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Abstract: The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-
related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded
the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic
changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and
vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy,
cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, iden-
tification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the
cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The
most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy
will be discussed in this review article with a special focus on the continuous development of highly
specific molecular markers and steadily improving methods of image generation. The review closes
with an outlook on possible new developments of molecular imaging and advanced image evaluation
techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.

Keywords: molecular imaging; PET; SPECT; cardiotoxicity; immunotherapy; nuclear medicine;
nuclear cardiology; cardio-oncology

1. Introduction

The emerging use of novel immunotherapies in cancer treatment increases the risk of
immunotherapy-related cardiovascular side effects. Cardiotoxic damage ranges from asymp-
tomatic changes to fulminant short- and long-term complications, including cardiomyopathies,
arrythmias, and vascular disease [1–5]. In contrast to conventional chemotherapy, the use of
targeted immunotherapies has expanded the forms and presentations of cardiovascular
toxicity [4]. Accompanied by increasing long-term survival rates of cancer patients, inte-
grated management and care of cardiovascular disease through cancer and cancer therapy
by cardio-oncologists become important to reduce cardiovascular side effects which affect
prognosis and quality of life [6].

Immunotherapies for cancer treatment follow passive or active strategies. While in
passive immunotherapy, monoclonal antibodies (mAbs) targeting growth receptors, im-
mune checkpoint inhibition, or bispecific T cell engagement are used, active strategies
contain especially chimeric antigen receptor (CAR)-T cell transfer [7,8]. All of them can be
associated with immunotherapy-related cardiovascular side effects. Monoclonal antibodies
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targeting ERB epitopes are widely used in the treatment of breast cancer (Anti-HER2/neu)
and squamous cell carcinoma/colorectal carcinoma (EGFR) and can cause myocardial dys-
function, heart failure, hypertension, and arrythmia [7,9,10]. The risk of cardiotoxicity even
increases as conventional chemotherapeutics are used concomitantly in those treatment
regimens [11]. Inhibition of vascular endothelial growth factor (VEGF) signaling using
anti-VEGF mAbs can induce arterial hypertension and lead to thromboembolic complica-
tions [12]. Inhibition of protein kinases such as MEK and BRAF have been associated with
left ventricular dysfunction and a higher risk of pulmonary embolism due to thromboem-
bolic complications [13]. Immune checkpoint inhibitors targeting programed death-1 (PD-1)
or cytotoxic T-lymphocyte antigen-4 (CTLA-4) can induce severe myocarditis and further
increase the risk of major cardiovascular events including acute coronary syndromes and
arrythmias [14–17]. Bispecific T cell engagement as used in B-cell acute lymphoblastic
leukemia can cause severe cardiovascular side effects presenting with fatal heart failure
due to massive cytokine release syndrome [7,12,18,19]. In addition, CAR-T cell therapy as
a revolutionary advance in the therapy of hematologic malignancies can severely affect
the cardiovascular system by a severe inflammatory response condition due to massive
cytokine release syndrome [8,20,21].

Cardio-oncological monitoring in cancer patients and in patients undergoing cancer
therapy is a complex interplay between pretherapeutic assessment and risk identification,
therapeutic monitoring with identification and evaluation of impending cardiotoxicity,
and its therapeutic management and post-therapeutic surveillance to identify late-onset
cardiotoxicity [2]. Recent position statements therefore provided detailed recommendations
for individual patients depending on risk assessment and therapy-related risk factors [1–4].

In addition to physical examination and baseline cardiological assessment using
echocardiography, the cardio-oncologist can revert to a broad spectrum of nuclear cardi-
ological diagnostic workup [22,23]. Many nuclear medicine imaging techniques can be
used to detect cardiovascular toxicity of which the most promising and commonly used
modalities will be discussed in this review article. Due to the novelty of the topic, their
application in the field of immunotherapy-related cardiotoxicity has so far been limited to
few described individual applications. However, with more insight into pathophysiology,
targeted diagnostic or even theranostic approaches may gain importance in the future. The
article, therefore, first presents the nuclear cardiological examination techniques and then,
for the methods that are considered most promising, transfers their application potential
to immunotherapy-induced effects. The review closes with an outlook to possible new
developments of molecular imaging and advanced image evaluation techniques in this
exciting and increasingly growing field of immunotherapy-related cardiotoxicity.

2. Molecular Imaging: Visualization of Metabolic Pathways and Body Function

The typical molecular imaging techniques in nuclear medicine are used to visualize
metabolic pathways or other aspects of human body functions via imaging of the in vivo
distribution of radiolabeled substances. Radionuclides are bound to molecules which, after
their (predominantly intravenous) application can interact with various molecules inside
the human body or be used for imaging of their distribution without direct binding to
target molecules (e.g., imaging of myocardial perfusion). In principle, the radionuclide is
crucial for generation of images, while the molecule bound to it guides the compound to
its target position within the body. Following the tracer principle [24,25], only very small
amounts of compounds are applied, which, on the one hand, are sufficient to visualize the
investigated body function, but, on the other hand, have no biological effect.

