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CapsCovNet: A Modified Capsule Network
to Diagnose COVID-19 From Multimodal
Medical Imaging
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Celia Shahnaz, Senior Member, IEEE, Wei-Ping Zhu

Abstract—Since the end of 2019, novel coronavirus disease
(COVID-19) has brought about a plethora of unforeseen changes
to the world as we know it. Despite our ceaseless fight against it,
COVID-19 has claimed millions of lives, and the death toll exac-
erbated due to its extremely contagious and fast-spreading nature.
To control the spread of this highly contagious disease, a rapid
and accurate diagnosis can play a very crucial part. Motivated by
this context, a parallelly concatenated convolutional block-based
capsule network is proposed in this article as an efficient tool to
diagnose the COVID-19 patients from multimodal medical images.
Concatenation of deep convolutional blocks of different filter sizes
allows us to integrate discriminative spatial features by simultane-
ously changing the receptive field and enhances the scalability of
the model. Moreover, concatenation of capsule layers strengthens
the model to learn more complex representation by presenting the
information in a fine to coarser manner. The proposed model is
evaluated on three benchmark datasets, in which two of them are
chest radiograph datasets and the rest is an ultrasound imaging
dataset. The architecture that we have proposed through exten-
sive analysis and reasoning achieved outstanding performance in
COVID-19 detection task, which signifies the potentiality of the
proposed model.

Impact Statement—Suffering from elongated testing time and
less sensitivity, the traditional diagnostic-test-based COVID-19
diagnosis schemes such as Molecular and Antigen tests usually
require manual medical image analysis for further investigation.
Hence, an automated process is desired to deal with the problem
of diagnosing the increasing number of COVID-19 patients world-
wide. However, automating the diagnosing process is an onerous
task because of the unavailability of high-resolution medical images
and the characteristical similarity of COVID-19 and other viral and
bacterial diseases that can eventually lead to misinterpretation of
data. The proposed scheme introduces a modified capsule network
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(CapsCovNet) by addressing all of these issues, which provides
a significant improvement in COVID-19 diagnosis from different
imaging methods (ultrasound and chest X-ray) compared to the
previous state-of-the-art models.

Index Terms—COVID-19, capsule network, dynamic routing,
normalized contrast limited adaptive histogram equalization
(N-CLAHE), point of care ultrasound (POCUS), ultrasound (US)
imaging.

I. INTRODUCTION

EVERE acute respiratory syndrome coronavirus 2 mainly

known as coronavirus disease or COVID-19, for its ex-
tremely contagious nature, has been declared as a global pan-
demic by the World Health Organization (WHO), which has
threatened the healthcare system all around the world on the
verge of complete collapse. Since its emergence in Wuhan,
China [1]-[3], virtually no country has been spared by this
pandemic, which perplexedly deteriorated the world health sys-
tem in a short window of time. Lack of proper medication and
vaccine has made the situation worse, and every day, the num-
ber of COVID-19-affected patients is rising rapidly, especially
in low-income countries. The issues related to manufacturing
infrastructure, distribution burden, limited supply, and public
trust are further impeding peoples’ access to the COVID-19
vaccine, consequently affecting the health sectors [53]. In these
circumstances, the WHO has emphasized mass testing and iso-
lation of the COVID-19 patients to flatten the epidemic curve.
Hence, detection of COVID-19-affected patients is considered
as the most vital step of COVID-19 prevention process, and
reverse transcription-polymerase chain reaction (RT-PCR) is the
worldwide accepted method for COVID-19 detection [4], [S]. By
monitoring the amplification reaction of specific DNA targets
using polymerase chain reaction, RT-PCR is used to analyze
the gene expression and quantification of viral RNA in clinical
settings [54]. However, this method is time consuming, and
specific material and equipment that are not easily accessible
are required [4]. On the other hand, medical imaging has shown
great potential in disease detection and diagnosis [6], which is
less time consuming as well as it requires less materials and
equipment. Computed tomography (CT) scans, ultrasound (US)
imaging, and X-ray imaging are being used for disease detection
for a long time, and now, introduction of an automatic detection
procedure has made disease detection task easier for the physi-
cians [7]-[9]. US is considered one of the most used imaging
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modalities because of its relatively safe, low cost, noninvasive
nature, and real-time display [27], [28]. It is widely used to
detect breast cancer, classify breast lesions, and classify carotid
artery intima media thickness [29]-[31]. Using deep learning in
medical imaging such as X-ray and CT, detection of COVID-19
is more accurate and quicker [10]-[12]. Recent work has shown
that CT scans can detect COVID-19 at higher sensitivity rate
(98%, respectively 88%) compared to RT-PCR (71% and 59%)
in cohorts of 51 [18] and 1014 patients [19]. Furthermore, a
cheap diagnosis method, i.e., chest X-rays, is also being used
for detecting COVID-19 patients, and a twofold accuracy of
96% and 98% has been reported in detecting generic pulmonary
disease and COVID-19, respectively, by evaluating 6523 chest
X-rays [20]. But this diagnosis method involves high level of
expertise and manual observation, which underscores the need
of automatic detection. Although this signifies the success of
deep learning models in automating COVID-19 detection, a lot
of factors are left unanswered here about the generalization of
this study and application in clinical use.

