specific moderators

3.3.1  |  Research questions and 
modeling approach

Furthermore, we were interested in how individual trait char-
acteristics, specifically social phobia and anxiety, moderated 
joint physiological effects on group members' displays of 
positive affect during the interaction. Therefore, we added 
the STAI (“group-level:STAI”) and SPIN values (“group-
level:SPIN”) to the model as the individual-level predictor 
(Equation 5):

where i is the index for individuals, j is the index for groups, 
BPM is the group-level BPM synchrony dynamics, EDA is the 
group-level skin conductance synchrony dynamics, and TRAIT 
is the person-specific STAI value in the “group-level:STAI” 
model or the person-specific SPIN value in the “group-
level:SPIN” model. As expected, STAI and SPIN values were 
positively correlated with r = .62.

3.3.2  |  Effects of SPIN and STAI on the 
relation of BPM and EDA synchrony on display of 
positive affect

Table 7 presents the “group-level:STAI” model. Introducing 
the STAI value into the “group-level” model rendered the 
main effects of BPM and EDA nonsignificant. By itself, 
a higher STAI value led to increased smiling behavior. 
Moreover, we observed a significant three-way interaction 
between BPM, EDA, and STAI value. The interaction is 
graphed in Figure 1. As seen, the STAI value had a positive 
effect on smiling behavior, but this effect depended on both 
the BPM and EDA values. In particular, if there were strong 
BPM synchrony dynamics and/or strong EDA synchrony 
dynamics in the group, the effect of the STAI value on smil-
ing disappeared, while low levels of both BPM synchrony 
and EDA synchrony resulted in a positive effect of the STAI 
value on smiling. SPIN values did not result in significant 
moderation effects to this “group-level” model (Table 8).

(5)

yij = �00+�01BPMj+�02EDAj+�03TRAITi

+�04BPMjEDAj+�05BPMjTRAIT+�06EDAjTRAITi

+�06BPMjEDAjTRAITi+u0j+eij, u0j ∼N
(
0, �2

)
T A B L E  4   Individual model

b SE t p d

(Intercept) 9.12 1.37 6.66 <.001 1.24

BPM .15 1.44 .10 .918 .02

EDA −1.35 1.41 −.96 .339 −.18

BPM:EDA 1.83 1.57 1.17 .241 .25

Note: b are the model coefficients, SE are the coefficients' standard errors, t and 
p are the associated values of a t-test, testing the coefficient, and the effect size d 
(see Brysbaert & Stevens, 2018).

T A B L E  5   Dyadic model

b SE t p d

(Intercept) 7.83 1.21 6.46 <.001 1.22

BPM .27 1.33 .21 .837 .04

EDA −1.47 1.47 −.99 .319 −.23

BPM:EDA −.86 1.32 −.65 .518 −.13

Note: b are the model coefficients, SE are the coefficients' standard errors, t and 
p are the associated values of a t-test, testing the coefficient, and the effect size d.

T A B L E  6   Group model

b SE t p d

(Intercept) 9.58 1.06 9.02 <.000 1.66

BPM 2.72 1.17 2.32 .020 −.67

EDA −3.88 1.32 −2.93 .003 .47

BPM:EDA −1.26 1.09 −1.16 .246 −.22

Note: b are the model coefficients, SE are the coefficients' standard errors, t and 
p are the associated values of a t-test, testing the coefficient, and the effect size d.
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4  |   DISCUSSION

The current study was concerned with the effects of 
physiological synchrony—in heart rate and skin conduct-
ance—on positive affective behavior in a joint task. It uti-
lized a novel computational method to address a classic 
problem in group research—the extent to which interper-
sonal processes in groups, which evolve over time, reflect 
individual-, dyadic-, or group-level factors. Specifically, 
we investigated three research questions: (1) What are the 
associations between physiological synchrony and positive 
affective behaviors displayed by group members (2) At 
which level, i.e., the individual, dyadic, or group level, are 
the effects of synchrony best captured? (3) How do indi-
vidual predispositions, such as social phobia and trait anxi-
ety, moderate the effects of physiological synchrony on 
positive affective behavior? When we addressed the first 

question, we found that group-level EDA synchrony (nega-
tively) and BPM synchrony (positively) both predicted 
positive affective displays made by group members. It is 
important to restate here that physiological synchrony cal-
culated by MdRQA denotes synchrony in terms of absolute 
values, where high values imply high synchrony, be it posi-
tive or negative, in-phase or anti-phasic, while low syn-
chrony implies independence or near-independence of time 
series. In a similar fashion, low synchrony in the current 
analysis does not imply a compensatory coregulatory inter-
personal dynamic—where one individual's signal goes up 
and another person's signal goes down. When interpreting 
these results, we can most accurately note that when there 
is high coupling in BPM between group members and low 
coupling in EDA between group members, we will observe 
more positive affective displays made by group members 
during the DST.