Two-dimensional planar scintigraphy, three-dimensional single photon emission com-
puted tomography (SPECT) and three-dimensional positron emission tomography (PET)
techniques are currently used for nuclear medicine imaging in clinical routine practice. For
each of these imaging modalities, many different tracers for various target structures are
available, some of which are firmly established in routine clinical practice and others of
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which are being evaluated experimentally or used in the context of specific scientific ques-
tions.

2.1. Molecular Imaging Tracers and Target Structures

Typical oncological applications, which commonly exploit the possibility of whole-
body imaging, include primary staging and re-staging to identify metastases (in patients
with known primary) or search for primary tumors (in patients with cancer of unknown
primary origin) [26–31]. Here, the molecular targets are, for example, glucose metabolism,
bone remodeling [32–35], or tumor-specific receptors and molecules involved in metabolic
pathways of carcinogenesis such as somatostatin receptors [36–42] (for imaging neuroen-
docrine tumors) or prostate-specific membrane antigen [43–50] (for imaging prostate carci-
noma). These specific oncological targets can additionally enable the possibility of radionu-
clide therapies using similar target structures but beta-minus-emitting radionuclides such
as 131I, 177Lu, or 90Y. These deliver their energy to the surrounding tissue in short distance
to evoke therapeutical effects in the context of individual theranostic concepts [51–62].

In addition, in non-oncological patients, molecular imaging investigations of individ-
ual organ systems are firmly established. These include evaluation of thyroid function
and assessment of thyroid nodules [63–67], examinations of the brain to visualize amyloid
deposits for diagnosis of Alzheimer’s disease [68–71] or presynaptic dopamine transporters
for diagnosis of Parkinson’s disease [72–75], or evaluation of lung ventilation and perfusion
for diagnosis of pulmonary artery embolism [76–79].

Finally, the examination of the heart is an integral part of clinical routine in nuclear
medicine. In the context of the increasing use of immunotherapies for cancer treatment and
the occurrence of cardiotoxic side effects, molecular imaging modalities are also increasingly
used to evaluate cardiac function in this patient population. The most promising methods,
according to the authors’ opinion, are discussed in this review. First, a brief overview
of technological aspects is given for the most important nuclear cardiologist methods of
image generation.

2.2. Planar Scintigraphy and Single Photon Emission Computed Tomography

Planar scintigraphy and SPECT are imaging modalities that are based on the usage of
gamma emitting radionuclides [80,81]. To generate images, emitted photons are detected
using gamma cameras (planar imaging) or tomography systems (SPECT). The processing of
additionally acquired computed tomography images (SPECT/CT) enables an improvement
of image quality by attenuation correction as well as facilitating the anatomical assignment
of the molecular imaging signal [82].

The gamma emitting radionuclide that is predominantly used in routine practice is
99mTc, as it exhibits particularly favorable properties for image generation and practicability
in daily use [83]. These include, inter alia, a short half-life of 6 h as well as the possibility of
obtaining the radionuclide from an inhouse generator and binding it to target molecules
without the need for a radiochemistry department inside the clinic or outbound practice.
In addition, for some tracers, the radionuclide 123I is used, which has a longer half-life of
about 13 h [84].

With regards to drug-related cardiotoxicity, several radiotracers for planar scintigra-
phy/SPECT imaging are available which can be used to visualize different parameters
characterizing cardiac function and damage. These include (time-resolved) visualization of
ventricle morphology, examination of myocardial perfusion, and indirect visualization of
myocardial damage via imaging of the sympathetic innervation system of the heart.

2.3. Positron Emission Tomography

In contrast to planar scintigraphy and SPECT, PET imaging uses positron emitters as
radionuclides. The collision of positrons and electrons in the target tissue produces two
annihilation photons which are emitted at an angle of about 180◦ to each other. The PET
imaging technique uses only coincidence events (if two photons are detected at opposite
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positions of the detector rings) to generate images. Therefore, the number of random
detections (arising, for example, from background radiation) is reduced and a higher image
quality and lower image noise compared to SPECT imaging are achieved.

In current practice, PET is performed exclusively in hybrid imaging technique, i.e., in
combination with magnetic resonance tomography (PET/MR) or computed tomography
(PET/CT). Like for SPECT/CT imaging, the reasons are on the one hand technical: the
additional morphological imaging modality can be used for attenuation correction, which
increases image quality and enables precise quantification of tracer uptake. On the other
hand, it allows for anatomical assignment of structures and the simultaneous possibility of
radiological co-assessment of pathologies with or without increased tracer accumulation.

The two radionuclides that are most frequently used in clinical routine are 68Ga and
18F [25]. These are widely available and have some features useful for routine clinical use
such as a short half-life and a high proportion of positrons in their decay process leading to
a high PET image quality. For imaging of cardiotoxicity, mostly glucose metabolism PET
imaging after application of 18F-FDG has been used and also been applied to immunother-
apy patients. Recently, examinations using 68Ga-DOTATOC/DOTATATE, which bind to
somatostatin receptors, or 68Ga-labeled fibroblast activating protein inhibitors (68Ga-FAPIs),
which target the fibroblast activating protein (FAP), were also described. Therefore, these
tracers were selected for a more detailed discussion. For all three tracers, the approaches
aim at using the improved image quality of PET for an early detection of cardiotoxicity.
Moreover, imaging in PET technique opens the possibility of PET/MR hybrid imaging. This
can allow for combined assessment of subtle morphological and functional abnormalities
that might lead to very early detection of cardiotoxicity [85].