A convolutional neural network (CNN) has gained much
popularity due to its superior performance in automatic disease
detection tasks [13]-[15]. With remarkable improvement in
computational ability and availability, a large amount of training
data have made deep learning suitable for many disease detection
tasks. Another reason for the current popularity of deep learning
is that deep leaning architectures do not need manual feature
extraction procedure, rather it automatically extracts features
from the training data [16], [17]. Deep learning techniques, espe-
cially CNN, have great potential to complement the conventional
diagnostic techniques of COVID-19. Various methods based on
deep learning have also been applied in X-ray and CT images,
and substantial results have been achieved [21]—-[24]. Moreover,
transfer-learning-based approaches have gained popularity in
this field, where pretrained networks are utilized and integrated
with different learning factors and selection algorithms to deter-
mine the best models [51], [52]. Almost all of these COVID-19-
related studies have used CNNss of different form, which despite
being very powerful have some major drawbacks associated with
them. On this basis, capsule networks have been introduced as
an alternative to CNNs, which have the ability to overcome the
shortcomings of CNNs [25], [26].

Recently, several capsule-network-based architectures have
been proposed for COVID-19 detection from chest X-ray [32],
[33]. Although a capsule network represents a breakthrough
in the field of artificial intelligence, especially in the field of
image classification task, study shows that the performance of
capsule network degrades with increasing dimensionality of the
input data [60]. To solve this issue, all aforementioned literature
used a sequential convolutional encoder block that gradually
reduces the dimension of the input data and focuses only on the
discriminative features. Then, the output of the convolutional
block is fed into the primary capsule block for further analysis.
However, deep sequential convolutional encoder block does not
always provide satisfying results as there is always a chance
of losing contextual information while using them [61]. To
address this issue, we have proposed a parallel convolutional
encoder block prior to the primary capsule block to transform
the high-dimensional data into lower dimensions using different
kernel sizes. This parallel convolutional block is implemented

with gradually increased kernel size, which not only helps to
reduce the input data size but also helps to incorporate more
fine-grained and discriminative features by using larger recep-
tive fields. Moreover, we have used an interconnection between
capsule layers so that meaningful and discriminative features
can be learned at the class capsule layer.

The main contributions of this article are the following.

1) A parallelly concatenated convolutional block-based cap-
sule network is introduced to detect patients affected by
COVID-19, which has the advantage of integrating more
discriminative fine to coarser spatial features than conven-
tional deep learning architectures.

2) To handle images of large spatial dimension, we have
extended the number of capsule layers and routing number.
At the same time, a concatenation method is applied
in the capsule layers to extract more competent set of
features from a particular area of images. The motivation
behind this approach is because, with the escalation of
the dimensionality of images, the performance of the
baseline capsule network decreases significantly due to
the inefficacy in capturing underlying complex features
present in the high spatial dimension. Although our pro-
posed parallel convolution operation prior to the capsule
network efficiently reduces the dimension of the features
fed into the primary capsule block to handle the high di-
mensionality problem stated before, increment of capsule
layers within a certain range has been found very useful in
extracting useful features from high-dimensional feature
space resulting in higher accuracy [60]. Additionally, con-
catenated connections between capsule layers strengthen
the coupling coefficient and increase the learning ability of
the capsule layers and prevent the gradient flow from being
damped that makes the model more capable of extracting
complex features from images of large spatial dimensions,
eventually results in a higher score in the validation met-
rics. Moreover, another considerable issue is the selection
of optimal routing numbers, which plays an imperative
role to tackle the overfitting and underfitting issues in the
training phase. In this article, optimal performance of the
network is achieved by extending the number of routing
and then choose the optimal routing number accordingly.