T A B L E  7   Group-level: STAI model

b SE t p d

(Intercept) 3.05 2.70 1.13 .259 .61

BPM 5.29 2.74 1.93 .053 1.07

EDA 4.02 2.93 1.37 .170 .81

STAI 1.56 .67 2.34 .019 .32

BPM:EDA −5.09 2.49 −2.04 .041 −1.03

BPM:STAI −1.27 .67 −1.89 .058 −.26

EDA:STAI −2.05 .66 −3.10 .002 −.41

BPM:EDA:STAI 1.79 .64 2.82 .005 .36

Note: b are the model coefficients, SE are the coefficients' standard errors, t and 
p are the associated values of a t-test, testing the coefficient, and the effect size d.

F I G U R E  1   Three-way interaction plot 
of the relation of the STAI value to smiling 
behavior as a function of group-level joint 
BPM and joint EDA. STAI exerted an 
increasingly positive effect on smiling when 
both joint BPM and joint EDA dynamics 
were weak

T A B L E  8   Group-level: SPIN model

b SE t p d

(Intercept) 12.05 2.59 4.65 <.001 −2.03

EDA −5.54 3.14 −1.77 .077 −.93

BPM 2.45 2.90 .84 .400 .41

SPIN −1.59 1.48 −1.08 .281 −.27

BPM:EDA −4.86 2.71 −1.79 .073 −.82

EDA:SPIN .51 2.01 .25 .802 .09

BPM:SPIN −.31 1.79 −.17 .863 −.05

EDA:BPM:SPIN 3.06 2.10 1.45 .146 .52

Note: b are the model coefficients, SE are the coefficients' standard errors, t and p 
are the associated values of a t-test, testing the coefficient, and the effect size d.
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4.1  |  At what level of synchrony can we 
capture the effects of physiological synchrony 
in the group task?

To answer the second question, we used three different meas-
ures to capture physiological synchrony in groups of n = 3: 
individual dyadic synchrony, averaged dyadic synchrony, 
and group-level synchrony. The results clearly show that for 
the current task, the measure of group-level synchrony was 
most sensitive. In fact, the other two measures did not reveal 
any significant effects of physiological synchrony on affec-
tive behavior, a finding in line with prior research investigat-
ing different levels of group dynamics (Wallot, Roepstorff, 
et al., 2016). One possible explanation for this finding is that 
the behaviors of smiling and displaying positive affect in a 
group, which are behaviors that are transmitted to the entire 
group at once, may be indicative of social engagement with 
the group (Gordon & Berson, 2018). As such, group-level, 
rather than dyadic- or individual-level, indices of physiologi-
cal synchrony might be more predictive of outcomes.

However, we do not claim that group-level dynamics, as 
quantified here, are always the most appropriate measures to 
capture group dynamics. In the current task, participants were 
free to interact and to influence each other simultaneously. 
Additionally, the task did not demand that specific sets of ac-
tions be jointly performed by group members. For example, 
in a different situation where three participants stand at an 
assembly line that synchronizes their actions and where each 
member only interacts with one of the other members next to 
him or her at a time, a group of three could be better described 
as a composition of dyads, and dyadic measures of interac-
tion might be better suited for modeling. Notwithstanding 
this argument, in the present task, group-level measures that 
took into account simultaneous interactions among all group 
members were more sensitive. Hence, an important impli-
cation here might be that the proper quantification of inter-
personal synchrony demands prior analysis of task demands, 
followed by an appropriate choice of methodology.

We found that group-level EDA synchrony was a nega-
tive predictor of affective synchrony, whereas group-level 
BPM synchrony was a positive predictor of affective behav-
ior. This pattern of results is in line with several previous 
studies (Elkins et al., 2009; Gordon et al., 2020; Henning 
et al., 2001; Mønster et al., 2016) that showed BPM or IBI 
synchrony to predict positive group outcomes and proso-
cial attitudes. BPM activity, influenced dynamically by 
both the sympathetic and parasympathetic branches of the 
ANS, represents to some level (albeit its extent is unknown 
for this measure) the regulation of the social engagement 
system (Porges,  2011); hence it is possible that interper-
sonal concordance in the activity of the social engagement 
system was a contributing factor to BPM synchrony, which 
was positively associated with smiling in group members 

during the present social interaction. Since the BPM mea-
sure is not a “pure” parasympathetic measure, future stud-
ies may consider assessing measures like Respiratory Sinus 
Arrythmia to assess this suggestion.