In this review, for the most promising imaging modalities, possible benefits and
application scenarios will be discussed. Due to the limited applications published to date in
the field of immunotherapy-related cardiotoxicity, aspects that have been investigated when
used for related questions will be transferred to this topic. The examination modalities are
organized by molecular target structures and presented in descending order starting with
the most promising (in the authors’ opinion) modality.

3. Imaging of Glucose Consumption

For the imaging of glucose metabolism, 18F-FDG PET is performed. With proper
preparation of the patient, an increased glucose metabolism can indicate myocarditis or
ischemic myocardium as well as vascular toxicity [86–88]. These pathologies are linked to
immunotherapy, making 18F-FDG PET imaging a suitable tool for early detection of adverse
effects during therapy which stands out due to its high image quality and the possibility of
detection of subtle abnormalities. Additionally, 18F-FDG PET is often habitually performed
in oncological patients for re-staging and assessment of therapy success; therefore, the
possibility of a simultaneous examination of the heart with a single protocol can arise or
cardiac readouts may be performed from routine oncological scans. This might allow for a
specific screening for cardiotoxic effects and leads the authors to consider 18F-FDG imaging
as the most promising imaging modality in this review.

In the pathophysiological development of chemotherapy-related cardiotoxicity, car-
diac glucose metabolism can be increased leading to a possible early detection by 18F-
FDG PET [89]. In the context of immunotherapy-related cardiotoxicity, several reports
describe an application for investigation of immune checkpoint inhibitor-related myocardi-
tis [11,90–93]. These hint at a possibility of early detection and possible improvements
compared to cardiac MR [94]. Moreover, 18F-FDG is an established and commercialized
PET tracer that is available at many centers.

Technically, 18F-FDG accumulates in cardiomyocytes after uptake through GLUT
receptors and intracellular retention following phosphorylation by hexokinase [25]. For
suppression of the PET signal from physiological myocardial glucose consumption, ad-
equate patient preparation must be performed that aims at shifting myocardial energy
consumption to free fatty acids. Typical protocols include prolonged fasting (for at least
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12 h), carbohydrate restriction (Atkins diet) for at least one day prior to scanning, fatty
meals, and loading with unfractionated heparin (at about 15 min before 18F-FDG injec-
tion) [95]. Figure 1 shows an example of a patient with metastatic malignant melanoma
under adjuvant anti-PD1 immune checkpoint inhibition treatment with nivolumab. The
patient underwent 18F-FDG PET/MR as immune checkpoint inhibitor-related myocarditis
was suspected due to elevated troponin. Eventually, active myocarditis was verified by
PET/MR imaging showing the possibility to perform the examination in immunotherapy-
related cardiotoxicity patients.
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Figure 1. Example of a metastatic malignant melanoma patient under nivolumab treatment in
whom checkpoint inhibitor-related myocarditis was verified by 18F-FDG PET/MR in our institution.
Clockwise from upper-left: Late-phase MR, maximum-intensity-projection PET images from three
different angles (anterior, posterior, left-posterior view), axial fusion PET/MR, axial PET. Hybrid
imaging showed a hypertrophied normal-sized left ventricle with normal left ventricular ejection
fraction and with circumscribed left-ventricular midmyocardial late gadolinium enhancement (infero-
latero-basally, white arrow in upper-left image), mild edema, and increased 18F-FDG accumulation
(black/white arrows in PET image) which was indicative of active myocarditis.

Despite the advantages of 18F-FDG PET for imaging of immunotherapy-related toxicity,
some opinions point to a limited diagnostic value of the technique [96]. In addition, cardiac
18F-FDG PET uptake can be non-specific and disregarding the laborious patient preparation
protocol may prevent diagnostic validity [93]. Therefore, further systematic investigation is
needed to identify patient groups in whom 18F-FDG PET should be performed as imaging
modality of choice and to review PET investigations using other tracers that may have
further specific advantages for imaging of immunotherapy-related toxicity.

4. Imaging of Cardiac Remodeling and SSTR-Expression

One of these novel PET imaging modalities that can broaden the applicability of PET
imaging for immunotherapy-related cardiotoxicity is the recently introduced 68Ga-FAPI
PET. Several reports describe the applicability of the technique, which is also used for onco-
logic imaging [97,98] and subsequent radionuclide therapy in a theranostic approach [99],
for imaging of cardiac fibroblast activation as an early sign of cardiac damage that might be
induced by immunotherapy-related cardiotoxicity [100–102]. Thus, early detection might
be possible [101] using a highly specific target that does not exhibit the shortcomings of
18F-FDG PET. Moreover, also for 68Ga-FAPI PET the possibility of simultaneous oncological
staging and cardiac assessment in a single examination emphasizes its significance as a
highly promising tool. However, 68Ga-FAPI has not yet been approved and examinations
are performed as part of clinical trials or as compassionate use. Therefore, its availabil-
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ity is still limited to large centers and further developments have to be awaited before
widespread use can be recommended.