3) A pretrained method is also introduced, which is more
capable of handling a small dataset'.

II. LIMITATIONS OF A CNN

CNNss are devised such that layer [; is fed from layer /;_; and
then layer [; feeds its outputs to layer /;,1. Hence, whatever
layer [; learns is a composition of features from the initial
layers to layer /;. While learning from its previous layers, layer
l; completely ignores the spatial relations between input data
instances. Hence, CNNs have to be trained with same data having
different orientations and transformations such as rotation, zoom
in or zoom out, flipping, spatial shifting, color perturbation,
quantization, etc. Another limitation impedes its performance
when a max-pooling layer is used. Location information of
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features, which gives translation invariance quality, is lost when
the max-pooling layer is used [25]. To mitigate these limitations,
a large amount of data are used to train neural networks, and
different augmentation techniques are also used to limit the loss
of important spatial relationship information. Capsule networks
are alternative models of CNN models, which can capture spatial
information by storing information at the neuron level as vectors
rather than scalars like CNNs. And max-pooling is replaced by
the routing-by-agreement mechanism, which prevents informa-
tion loss [25].

III. GENERAL STRUCTURE OF A CAPSULE NETWORK

To overcome the aforementioned shortcomings of CNNs, in
a capsule network, a group of capsules is considered, and each
capsule is a collection of neurons that store different information
about any object it is trying to identify. In a high-dimensional
vector space, it stores information mostly about its position,
rotation, scale, and so on, with each dimension representing spe-
cial features about the object that can be understood intuitively.
The main concept that works as an important building block
of the capsule network depends on deconstruction of different
hierarchical subparts of an object and developing a relationship
between these internal parts of the whole object. The architecture
of a simple capsule network can be described into three main
blocks:

1) primary capsules;

2) higher layer capsules;

3) loss function.

Each main block has suboperations in it, which is briefly
discussed in the following subsections.

A. Primary Capsules

In this step, the input image is fed into a series of convolu-
tional layers to extract array of feature maps. Then, a reshaping
function is applied to reshape these feature maps into vectors.
Now, in the last step of this block, a nonlinear Squash function
is applied to keep the length of each vector within value 1. This
nonlinear Squash function can be described as follows:

R (P3| S 7
T i 12 ey |

ey

Here, d; is considered as the vector output of capsule j and
p; is its total output. The input capsule p; is a weighted sum
of prediction vectors v;, which is calculated from the output
of previous capsules by multiplying the output ¥; of previous
capsule’s output by a weighted matrix A;;

pi=)_ aivyi )
i
’U;'i = A”’lfl (3)

B. Higher Layer Capsule

In this block, coupling coefficient a;; is calculated through
routing by an agreement technique, which indicates the coupling
or bonding between the higher level capsule and the lower

capsule by using the following softmax function:
- €XP Cij

S CX Cir
where c¢;; is the log probability, and it indicates whether lower
level capsule 7 would be coupled with higher level capsule ;. At
the beginning of the routing by the agreement process, its initial
value is set to 0. The log probabilities are updated in the routing

process based on the agreement between d; and v;, and they
produce a large inner product, which is calculated as follows:

Cij = dJ’l;, (5)

“)

aij

There is an additional decoder network connected to the higher
layer capsule, which learns to reconstruct the input image by
minimizing the squared difference between the reconstructed
image and the input image. This decoder network consists of
three fully connected layers: two of them are rectified linear
unit activated units, and the last one is the sigmoid activated
layer.