Interestingly, prior studies relating EDA synchrony to 
group outcomes have shown rather mixed results. Several 
studies found EDA synchrony to positively predict proso-
cial attitudes or performance outcomes, such as similar-
ity ratings (Henning et  al.,  2001; Montague et  al.,  2014), 
group satisfaction (Chikersal et  al.,  2017) and cooperation 
(Behrens et  al.,  2019). Conversely, other studies showed 
that EDA synchrony was strongest during couple conflict 
(Coutinho et al., 2019) and predicted group tension (Mønster 
et al., 2016). EDA activity represents, to an extent, the output 
of the sympathetic branch of the ANS, and physiological syn-
chrony in other measures of the sympathetic nervous system, 
such as the cardiac pre-ejection period, have previously been 
operationalized as stress contagion (Waters et al., 2014). In 
our study, the negative association of EDA synchrony with 
positive affective displays may suggest that EDA synchrony 
captured some aspects of the dynamics of stress in group 
members. Future studies that incorporate measures that are 
strictly related to sympathetic activity and assess lag relation-
ships could establish whether stress contagion is indeed the 
synchronous factor contributing to reduced positive affective 
displays between group members.

4.2  |  How do individual predispositions 
influence the effects of synchrony measures?

To answer the third research question regarding the impact of 
individual predispositions on positive affective displays, we 
added individual trait expressions of social phobia and trait 
anxiety to the regression models predicting affective behav-
ior from group-level synchrony. While SPIN values did not 
show any significant effects (in fact, adding the SPIN value 
as a predictor variable eliminated the effects of heart rate 
and skin conductance synchrony), STAI values interacted 
in a complicated manner with physiological synchrony. In 
particular, high STAI values were associated with a greater 
display of smiling behavior when physiological synchrony, 
as captured by both BPM and EDA measures, was low.

If we interpret high levels of physiological synchrony to be 
markers of strong (positive or negative) engagement among 
group members, this pattern might suggest that smiling and 
positive affective behavior displayed by individuals with high 
levels of trait anxiety are not necessarily indicators of a pos-
itive emotional state per se but instead a coping mechanism 
under social uncertainty (Jonas et  al.,  2014). Specifically, 
participants perhaps displayed smiles and laughter to affiliate 
and bond with other people, a method known to alleviate anx-
iety. This approach or motivational behavioral mechanism 
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(Byrne et al., 1963; McGregor et al., 2010), which has been 
shown to help members connect with the group (Hogg 
et al., 2007), may also help reduce uncertainty and enhance 
feelings of control, all of which help reduce anxiety (Fritsche 
et al., 2013).

One explanation for the lack of effects of social phobia 
might be that in general, social phobia does not lead to dis-
plays of affective behavior toward others in group settings, but 
rather to avoidance or withdrawal (Moukheiber et al., 2010). 
That is, people who score high on SPIN might not modulate 
their smiling behavior as a function of group interaction, but 
rather generally refrain from displaying such behavior. This 
is because a social phobia is particular to social situations 
and usually leads to avoidance or withdrawal, while anxi-
ety does not necessarily target social situations per se, but 
is often rather general insecurity, which might elicit smiling 
behavior as a way of coping with this insecurity or affiliating 
to reduce stress. Another explanation for the absence of SPIN 
effects could have to do with the composition of the sample: 
The expression of trait anxiety in our sample showed greater 
variance, and the maximum STAI value was higher than the 
maximum SPIN value. This might suggest that we see effects 
of trait anxiety in the present sample because the range of 
its values is less restricted and at the same time incorporates 
relatively higher values compared to social phobia, raising 
the effective effect size. In any case, our data clearly show a 
prominent role of individual predispositions and personality 
traits, which have not received much attention in joint action 
research to date. Future research should target anxiety and 
explore our findings further to achieve a full understanding 
of the interactions of anxiety and other relevant demographic 
or personality traits, such as extraversion or neuroticism and 
gender, with physiological coupling in predicting social en-
gagement behaviors.