Biologically, 68Ga-FAPI targets FAP, a cell-surface serine protease that acts on various
hormones and extracellular matrix components [103]. FAP is expressed rarely in healthy
adult tissues. However, it is highly upregulated in a wide variety of cancers at sites of
active tissue remodeling and is often used as a marker for pro-tumorigenic stroma (can-
cer mesenchymal stem cells, cancer-associated fibroblasts, sarcoma, and melanoma cells),
wound healing, and fibrosis [104]. Moreover, FAP shows an overexpression in benign
remodeling processes as they can occur in the context of immunotherapy-related cardiac
damage [93,100,105] and after myocardial infarction [106]. After myocardial infarction,
fibroblasts undergo dynamic phenotypic changes and differentiate into collagen-secreting
proto-myofibroblasts, which can further differentiate into mature myofibroblasts. Acti-
vated fibroblasts migrate into the injured myocardium and contribute to tissue replacement,
thereby helping to preserve the structural integrity of the infarcted heart, which elic-
its reactive and interstitial fibrosis and hence decreases cardiac contractility [106]. This
pathophysiological process might in part be comparable to remodeling processes after
immunotherapy-related damage to cardiomyocytes. Moreover, FAP is upregulated in
cardiomyopathies [107]. Figure 2 shows an example of a pancreatic ductal adenocarcinoma
patient under distinct chemotherapy regimens who displayed increased cardiac 68Ga-FAPI
uptake as a possible sign of chemotherapy-related cardiotoxity.
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therapy regimens (gemcitabine/nab-paclitaxel followed by modified FOLFIRINOX). (a) Early 68Ga-
Figure 2. Example of a metastatic pancreatic ductal adenocarcinoma patient under distinct chemother-
apy regimens (gemcitabine/nab-paclitaxel followed by modified FOLFIRINOX). (a) Early 68Ga-FAPI
PET images 10 min p.i. (b) Late 68Ga-FAPI PET images 60 min p.i. Clockwise from upper-left:
PET/CT fusion anterior view, PET/CT fusion lateral view, PET maximum-intensity-projection an-
terior view. Hybrid imaging shows the primary pancreatic carcinoma, multiple liver metastases,
and peritoneal nodules (indicative of peritoneal carcinomatosis), each with intense FAP-expression.
Chemotherapy-related cardiotoxicity was suspected due to increased cardiac FAP-expression (em-
phasized in early images p.i.) and incomplete cardiac wash-out (observed in late images). PET/CT
images were acquired at our institution.

Moreover, somatostatin receptor (SSTR) PET that was previously identified as promis-
ing tool for imaging of myocarditis [108] was recently applied for early detection of immune
checkpoint inhibitor-related myocarditis. A case series [109] and a case report [102] de-
scribe applicability for both 68Ga-DOTATOC and 68Ga-DOTATATE (both tracers target
SSTR but show differences in their affinity to different SSTR subtypes). Earlier detection of
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cardiac damage than by cardiac MR is a possible benefit and, compared to 18F-FDG PET,
no laborious patient preparation is necessary [109]. Future studies are necessary to confirm
these results which hint at an identification of somatostatin receptor PET as additional
modality for imaging of immunotherapy-related cardiotoxicity. However, its applicability
for oncological staging is limited to somatostatin receptor expressing malignancies which
precludes broad use for simultaneous staging and cardiac assessment. On the other hand,
68Ga-DOTATOC/DOTATATE are commercialized and, therefore, available at many centers.

The small number of published reports on the applicability of non-FDG PET imaging
for immunotherapy-related cardiotoxicity underlines that further systematic investigations
are necessary before a widespread clinical application can be achieved. Moreover, future
studies might also introduce different tracers targeting other specific molecules in the inter-
action of immunotherapy and myocardium and advanced methods of image evaluation.

5. Imaging of Myocardial Damage

A different diagnostic tool for early detection of myocardial damage that can be
applied in scintigraphy, SPECT, and PET techniques is imaging of cardiac sympathetic
innervation. For the commonly performed imaging in scintigraphy or SPECT technique,
123I-meta-iodobenzylguanidine (123I-MIBG) is applied, which is a norepinephrine analog
and therefore a tracer for sympathetic neuron integrity and function. The dysfunction of
the autonomous nervous system contributes to the pathophysiology of heart failure and
123I-MIBG imaging has already found its way into clinical examination of heart failure
patients [110,111].

As chemotherapy-induced damage to the myocardial beta-adrenergic system might
contribute to the pathophysiology of cardiotoxicity [112,113] and preclinical studies hint
at an earlier detection of chemotherapy-related cardiotoxicity by a decrease in 123I-MIBG
uptake than, for example, by a decline in left ventricular ejection fraction (LVEF) [114], 123I-
MIBG SPECT imaging is a promising technique for early detection of chemotherapy-related
cardiotoxicity. Moreover, 123I-MIBG is a commercialized tracer available at many centers.
However, it has not yet been established for clinical routine imaging in this patient cohort.

Most of the literature on the use of 123I-MIBG imaging for evaluating patients with
heart failure is based on measurements from anterior planar scintigraphy images with
cardiac uptake quantified in terms of the heart-to-mediastinum ratio (HMR) and the
washout rate between early and late images [115]. 123I-MIBG SPECT has been shown to
yield complementary results to planar imaging in patients with heart failure after acute
myocardial infarction [115]. Figure 3 depicts examples of physiological and pathologic
123I-MIBG planar scintigraphy and SPECT imaging.