C. Loss Function

Capsules use a separate loss function called margin loss Leap
for each digit capsule ¢, which provides intraclass compactness
and interclass separability. It is defined as

Lcap

= Wimax(0,n*— || vs ||)*+ A(1 — W)max (0, || d¢ || —n")?
(0)

where W is 1 whenever class ¢ is actually present and is O
otherwise. Terms n*,n", and A are hyperparameters that are
tuned before the learning process. While trying to reconstruct
the input image, the decoder network provides a reconstruction
loss R;. R; is computed as the mean square error between the
input image and the reconstructed image, as follows:

Ry = ||[Ig — I1]|2% 7)

Here, I €{ reconstructed image} and I; €{ input image
data}. Hence, the total loss is

L= (Lcap + OéRt). (8)

Here, ov is used to minimize the effect of reconstruction loss in
the total loss so as to give more importance to the margin loss so
that the margin loss can dominate the training process. Basically,
in the highest layer of capsule, images are reconstructed using
the information that is preserved using the reconstruction unit
and the reconstruction loss. During the training process, this loss
acting as a regularizer helps to avoid overfitting.

IV. PROPOSED CONVOLUTIONAL CAPSULE NETWORK FOR
COVID-19 DETECTION FROM CHEST X-RAY AND US IMAGING

The proposed CapsCovNet consists of three blocks—a deep
parallel convolutional network, a concatenated capsule network,
and a decoder network. These blocks are described as follows.

1) Parallel CNN Block: A graphical representation of parallel

convolutional block is presented in Fig. 1. In this block, a
deep parallel convolutional network is used to extract fea-
tures from input images. This convolutional block consists
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Fig. 1. Parallel convolutional feature extractor, which extracts diverse feature
vectors using variable kernel size.

of three parallelly connected convolutional blocks. Each
convolutional block has three convolutional layers and one
average pooling layer. The filter size of the convolutional
layers is 32, 64, and 128. The kernel size of each block is
varied to extract unique features from each convolutional
block. The first convolutional block has a kernel size of
3 x 3. The second convolutional block has a kernel size of
5 x 5, and the last convolutional block has a kernel size of
7 x 7. Strides 1 is used in each convolutional layer. At first,
a batch normalization layer is added after convolutional
layer of each block. Then, a global average pooling layer is
added in the architecture. To prevent overfitting, a dropout
layer with 50% frequency rate is used. At the end of the
convolutional layer block, all the features from the three
convolutional arms are concatenated.

2) Concatenated Capsule Network: In Fig. 2, a schematic
diagram of the concatenated capsule network is presented.
This capsule network block consists of a primary capsule
layer and a higher capsule layer. First, a reshaped layer
is used to form the first primary capsule layer, which is
a convolutional capsule layer that consists of 32 channels
of 8-D convolutional capsules. The output of the primary
capsule is a [32 x 8 x 8] tensor of capsules, and each
output is an 8-D vector. The output of this primary capsule
layer is then passed into the higher capsule layer. Finally,
the output vectors from primary capsules and higher layer
capsules are concatenated and passed to the classification
capsule layer. This layer has one 16-D capsule per class,
and the lower layer capsules pass input features to each
of these higher layer capsules. The routing-by-agreement

algorithm is used between the capsules to pass lower layer
capsule features into the higher layer capsules. The last
capsule layer is a class capsule layer, which contains the
instantiation parameters of the three classes, which are
normal, pneumonia, and COVID-19 having a dimension
of 16. The length of these three capsules represents the
probability of each class being present.

3) Decoder Network: Class capsule layer is connected to
three dense layers, which are composed of 512, 1024, and
49 152 neurons, respectively, which are then reshaped to
128 x 128 x 3 image size. A pictorial representation of
the decoder block and the final output block is presented
in Fig. 3.

A. Loss Function

Loss is calculated using the loss function in (8). Since the
dataset is very small, there is a chance of overfitting the model.
Hence, reconstruction loss with a high weight value « is associ-
ated with the margin loss, which prevents the model to become
overfitted.

B. Hyperparameter

For the task of COVID-19 detection, we have trained the
model using 50 epochs. The number of routings and the batch
size is set to 3 and 64, respectively. The Adam optimizer has been
used with a learning rate of 0.001. For total loss calculation, we
have used weight o = 0.6 for reconstruction loss. For margin
loss calculation, both n* and n~ are set to 0.1, and A is set
to 0.5.

V. EXPERIMENTAL SETUP

A. Dataset

In this article, three publicly available datasets are used for
finding the efficiency of the proposed network. The first one
is an open-source dataset of US imaging called point of care
ultrasound (POCUS) dataset [35]. It contains 64 videos taken
from various sources. Hence, the format and illumination of US
images differ significantly.