4.3  |  Comparison of MdRQA to 
Guastello's and Peressini's measure SE

Most joint action measures applied to group behavior are 
applications of dyadic measures in groups with n  >  2. As 
described above, MdRQA allows estimation of group-level 
dynamics for groups of arbitrary size that are not a compo-
sition of dyadic interactions, but also capture higher-order 
(nonlinear) dependencies among them (Wallot, Mitkidis, 
et al., 2016). Moreover, in this paper, we have used MdRQA 
to calculate a person-level measure of synchrony that cap-
tures the degree to which an individual participates in group 
dynamics (see Equation 2). Guastello and Peressini (2017) 
also describe a method to calculate the strength of indi-
vidual participation in a group activity, as well as a group-
level synchrony measure, SE. Guastello's and Peressini's 
(2017) individual level measure of synchrony relates to our 

proposed measure in that both effectively describe the aver-
age bi-variate correlation between measures of one person 
with all the other persons in the group. However, while our 
recurrence-based measure is symmetric (no direction of in-
fluence between people is assumed) and model-free (no func-
tion is fit to the data), Guastello and Peressini (2017) first 
assess to what extent each participant's behavior is predicted 
or predicts other participants' behavior, and use a linear model 
to evaluate the magnitude of these influences. Guastello's and 
Peressini's (2017) model hence allows one to assess direc-
tional influences between participants, which our measures 
in their current form do not.

The group-level measure, SE, proposed by Guastello and 
Peressini (2017) is, as with most other approaches, based on 
an average of bi-variate correlations within a group. More 
specifically, SE characterizes the strongest effect of bi-variate 
influences. Hence, the measure is not quantifying group-level 
synchrony per se, but rather the strongest synchrony effect 
that can be observed between a single individual, the driver, 
and every other group member, while MdRQA (computed at 
the group-level) conceives of the group as a system that is not 
entirely reduced to its dyadic interactions.

4.4  |  Limitations

One major limitation of the current study is that results are 
based on groups of people who did not know each other well. 
As such, the results are primarily relevant for nonrecurring 
or newly formed groups. It is unclear whether the observed 
effects would hold for groups with greater familiarity among 
members and recurrent interactions, which is often the case 
in real-life group work. Therefore, one critical future di-
rection of our work is to test whether the presented results 
generalize to such settings. Additionally, the DST group 
decision-making paradigm was relatively easy, as there are 
no agreed-upon performance measures, and it was mostly 
intended to promote group interaction. Task difficulty can af-
fect whether motor synchrony is beneficial (Wallot, Mitkidis, 
et al., 2016), and stronger behavioral or physiological cou-
pling is not always beneficial (Abney et al., 2015; Mayo & 
Gordon,  2020). Therefore, it is crucial for future research 
to examine whether task difficulty predicts the magnitude 
or quality of physiological synchrony in groups. Further re-
search is also needed to understand the contexts in which 
physiological synchrony can hinder group performance or 
harm relationships.

5  |   CONCLUSION

To conclude, we believe the results of the current study 
provide a basis for a more detailed understanding of the 
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physiological dimensions of interpersonal synchrony at the 
group level and the complex way these dimensions contrib-
ute to observed affective behaviors that may represent group 
bonding. Our study's results emphasize the fact that syn-
chronous dynamics in groups are not always well-captured 
in terms of dyadic interactions, but that such dynamics can 
reside at higher group-level representations. We show that 
MdRQA (Wallot, Mitkidis, et  al.,  2016) is well-suited to 
capture synchrony dynamics. However, we still do not know 
which characteristics of a joint task may promote or hinder 
the emergence of synchronous dynamics or modulate its re-
lationship to social outcomes. Synchrony in the current study 
emerged in BPM and EDA, but given that they are differ-
entially related to smiling and laughing, physiological syn-
chrony likely reflects different functions depending on the 
bodily system it is measured in. Although synchrony is not 
a mechanism for positive group interactions per se, it might 
have an augmenting influence. Insofar as certain physiologi-
cal measures may reflect stress, arousal, positive or negative 
emotions, it could be that shared experience of these affec-
tive states enhances these experience—be they positive or 
negative. Our results are in line with such an interpretation 
and highlight the fact that prospective studies need to be con-
ducted to clarify the complex role of synchrony in joint ac-
tion. Finally, investigations of “trait” individual differences 
between group members are critical to figure out further in-
fluencing factors on joint action and synchronization. Such 
investigations will allow us to gain an understanding of the 
role of such traits for group joint action.
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