To date, the application of the technique has not explicitly been described for imaging
of immunotherapy-related cardiotoxic effects. Given that for immunotherapy, like for
chemotherapy, cardiotoxic effects to the sympathetic innervation seem possible, 123I-MIBG
imaging might also be a promising technique for early detection of cardiac damage in
this patient group. Future systematic investigations are necessary to elucidate possible
benefits. These might also focus on the application of imaging of cardiac innervation in
PET technique using 124I-MIBG, 18F-dihydroxyphenylalanine (18F-DOPA) [116], or 18F-
flubrobenguane which [117] which shows a similar behavior to MIBG. In this way, a higher
image quality can be achieved, which could also improve the possibility of early detection
of immunotherapy-related cardiotoxic effects. However, these tracers are currently only
used in clinical trials or small patient cohorts and are not widely available.
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Figure 3. (a) Example for a physiological result in 123I-MIBG imaging: Physiological sympathetic
cardiac innervation (HMR late: 2.1, normal range: 2.0–2.4; physiological washout of 14%). (b) Example
for a pathologic result: Decreased sympathetic cardiac innervation (HMR late: 1.3; increased washout
of 28%). HMR: heart-to-mediastinum ratio. Images were acquired at our institution.

6. Investigation of Myocardial Perfusion and Viability

Myocardial perfusion imaging is one of the most frequently performed molecular
imaging procedures for evaluation of the heart. The examination is typically performed
both in rest and after physical stress to investigate perfusion of the myocardium in condi-
tions of reversible ischemia [118]. The comparison of stress and rest images allows detec-
tion of stress-induced perfusion defects as an indicator for coronary artery disease [119].
Moreover, myocardial viability can be evaluated [120] and the LVEF can be estimated
in electrocardiogram-gated examinations [118]. Imaging can either be performed using
cardiac-centered gamma cameras [118] or in SPECT(/CT) technique [121].

Typically, the 99mTc-labeled tracers 99mTc-sestamibi and 99mTc-Tetrofosmin are used
for myocardial perfusion imaging. These accumulate in cardiac mitochondria and are
not washed out from myocardial tissue after their uptake [122–125]. Alternatively, the
thallium isotope 201Tl can be used, which mimics potassium in physiological processes
(transport into myocardiocytes by Na-K-ATPase and subsequent wash-out), the uptake
process correlates linearly with myocardial perfusion [122]. However, 201Tl myocardial
perfusion imaging has a higher radiation exposure to patients than 99mTc-sestamibi and
99mTc-Tetrofosmin [126] and can, therefore, currently be considered a second-line option.
For an examination under stress conditions, either ergometric stress can be performed or
pharmacological stress can be evoked by application of vasodilators such as the cardiac
adenosine receptor agonists dipyridamole, adenosine, or regadenoson or by administration
of the catecholamine dobutamine prior to injection of the radiopharmaceutical. Regadeno-
son can be recommended in most situations because of the drug’s safety and adverse event
profile and the simplified study protocol compared with the other agents [127]. Figure 4
shows examples of physiological and pathological myocardial perfusion SPECT results.
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Figure 4. (a) Example for a physiological result in myocardial perfusion SPECT: No stress-induced
perfusion defects, no ischemia, normal LVEF in stress and rest conditions (≥55%). (b) Example for
a pathologic result: Stress-induced perfusion defects of the posterior wall (white arrows, ischemia:
10% of left-ventricular myocardium), normal LVEF in stress and rest conditions (≥55%). Images were
acquired at our institution.

In oncological patients, myocardial perfusion imaging can be performed for prethera-
peutic risk evaluation and to assess or monitor treatment-related cardiotoxic effects during
or after immunotherapy. Myocardial perfusion imaging enables evaluation of LVEF and
perfusion defects in one single examination. Patients might benefit from this simultane-
ous assessment, as acute coronary syndrome and (worsening of) atherosclerotic vascular
disease are described complications of immune checkpoint inhibitor treatment [128,129].
Furthermore, in patients receiving anti-PD1 therapy left ventricular function was impaired
in response to stress [130] making stress testing a promising examination technique.

The evaluation of myocardial perfusion imaging is highly standardized, approved,
and the applied tracers are commercialized and widely available. Compared to echocar-
diography, assessment of LVEF by myocardial perfusion imaging is less susceptible to
external factors [131]; compared to cardiac MR, the technique is advantageous in cost-
effectiveness and patients who can or must not undergo MR imaging [131]. Therefore,
myocardial perfusion imaging can potentially lead to early diagnosis and timely beginning
of cardiac therapy and/or adjustment of immunotherapy, and several reports describe
application of myocardial perfusion imaging in patients with immunotherapy-related
cardiotoxicity [132–134]. As proposed, the technique was used for monitoring of cardiac
function during immunotherapy treatment and for clarification of echocardiography results.
However, due to cardiac reserve, myocardial damage may occur well before a measurable
decrease in LVEF. Therefore, monitoring this parameter might not be the optimal technique
for early detection of patients with therapy-related cardiotoxicity [112,135] and the use of
more promising examination techniques such as the previously described PET imaging
modalities may be useful.