The remaining datasets are two open-source chest X-ray
datasets, which are used for training and testing the proposed
model. The first dataset contains chest X-ray images of COVID-
affected patients collecting from six different publicly available
databases. These data were collected from the Italian Society of
Medical and Interventional Radiology COVID-19 DATABASE,
Novel Corona Virus 2019 Dataset, COVID-19 positive chest
X-ray images from different articles, COVID-19 Chest imaging
at thread reader, RSNA-Pneumonia-Detection-Challenge, and
Chest X-ray Images (pneumonia) [39], [43]-[46], [48]. The
second dataset is an aggregation of two publicly available chest
X-ray datasets [22], [40]-[42]. In the rest of this article, these
two datasets will be addressed as dataset-1 and dataset-2 for
simplicity.

B. Pretraining Process and Pretraining Dataset

Usually, to train any deep CNN, a large dataset is needed.
A large dataset helps a neural network to avoid overfitting and
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Fig. 3. Schematic of the decoder block. Decoder block is composed of three
fully connected dense layers, which have 512, 1024, and 49 152 neurons,
respectively, which are then reshaped to 128 x 128 x 3 image size.

underfitting problems. Our proposed deep convolutional capsule
network has a deep parallel convolutional neural block. Hence,
a large dataset can significantly improve the performance of
our proposed network. However, no such large medical dataset
is available for COVID-19. Especially, US data of COVID-19
patients are very limited. Hence, we adopt a pretraining and
fine-tuning technique. Normally, in transfer learning, a deep
neural network is first trained using a large source dataset, and
then, early layers of the trained model are kept frozen. Next,
some deeper layers of the network are again retrained using a
target dataset. This pretraining technique has been proven to be
an efficacious process in different fields of computer vision tasks
especially in those cases where aggregating a large dataset is not
possible [49]. In this article, a dataset of X-ray image containing
94 323 images distributed into five classes has been used as
the source dataset in the pretraining process [47]. The capsule
block and the decoder block are fine-tuned by freezing the
convolutional block after pretraining. This pretraining process
improved the detection accuracy in our work to a great extent.

Higher Layer
Capsule

Higher Layer
Class Capsule

Capssule

Routing By
Agreement

\ ( ) Concatenation

Graphical representation of the proposed convolutional capsule network. Features extracted from parallel convolutional blocks are used as input for the

C. Data Processing and Classification Pipeline

US images are extracted from the US videos at the frame rate
of 30 frame/s, as it is done in [35]. After the image extraction
process, a total of 1103 images are found, where 654 are of
COVID-19, 277 are of pneumonia, and the rest 172 are of
healthy types. Since capsule networks are equivariant to pose
changes, the data augmentation technique does not add any
improvement in the performance of the capsule network. Hence,
data augmentation techniques have not been used in the train-
ing phase. To minimize the effect of sampling bias, histogram
equalization was applied to images using the normalized con-
trast limited adaptive histogram equalization (N-CLAHE) algo-
rithm [36]. This method first globally normalizes the images and
then applies contrast limited adaptive histogram equalization
(CLAHE), which normalizes images and enhances small details,
textures, and local contrast [37], [38]. The classification pipeline
of our proposed method is shown in Fig. 4. At the preprocessing
step, N-CLAHE has been applied to enhance smaller details, and
then, images are resized to 128 x 128 pixels. Finally, training
images are fed to the network.

D. Performance Evaluation Matrix

Five performances metrics such as accuracy, sensitivity or
recall, specificity, precision (positive predictive value), and F'1
score have been used to compare the classification performance
of the proposed method with the existing deep learning algo-
rithms. They are defined as follows:

A TP + TN ©)
ccuracy =
Y T TP TN+ FP+ FN
TP
Precision — — & |
recision = TP (10)
Sensitivit P an
ensitivity = ——
YT TP RN
F1 score — 2 x Prec%s%on X Sens%t%v%ty (12)
Precision + Sensitivity
TN
Specificity = ———— 13
pecificity = P (13)
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where
1) TP = true positive;
2) TN = true negative;
3) FP = false positive;
4) FN = false negative.

VI. RESULTS AND DISCUSSION

In this section, the results obtained from rigorous experimen-
tations on three publicly available datasets are discussed in three
diverse perspectives. For evaluation purposes, a fivefold cross-
validation technique is used for the US dataset and dataset-1,
and a tenfold cross-validation technique is used for dataset-2.
To ensure that training and testing data are completely disjoint,
extracted frames from a single video are included within a single
fold only.