Int. J. Mol. Sci. 2022, 23, 3802 10 of 23

Of note, myocardial perfusion imaging can also be performed in PET technique using,
for example, H2

15O, 13NH3, or 82Rb, with the benefit of quantitative image evaluation [127].
However, these examinations are technically demanding, and the required radiopharma-
ceuticals are not available in many centers. Systematic applications of myocardial perfusion
PET in the context of oncologic treatment have only been described in rare reports and pre-
clinical studies with most of them in the context of radiotherapy and none of them covering
immunotherapy patients [90,136–140]. In this manuscript, we therefore refrain from a de-
tailed description of the technique which can, alternatively, be found in various previously
published review articles, for example, by Driessen et al. [141] or by Nakazato et al. [142].

7. Assessment of Ventricular Function and Chamber Morphology

Equilibrium radionuclide angiography (ERNA) can be used to visualize chamber
morphology, determine ventricular volumes, and evaluate ventricular wall motion. From
electrocardiogram-gated ERNA data, systolic and diastolic volumes can be estimated
and the LVEF can be calculated [143,144]. Monitoring of LVEF can be considered a clin-
ical standard to assess the functional impact of immunotherapy-related cardiotoxicity,
as heart failure was described as an adverse event of different immunotherapeutic treat-
ment regimens including nivolumab [145], nivolumab plus ipilimumab [146], or pem-
brolizumab [147]. ERNA has not yet been described in immunotherapy-related cardiotoxic-
ity patients but, for example, in breast cancer patients that are treated with the monoclonal
antibody trastuzumab [148], which targets HER2/neu receptor [149]. Cardiac dysfunc-
tion, in particular congestive heart failure, is a typical adverse event in treatment with
trastuzumab [131,150] and requires monitoring of LVEF.

Technically, ERNA is a blood pool scintigraphy, for which commonly patient erythro-
cytes are labeled with 99mTc. Labeling can be performed in vivo, in vitro, or in a mixed
in vivo/in vitro method [143]. As an alternative to labeling of erythrocytes, 99mTc-labeled
human serum albumin can be used but exhibits higher background activity [151]. The exam-
ination is typically performed in planar imaging technique. Alternatively, SPECT imaging
is possible and allows for additional investigation of right ventricular function [152]. ERNA
is performed in rest and after ergometric exercise to examine an adequate increase in
LVEF in response to physical stress [153]. Figure 5 shows examples of physiological and
pathologic ERNA results.

ERNA shows high precision and repeatability [154,155] and fewer variations depend-
ing on external circumstances than echocardiography (e.g., observer-dependent factors or
quality of echogenic window) [131]. Moreover, the imaging technique is well established
and widely available. Therefore, in the context of immunotherapy-related cardiotoxicity,
ERNA may be particularly beneficial for pretreatment assessment and to monitor cardiac
function during therapy (including post-therapeutic surveillance). An application scenario
can be patients with borderline LVEF in echocardiography, in whom accurate diagnosis
influences further therapy management [1,156]. Moreover, the high repeatability might
facilitate systemic evaluations in multi-centric clinical trials. Compared to cardiac MR,
which is also a highly accurate and sophisticated imaging technique to evaluate even small
cardiac damage, advantages of ERNA include a higher cost-effectiveness [157] and the
applicability to patients who must not undergo MR after implementation of cardiac devices.
A drawback might be a limited applicability for early detection of cardiac damage which,
from the authors’ point of view, makes the previously presented (PET) imaging modalities
more promising options in the field of immunotherapy-related cardiotoxicity.
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8. Future Trends

Future developments in molecular imaging related to the cardiotoxicity of immunomod-
ulatory drugs may include the investigation of new molecular targets. These will partic-
ularly benefit from the higher image quality of PET imaging compared to conventional
planar scintigraphy or SPECT techniques. In addition, imaging technology itself is subject
to continuous technical development, both on the software and on the hardware side.
New developments may significantly improve the image quality and, therefore, also the
possibilities of application, for example, regarding detection of low activity concentrations
as they may appear in imaging of new molecular targets. In addition, higher image quality
also facilitates the application of advanced image analysis techniques. These include, for
example, the analysis of time-resolved dynamic data. In addition, the study of molecu-
lar imaging data using artificial intelligence techniques is spreading. These methods, on
the one hand, enable the analysis of large amounts of data and, on the other hand, can
allow the determination of parameters within medical images that are not accessible to the
human eye.

8.1. New Molecular Targets

The use of novel immunotherapeutic drugs may be accompanied by the possibility of
specific labeling of these compounds for PET imaging and visualization of their distribution
within the human body. For some of these substances, such imaging possibilities have
already been described.

One mechanism of carcinogenesis is related with the immune evasion of cancer cells.
Cytotoxic T cells have negative regulators such as CTLA-4 and PD-1. The inhibition of
these receptors led to the development of multiple immunotherapy bioengineered agents,
some of which block PD-1 and CTLA-4 on T cells and others of which block the PD-1 ligand
PD-L1 on tumor cells leading the immune system to recognize cancer cells and destroy
them. Whole-body PD-1 and PD-L1 PET (imaging the targets of immune checkpoint in-
hibitor therapy) can be performed using various radionuclides including 18F-BMS-98619210
(targeting PD-L1), 89Zr-pembrolizumab, 89Zr-atezolizumab, 89Zr-nivolumab [158–161], or
64Cu-labeled PD-1 and PD-L1 antibodies [162].
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The pathophysiology of immunotherapy-related cardiotoxicity is not completely eluci-
dated. Cardiomyocytes express PD1 and PD-L1 [130] and it is supposed that the disruption
of the PD1-PDL1 pathway can release autoimmune reactions with immune-mediated car-
diac injury and polymorphonuclear leukocyte inflammation [7]. Autoimmune-mediated
cardiotoxicity involves myosin-specific T-lymphocytes leading to myocardial cell injury
and myocarditis, decreased endothelial nitric oxide synthase and consequently to vascular
leak syndrome. On the other hand, mAbs targeting ERBs are related to decreased repair
and survival of cardiomyocytes [7]. PET imaging using radiolabeled checkpoint inhibitors
might be used to identify patients at risk with high cardiac expression. It would be desirable
for clinical trials with these novel PET tracers to also examine cardiac tracer accumulation
and possible correlations with immunotherapy-related cardiotoxicity.

CAR-T therapy is a promising form of immunotherapy especially for hematological
malignancies [163]. After a sample of a patient’s T cells has been collected from the blood,
the cells are re-engineered, so they sprout chimeric antigen receptors on their surface. When
these CAR-T cells are reinjected into the patient, the receptors may help the T cells identify
and attack cancer cells throughout the body. One major complication of CAR-T cell therapy
is the cytokine release syndrome (CRS). CAR-T cells release pro-inflammatory cytokines
including interferon gamma (IFNγ), interleukin (IL)-1, IL-2 receptor alpha (RA), tumor
necrosis factor alpha (TNFα), and IL-6 to induce a cytotoxic response. The release of these
cytokines, particularly IL-6, also plays a role in the pathogenesis of CRS, including the
recruitment of additional T-lymphocytes. High levels of circulating IL-6 can also lead to
myocardial stunning which may be clinically indistinguishable from septic cardiomyopathy.
Furthermore, CRS results in the activation of prostaglandins, which can also impart a risk
of cardiotoxic events, such as tachycardia and hypotension. It is also possible that CAR-T
therapy results in a direct or “off-target” cardiotoxic injury as a result of cross-reactivity
between T cells and Titin [164]. For example, in children receiving CAR-T cell therapy, a
rate of approximately 20% suffered from major cardiovascular events [165].

In PET technique, direct in vivo imaging of CAR-T cells is possible. Promising preclin-
ical data suggest that the integration of reporter genes in the CAR-T genome enables their
imaging whenever needed [166,167]. For example, if the human natrium iodine symporter
is used, the PET tracer tetrafluoroborate can be employed for imaging [2], which is also
a promising tracer for thyroid cancer [168]. This enables visualization of the CAR-T cell
distribution in the body at a given time, potentially enabling an assessment of organ toxicity
and treatment efficacy. Moreover, imaging can be used to visualize the target molecules
used in the UniCAR system [169,170]. To overcome the limitations of CAR-T toxicity,
the UniCAR system propagates the use of adapter molecules, which link the modified T
cell to the cancer cell [169]. The adapter molecule can be conjugated with a radioisotope
to visualize the distribution of the UniCAR cells, potentially allowing inferences about
side effects [169]. A cardiac-emphasized distribution pattern of CAR-T and UniCAR T
cells could be visualized by PET imaging to allow for identification of patients at risk for
immunotherapy-related toxicity. Future studies of these PET imaging modalities could also
focus on cardiac side effects.

Other exciting tracers that could be used in future for imaging of immunotherapy-
related cardiotoxicity are 18F-GP1 [171,172], which visualizes activated platelets by targeting
glycoprotein IIb/IIIa of aggregated platelets and could therefore be used to show the
effects of increased thrombogenic potential, and 18F-NaF [173,174], which binds directly to
arteriosclerotic plaques. Both have, until now, not yet found their way into clinical routine
imaging but might be applicable for imaging of immunotherapy-related cardiotoxicity after
systematic clinical investigations.

8.2. Technological Perspectives

Over the recent years, a new generation of “digital” PET systems were introduced by all
large established PET manufacturers [175–179]. These systems use silicon photomultiplier-
based detectors leading to an improved spatial and coincidence timing resolution and
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reduced image noise [180–185]. Possible clinical benefits include a reduction in adminis-
tered activity or acquisition time [186–190] leading to increased patient comfort, particularly
regarding pain-stricken or dyspneic patients [191] from which symptomatic patients with
cardiotoxicity might also benefit. In addition, digital PET improves the detectability, es-
pecially of small structures and those with low tracer-uptake [182,192–194], which may
facilitate the visualization of new biomarkers. Moreover, digital PET enhances the appli-
cability of dynamic PET, i.e., evaluation of time-resolved PET data, a technique that can
particularly benefit from the improved data quality [195] and will be introduced in the
next section.