A. Ablation Study

The ablation study is conducted to validate the contribution
of each of the steps included in the proposed methodology. The
performance improvement achieved from including the prepro-
cessing and pretraining step is summarized in Table IV, where
it is found that applying these steps significantly improves the
performance of the proposed method. The N-CLAHE technique,
which is applied as the main preprocessing step, enhances the
image quality significantly, and 1.6-2.13% improvement in eval-
uation metrics has been achieved by applying it. Due to technical
fault, image quality can be degraded significantly, and as a
result, the performance of the machine learning technique can
deteriorate. Using the N-CLAHE approach, the quality of raw
medical images is enhanced and eventually contributes to perfor-
mance improvement. Moreover, for performance improvement,
as mentioned earlier, the pretraining technique is used for cases

Classification pipeline of the proposed method showing the main data preprocessing steps and deep convolutional and capsule blocks.

TABLE I
PERFORMANCE EVALUATION MATRICES FOR THE PROPOSED DEEP PARALLEL
CONVOLUTIONAL CAPSULE NETWORK WITH AND WITHOUT N-CLAHE
AND PRETRAINING

Capsule Network with Capsule Network with
Dataset Eval dMetrics q ial C lutional | Parallely Concatenated
Blocks Ci lutional Blocks
Accuracy 0.943 0.983
Precision 0.939 0.981
POCUSDataset Sensitivity 0.931 0.985
FI Score 0.932 0.987
Specificity 0.932 0.991
Accuracy 0.945 0.990
Precision 0.949 0.992
Dataset-1 Sensitivity 0.951 0.997
F1 Score 0.950 0.996
Specificity 0.951 0.996
Accuracy 0.939 0.989
Precision 0.944 0.986
Dataset-2 Sensitivity 0.946 0.99
F1 Score 0.941 0.993
Specificity 0.944 0.99

By applying data preprocessing techniques, significant improvement in results has
been achieved. More improvement in results is achieved by applying the pretraining
technique.

where the aggregation of large-scale labeled data is not possible.
As the proposed method has a deep feature extractor block that
requires an extensive amount of training data, pretraining this
block is found to be an effective step contributing notably toward
the improved performance of the proposed method.

B. Quantitative Analysis

In Table II, comparison between existing state-of-the-art
methods and proposed method in COVID-19 detection from the
chest X-ray dataset is summarized. In dataset-1, our proposed
method has scored 1.3-3% higher in different comparison met-
rics than the existing state-of-the-art method [39]. In dataset-2,
our proposed method performs better than the current state-of-
the-art method [42]. In this case, the improvement is between
0.71% and 23% in different performance evaluation metrics.
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Fig.5. Confusion matrix from the proposed CapsCovNet. (a) Confusion matrix for dataset-1. (b) Confusion matrix for dataset-2. (c) Confusion matrix for POCUS
dataset.

TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD AND THE EXISTING
STATE-OF-THE-ART METHODS IN THE CHEST X-RAY DATASET

Dataset Methods Accuracy | Precision | Sensitivity Sfolre Specificity
Ch‘e’r"ill‘“ry 0.9774 0.9661 09661 | 0.9661 | 0.9831
Dataset-1 A;“'“‘;”‘ 0922 0.924 0.921 0921 | 0.960
Ucar 0.983 - 0.983 0.991
et. al.
Apostolopoulos | g 0.986 0.964
et. al.
Proposed 0.990 0.982 0.997 0.996 | 0.996
Afshar 0.983 - 0.8 0.986
et. al.
Dataset-2 S"i 0978 0.929 0977 0953 | 0.962
Panahi 0.96 - 0.96
et. al.
Proposed 0.989 0.986 0.99 0.993 | 0.99
TABLE III

COMPARISON BETWEEN THE PROPOSED METHOD AND THE EXISTING
STATE-OF-THE-ART METHOD IN THE US DATASET

Methods Class Sensitivity | Specificity | Precesion F1
Score
Pocovid Covid-1 9 0.96 0.79 0.88 0.92
Net Pneumonia 0.93 0.98 0.95 0.94
Normal 0.55 0.98 0.78 0.62
Muhammad Covid—l? 0.902 - 0.952 -
et.al. Pneumonia 0.958 - 0.969 -
Normal 0.936 - 0.832 -
Covid-19 0.99 0.95 0.99 0.99
Proposed Pneumonia 0.98 0.99 0.96 0.96
Normal 0.97 0.99 1.00 0.99

In Table III , comparison between the existing state-of-the-
art method and our proposed is summarized in the US image
dataset. Our proposed method has outperformed the state-of-the-
art method in US images also. We have a performance increase
of 3.12-20.2% in performance metrics. Then, we have classified
the US videos using a process, where the class occupying most
of the frames in one video indicates the class of the entire US
video. Using this process, 100% accuracy is obtained in US
COVID-19 video classification.

C. Qualitative Analysis

Our proposed method significantly reduces false positive and
false negative cases over the existing state-of-the-art methods.
As COVID-19 and pneumonia patients have similar symptoms,
there is a high chance to misclassify these classes. But our
proposed method can handle these cases very efficiently. Most
importantly, from Fig. 5(a), the superior performance of this
method in detecting COVID-19 cases from the chest X-ray
can also be observed. Among 1144 COVID-19 chest X-ray
cases, only six cases are misclassified, and among these six
cases, only two of them are classified as pneumonia. Again
from Fig. 5(b), we can see that our proposed method performs
exceptionally, and among 230 COVID-19 cases, our proposed
method can correctly identify 228 cases and misclassify only
two cases, where only one COVID-19 case is misclassified
as pneumonia. Fig. 5(c) has depicted the confusion matrix of
our proposed method using US images. Out of 654 COVID-19
US frames, our proposed method has accurately classified 645
frames and misclassified only nine frames, and only eight frames
are misclassified as pneumonia. Furthermore, to express the
capability of the proposed model in distinguishing between the
classes, the areas under the curve (AUCs) of receiver operating
characteristics (ROC) are illustrated in Fig. 6, where the AUCs
are calculated using the one versus all approach, in which the
ROC curve for a specific class will be generated as classifying
that class against the other classes. Analyzing each of the ROC
curves for three separate datasets depicted in Fig. 6(a)—(c), it
can be concluded that the proposed model can differentiate
each of the classes with a negligible amount of false positive
cases. In Table I, comparison between the capsule network with
sequential convolutional blocks and the capsule network with
parallely concatenated convolutional blocks is summarized. It
should be noticed that the proposed capsule network with paral-
lely concatenated convolutional blocks outperforms the capsule
network with sequential convolutional blocks compared by a
considerable margin in all the metrics. The capsule network with
sequential convolutional blocks directly operates on the whole
image to extract features for COVID-19 detection, whereas the
proposed capsule network with parallely concatenated convo-
lutional blocks effectively integrates features from its parallel
convolutional hands. These convolutional blocks are comprised
of dissimilar kernel size, which provides a group of features that
are more capable of differentiating multimodal medical images
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TABLE IV
COMPARISON BETWEEN CAPSULE NETWORK WITH SEQUENTIAL CONVOLUTIONAL BLOCKS AND CAPSULE NETWORK WITH PARALLELY CONCATENATED
CONVOLUTIONAL BLOCKS

With n-CLAHE
Dataset Evaluated Metrics | Without n-CLAHE Without Pretraining | With Pretraining

Accuracy 0.945 0.960 0.983

Precision 0.943 0.959 0.981

POCUS Dataset Sensitivity 0.951 0.956 0.985
F1 Score 0.942 0.959 0.987

Specificity 0.954 0.962 0.991

Accuracy 0.951 0.968 0.990

Precision 0.953 0.963 0.992

Dataset-1 Sensitivity 0.952 0.965 0.997
FI Score 0.952 0.968 0.996

Specificity 0.948 0.967 0.996

Accuracy 0.940 0.959 0.989

Precision 0.945 0.961 0.986

Dataset-2 Sensitivity 0.943 0.962 0.99
F1 Score 0.945 0.96 0.993

Specificity 0.944 0.964 0.99

For comparison purpose, kernel size of 5 x 5 is used for sequential convolutional blocks. Kernel size of 5 x 5 gives the maximum values
in the evaluation matrices in capsule network with sequential convolutional blocks.