Next to the application of digital detectors, a recent technical improvement in PET
technology was the introduction of total-body PET systems. The extended field-of-view of
these systems (≥1 m) allows simultaneous imaging of a significantly larger section of the
body than standard PET systems (with a typical field-of-view of 20–30 cm). The increased
number of detectors in total-body PET systems further improves sensitivity and image
quality compared to “standard” digital systems [196–198].

8.3. Artificial Intelligence-Based Approaches and Dynamic PET

Advanced image evaluation enables the extraction of clinically relevant information
that enables assessment of cardiac function and monitoring of cardiotoxicity. Two aspects
of advanced image evaluation will be discussed here.

First, dynamic PET imaging enables the extraction of additional relevant information
from a PET scan. Dynamic PET imaging means that the acquisition of PET images begins
simultaneously with the administration of the PET tracer. The distinct analysis of time-
activity-curves by tracer kinetic modeling in different compartments which are defined
within the PET images (compartmental kinetic modeling) allows for a more precise charac-
terization of the uptake process of the investigated tracer [195,199]. From that information,
extended conclusions about the investigated disease may be drawn.

For example, if an FDG PET scan is performed as dynamic acquisition, the left ven-
tricular function can be assessed. The first pass of the tracer will be captured in dynamic
mode, enabling the quantification of the contractile function. This analysis closely resem-
bles the results of conventional ERNA [200]. Another study could show that dynamic
acquisition of 11C-Acetate-PET enables the assessment of cardiotoxicity via imaging the
myocardial oxidative metabolism. The dynamic acquisitions allow the fit of a kinetic model,
which can be used to extract the myocardial oxygen consumption [201]. The possibilities
for dynamic imaging will expand even further with the emergence of new technologies
such as total-body PET and improved detector technologies that allow for even higher
temporal resolution.

Second, novel algorithmic approaches such as methods of machine learning can be
used to assess the cardiac function. For example, machine learning could successfully
determine the ejection fraction on echocardiograms [202]. In another study, techniques of
artificial intelligence were used to predict cancer therapy-related strain alterations [203].
Similar applications might become subjects of future approaches regarding molecular
imaging data for investigation of immunotherapy-related cardiotoxicity.

Until now, the application of these approaches to immunotherapy-related changes
is still limited. Further studies have to evaluate the value of dynamic PET and machine
learning analysis in the context of immunotherapy-related cardiotoxicity.

9. Conclusions

Several applications of nuclear cardiology imaging modalities in immunotherapy-
related cardiotoxicity patients have found their way into clinical diagnostics. The different
examinations reflect technological advances in imaging technique and development of
new tracers from blood pool scintigraphy via three-dimensional myocardial perfusion and
cardiac sympathetic innervation SPECT to novel elaborate PET technologies, such as FAPI
PET for imaging of cardiac remodeling. Table 1 summarizes the most promising nuclear
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cardiology examination methods that are presented in this review and their most important
characteristics. In particular, PET imaging using 18F-FDG, 68Ga-FAPI, or—depending on the
malignancy—68Ga-DOTATATE/DOTATOC can allow for simultaneous oncologic staging
and cardiac assessment with the benefit of possible early detection of cardiac damage. As
the number of immunotherapy patients is increasing, early detection will become even
more important to identify patients at risk who demand timely beginning of therapy. For
many techniques, the number of clinical applications described so far is small and further
investigation is needed before general applicability. On the other hand, due to the ongoing
development, the introduction of further exciting tracers, for example, to directly visualize
the effect of the therapeutics on the myocardium, can be expected. These might infer further
groundbreaking improvements for the application of nuclear cardiology imaging options
in immunotherapy-related cardiotoxicity.

Table 1. Most promising nuclear cardiology examination methods for assessment of immunotherapy-
related cardiotoxicity.

Imaging Modality Parameters Advantages Disadvantages Publications

FDG PET Glucose metabolism

− simultaneous oncologic
staging/cardiac
assessment

− early detection of cardiac
damage

− widely available

− can be
non-specific

− laborious patient
preparation

Case reports

FAPI PET Cardiac
remodeling

− simultaneous oncologic
staging/cardiac
assessment

− early detection of cardiac
damage

− highly specific
− simple patient

preparation

− limited to large
centers Case reports

DOTATOC/
DOTATATE PET SSTR *-Expression

− early detection of cardiac
damage

− simple patient
preparation

− widely available

− simultaneous
oncologic
staging/cardiac
assessment
limited to SSTR
*-expressing
malignancies

Case reports

MIBG SPECT Sympathetic
innervation

− potential early detection
of cardiac damage

− simple patient
preparation

− widely available

− not yet described
for
immunotherapy
patients

-

Myocardial
perfusion SPECT

LVEF †

wall motion
perfusion

(stress/rest)

− highly standardized
− widely available
− simultaneous assessment

of CAD ‡ and HF §

− value in CAD ‡

evidenced by a very high
number of studies

− cost-effective

− no early detection Case reports
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Table 1. Cont.

Imaging Modality Parameters Advantages Disadvantages Publications

ERNA LVEF †

wall motion

− highly standardized
− widely available
− excellent reproducibility
− cost-effective

− no early detection -

* SSTR: somatostatin receptor. † LVEF: left ventricular ejection fraction. ‡ CAD: coronary artery disease. § HF:
heart failure.
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