ROC curve for COVID-19 detection

ROC curve for COVID-19 detection

ROC curve for COVID-19 detection
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Fig. 6.

than the capsule network with sequential convolutional blocks
and that results in higher accuracy.

D. Clinically Relevant Information Obtained by CapsCovNet

A very arduous challenge while working on COVID-19 de-
tection from chest X-ray is the unavailability of a large pub-
licly available dataset to train and test deep learning models,
which can solidify the claim of generalization and low biased
nature of the model. For this reason, while moving onward
with this limitation, we have put utmost emphasis on checking
whether our model is learning clinically relevant features or
not. The surmisable issues that impede the generalization of
models proposed for COVID-19 detection are bias introduced by
distinction between different datasets and source of acquisition,
presence of medical equipment, and various text data that are
embedded in the scan [62]. To visualize the class activation
mapping for localizing particular areas of multimodal medical
imaging (US and X-ray in this case) that assists the decision pro-
cess, the gradient-based class activation mapping (Grad-CAM)
algorithm [34] is integrated with our proposed CapsCovNet.
As depicted in Fig. 7, our model completely ignores the pres-
ence of medical equipment and embedded letters in the X-ray
images. So, it can be firmly stated that our model is robust
against these sort of biases. Tissue intensity and characteristics

ROC curve from the proposed CapsCovNet. (a) ROC curve for dataset-1. (b) ROC curve for dataset-2. (c) ROC curve for POCUS dataset.

in medical images vary significantly from dissimilar acquisition
techniques and for different sources of acquisition as well [55].
Hence, intensity standardization is firmly in practice for medical
image segmentation and disease classification. We have used
N-CLAHE histogram standardization in this article, which, apart
from aiding to improve our classification accuracy, helped to
extenuate the bias from different sources of acquisition.

Another important concern while working with different
small-sized datasets is the relevancy of information learned by a
deep learning model to actual clinical characteristics prevalent
in respective diseases. As shown in [56], even without the infor-
mation present in most of the lung regions, good classification
results can be obtained for different proposed models, which are
biased toward different factors and emphasize on the information
relevant to source or method of acquisition. From Fig. 4, it
is evident that the information present in the lung region is
of highest importance, and therefore, the hypothesis presented
in [56] is not appropriate regarding our model.

In normal patient’s chest X-ray, generally, no form of opac-
ities is present [57], [58], and from Fig. 7, our model has not
marked any form of opacity also, and it can effectively identify
healthy lungs. For distinguishing COVID-19 and viral pneumo-
nia, our model is marking central and peripheral distribution in
viral pneumonia, but it is not marking both sorts of distribu-
tion in COVID-19 pneumonia. The findings from the clinical
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Fig. 7.

Grad-CAM visualization of US and X-ray samples.

experiment presented in [50] perfectly match our model’s ac-
tivation heatmap. Therefore, it can be fairly assumed that our
model is learning distinguishing features, which are relevant to
actual clinical features for COVID-19 detection task.

The issue of generalization of successfully identifying a new
case of a normal patient from the COVID-19-affected one can be
safely claimed as for all test cases in different folds, our model
has detected abnormalities in Iungs. Millions of patients are
diagnosed with COVID-19 and pneumonia, which have many
common characteristics between them, and it is very difficult
to claim that our model can distinguish each and every one of
those cases successfully without training it with a huge volume
of data. Even there is always significant possibility of inherent
biases among expert radiologists in interpreting and diagnosing
disease from medical images [59]. Nevertheless, our proposed
model is learning underlying complex insights from data found
from the study of expert radiologists [58], which strengthens the
possibility of clinical application of our work in prescreening
and aiding in diagnosis of patient successfully.

VII. CONCLUSION

In this article, a parallelly connected convolutional block-
based capsule network was proposed to diagnose COVID-19
from chest X-ray and US images. The parallel connection of
convolutional block and concatenation of multiple capsule units,
which are introduced in this article, bolstered the model to
learn more competent features and improved the COVID-19
detection performance substantially. The proposed architecture
provided significant results using a very small training dataset,
and further improvement was achieved by pretraining the convo-
lutional blocks. Moreover, the localization of the affected region
found from this model can help the medical practitioners as
a clinical tool. Nevertheless, further study should be required
to inspect the complex pattern of COVID-19 by incorporating
more patients’ data from diverse geographic locations of the
world.
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